
Fast Approximate Counting by
Loopy Belief Propagation

Pascal O. Vontobel

Talk at CUHK, Hong Kong, December 16, 2013

Chess Board

Chess Board

Chess Board

Question: in howmany ways can we place 8 non-attacking rooks

on a chess board?

Chess Board

Row condition: exactly one rook per row.

Chess Board

Column condition: exactly one rook per column.

Chess Board

Question: in howmany ways can we place 8 non-attacking rooks

on a chess board?

Chess Board

Chess Board

Chess Board

Question: in howmany ways can we place 8 non-attacking rooks

on this modified chess board?

Chess Board

Chess Board

Chess Board

Question: in howmany ways can we place 8 non-attacking rooks

on this modified chess board?

Sudoku

Sudoku

1

9 5 2

3 7 4

6 8 1

8 1 6

2 3 9

5 4 7

7 9 8

4 3

5

6

2

4 6 3

1 2 8

7 5 9

9 3 7

5 8 4

1 2

2 4 1

8 7 5

3 9 6

6

7

6

3

4

1

9

5

2

8

1

5

4

2

6

8

3

9

7

8

9

2

5

7

3

1

4

6

Sudoku

1

9 5 2

3 7 4

6 8 1

8 1 6

2 3 9

5 4 7

7 9 8

4 3

5

6

2

4 6 3

1 2 8

7 5 9

9 3 7

5 8 4

1 2

2 4 1

8 7 5

3 9 6

6

7

6

3

4

1

9

5

2

8

1

5

4

2

6

8

3

9

7

8

9

2

5

7

3

1

4

6

Question: howmany Sudoku arrays are there?

(More technically: howmany valid configurations are there?)

Sudoku

1

9 5 2

3 7 4

6 8 1

8 1 6

2 3 9

5 4 7

7 9 8

4 3

5

6

2

4 6 3

1 2 8

7 5 9

9 3 7

5 8 4

1 2

2 4 1

8 7 5

3 9 6

6

7

6

3

4

1

9

5

2

8

1

5

4

2

6

8

3

9

7

8

9

2

5

7

3

1

4

6

Row condition: numbers 1, . . . , 9 appear exactly once.

Sudoku

1

9 5 2

3 7 4

6 8 1

8 1 6

2 3 9

5 4 7

7 9 8

4 3

5

6

2

4 6 3

1 2 8

7 5 9

9 3 7

5 8 4

1 2

2 4 1

8 7 5

3 9 6

6

7

6

3

4

1

9

5

2

8

1

5

4

2

6

8

3

9

7

8

9

2

5

7

3

1

4

6

Column condition: numbers 1, . . . , 9 appear exactly once.

Sudoku

1

9 5 2

3 7 4

6 8 1

8 1 6

2 3 9

5 4 7

7 9 8

4 3

5

6

2

4 6 3

1 2 8

7 5 9

9 3 7

5 8 4

1 2

2 4 1

8 7 5

3 9 6

6

7

6

3

4

1

9

5

2

8

1

5

4

2

6

8

3

9

7

8

9

2

5

7

3

1

4

6

Sub-block condition: numbers 1, . . . , 9 appear exactly once.

Sudoku

1

9 5 2

3 7 4

6 8 1

8 1 6

2 3 9

5 4 7

7 9 8

4 3

5

6

2

4 6 3

1 2 8

7 5 9

9 3 7

5 8 4

1 2

2 4 1

8 7 5

3 9 6

6

7

6

3

4

1

9

5

2

8

1

5

4

2

6

8

3

9

7

8

9

2

5

7

3

1

4

6

Question: howmany Sudoku arrays are there?

(More technically: howmany valid configurations are there?)

Other Sudoku Setups

Other Sudoku Setups

1D constraints in communications

RLL Constraints

0 1 0 1 0 1 11 0 0 0 0 0 0 0 1

A (d, k) RLL constraint imposes:

At least d zero symbols between two ones.

At most k zero symbols between two ones.

RLL Constraints

0 1 0 1 0 1 11 0 0 0 0 0 0 0 1

A (d, k) RLL constraint imposes:

At least d zero symbols between two ones.

At most k zero symbols between two ones.

Question: howmany sequences of length T fulfill these constraints?

RLL Constraints

0 1 0 1 0 1 11 0 0 0 0 0 0 0 1

A (d, k) RLL constraint imposes:

At least d zero symbols between two ones.

At most k zero symbols between two ones.

Question: howmany sequences of length T fulfill these constraints?

Answer: typically, the answer to such questions looks like

N(T) = exp
(
C · T + o(T)

)
.

RLL Constraints

0 1 0 1 0 1 11 0 0 0 0 0 0 0 1

A (d, k) RLL constraint imposes:

At least d zero symbols between two ones.

At most k zero symbols between two ones.

Question: howmany sequences of length T fulfill these constraints?

Answer: typically, the answer to such questions looks like

N(T) = exp
(
C · T + o(T)

)
.

C: “capacity” or “entropy.”

Shannon (1948), Figure 2

Shannon (1948), Figure 2

Shannon (1948)

Shannon (1948)

Shannon (1948)

C = lim
T→∞

logN(T)

T

Shannon (1948)

C = lim
T→∞

logN(T)

T

i.e.,

N(T) = 2C·T+o(T)

2D constraints in communications

Two-Dimensional RLL Constraints

Two-Dimensional RLL Constraints

A (d1, k; d2, k2) RLL constraint imposes:

. . .

. . .

Two-Dimensional RLL Constraints

A (d1, k; d2, k2) RLL constraint imposes:

. . .

. . .

Question: How many arrays of sizem × n

fulfill these constraints?

Two-Dimensional RLL Constraints

A (d1, k; d2, k2) RLL constraint imposes:

. . .

. . .

Question: How many arrays of sizem × n

fulfill these constraints?

Answer: Typically, the answer to such

questions looks like

N(m,n) = exp
(
C ·mn+ o(mn)

)
.

Two-Dimensional RLL Constraints

A (d1, k; d2, k2) RLL constraint imposes:

. . .

. . .

Question: How many arrays of sizem × n

fulfill these constraints?

Answer: Typically, the answer to such

questions looks like

N(m,n) = exp
(
C ·mn+ o(mn)

)
.

C: “capacity” or “entropy.”

Overview

Setting up a graphical model

Permanent of a matrix

Factor graphs and the sum-product algorithm

The total sum of a factor graph and its Bethe approximation

A combinatorial interpretation of the Bethe approximation

Further comments

Conclusions

Towards a graphical model

Towards a Graphical Model

Question: in howmany ways can we place 8 non-attacking rooks

on a chess board?

Towards a Graphical Model

Towards a Graphical Model

Towards a Graphical Model

A8,8A8,1

A3,1

A2,1

A1,1 A1,2 A1,3 A1,8

Towards a Graphical Model

Towards a Graphical Model

grow,8

grow,8(a8,1, . . . , a8,8) ,




1 exactly one rook

0 otherwise

Towards a Graphical Model

gcol,8

gcol,8(a1,8, . . . , a8,8) ,




1 exactly one rook

0 otherwise

Towards a Graphical Model

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...

gcol,8

gcol,2

gcol,1

...

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)

Total sum:

Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)

Total sum (partition function):

Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)

Total sum (partition function):

Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)

Use of loopy belief propagation

for approximating Z?

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)

Total sum (partition function):

Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)

Use of loopy belief propagation

for approximating Z?

Towards a Graphical Model

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)

Total sum (partition function):

Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)

Use of loopy belief propagation

for approximating Z?

Some considerations

on counting algorithms

Coloring the Surfaces
of a Closed Strip

Coloring the Surfaces
of a Closed Strip

Coloring the Surfaces
of a Closed Strip

Coloring the Surfaces
of a Closed Strip

Coloring the Surfaces
of a Closed Strip

Coloring the Surfaces
of a Closed Strip

Coloring the Surfaces
of a Closed Strip

Coloring the Surfaces
of a Closed Strip

Coloring the Surfaces
of a Closed Strip

Coloring the Surfaces
of a Closed Strip

�

�

�

4

�

4 2

�

4
4+2
2 = 3 2

· · ·

�

· · ·

�

4 2 4 2

The permanent of amatrix

Determinant vs. Permanent of a Matrix

Consider the matrix θ =




θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33


.

Determinant vs. Permanent of a Matrix

Consider the matrix θ =




θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33


.

The determinant of θ:

det(θ) = +θ11θ22θ33 + θ12θ23θ31 + θ13θ21θ32

− θ11θ23θ32 − θ12θ21θ33 − θ13θ22θ31.

Determinant vs. Permanent of a Matrix

Consider the matrix θ =




θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33


.

The determinant of θ:

det(θ) = +θ11θ22θ33 + θ12θ23θ31 + θ13θ21θ32

− θ11θ23θ32 − θ12θ21θ33 − θ13θ22θ31.

The permanent of θ:

perm(θ) = + θ11θ22θ33 + θ12θ23θ31 + θ13θ21θ32

+ θ11θ23θ32 + θ12θ21θ33 + θ13θ22θ31.

Determinant vs. Permanent of a Matrix

The determinant of an n× n-matrix θ

det(θ) =
∑

σ

sgn(σ)
∏

i∈[n]

θi,σ(i).

where the sum is over all n! permutations of the set [n] , {1, . . . , n}.

Determinant vs. Permanent of a Matrix

The determinant of an n× n-matrix θ

det(θ) =
∑

σ

sgn(σ)
∏

i∈[n]

θi,σ(i).

where the sum is over all n! permutations of the set [n] , {1, . . . , n}.

The permanent of an n× n-matrix θ:

perm(θ) =
∑

σ

∏

i∈[n]

θi,σ(i).

Determinant vs. Permanent of a Matrix

The determinant of an n× n-matrix θ

det(θ) =
∑

σ

sgn(σ)
∏

i∈[n]

θi,σ(i).

where the sum is over all n! permutations of the set [n] , {1, . . . , n}.

The permanent of an n× n-matrix θ:

perm(θ) =
∑

σ

∏

i∈[n]

θi,σ(i).

The permanent turns up in a variety of contexts, especially in

combinatorial problems, statistical physics (partition function), . . .

Historical Remarks
In 1812, Binet and Cauchy independently introduced functions that are

nowadays called permanents.

G. P. M. Binet, “Mémoire sur un système de formules

analytiques, et leur application à des considrations

géométriques,” Journal de l’École Polytechnique, Paris 9,

pp. 280–302, 1812.

L. A. Cauchy, “Mémoire sur les fonctions qui ne peuvent

obtenir que deux valeurs égales et de signes contraires

par suite des transpositions opérées entre les variables

qu’elles renferment,” Journal de l’École Polytechnique,

Paris 10, pp. 29–112, 1812.

Exactly Computing the Permanent

Exactly Computing the Permanent

Brute-force computation:

O(n · n!) = O
(
n3/2 · (n/e)n

)
arithmetic operations.

Exactly Computing the Permanent

Brute-force computation:

O(n · n!) = O
(
n3/2 · (n/e)n

)
arithmetic operations.

Ryser’s algorithm:

Θ(n · 2n) arithmetic operations.

Exactly Computing the Permanent

Brute-force computation:

O(n · n!) = O
(
n3/2 · (n/e)n

)
arithmetic operations.

Ryser’s algorithm:

Θ(n · 2n) arithmetic operations.

Complexity class [Valiant, 1979]:

#P (“sharp P” or “number P”),

where #P is the set of the counting problems associated with the

decision problems in the set NP. (Note that even the computation

of the permanent of zero-one matrices is #P-complete.)

Estimating the Permanent

More efficient algorithms are possible if one does not want to compute

the permanent of a matrix exactly.

Estimating the Permanent

More efficient algorithms are possible if one does not want to compute

the permanent of a matrix exactly.

For a matrix that contains positive and negative entries:

→ “constructive and destructive interference of terms

in the summation.”

Estimating the Permanent

More efficient algorithms are possible if one does not want to compute

the permanent of a matrix exactly.

For a matrix that contains positive and negative entries:

→ “constructive and destructive interference of terms

in the summation.”

For a matrix that contains only non-negative entries:

→ “constructive interference of terms in the summation.”

Estimating the Permanent

FROMNOWON:we focus on the case where all entries of the matrix are

non-negative, i.e.

θij ≥ 0 ∀i, j.

Estimating the Permanent

FROMNOWON:we focus on the case where all entries of the matrix are

non-negative, i.e.

θij ≥ 0 ∀i, j.

Markov chain Monte Carlo based methods: [Broder, 1986], . . .

Estimating the Permanent

FROMNOWON:we focus on the case where all entries of the matrix are

non-negative, i.e.

θij ≥ 0 ∀i, j.

Markov chain Monte Carlo based methods: [Broder, 1986], . . .

Godsil-Gutman formula based methods: [Karmarkar et al., 1993],

[Barvinok, 1997ff.], [Chien, Rasmussen, Sinclair, 2004], . . .

Estimating the Permanent

FROMNOWON:we focus on the case where all entries of the matrix are

non-negative, i.e.

θij ≥ 0 ∀i, j.

Markov chain Monte Carlo based methods: [Broder, 1986], . . .

Godsil-Gutman formula based methods: [Karmarkar et al., 1993],

[Barvinok, 1997ff.], [Chien, Rasmussen, Sinclair, 2004], . . .

Fully polynomial-time randomized approximation schemes

(FPRAS): [Jerrum, Sinclair, Vigoda, 2004], . . .

Estimating the Permanent

FROMNOWON:we focus on the case where all entries of the matrix are

non-negative, i.e.

θij ≥ 0 ∀i, j.

Markov chain Monte Carlo based methods: [Broder, 1986], . . .

Godsil-Gutman formula based methods: [Karmarkar et al., 1993],

[Barvinok, 1997ff.], [Chien, Rasmussen, Sinclair, 2004], . . .

Fully polynomial-time randomized approximation schemes

(FPRAS): [Jerrum, Sinclair, Vigoda, 2004], . . .

Bethe-approximation-based / sum-product-algorithm-based

methods: [Chertkov et al., 2008], [Huang and Jebara, 2009], . . .

Estimating the Permanent

From [Huang/Jebara, 2009].

Estimating the Permanent

From [Huang/Jebara, 2009].

Valid Rook Configs. and Permanents

Number of valid rook configurations

= perm




1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1




=
∑

σ

∏

i∈[8]

θi,σ(i)

Valid Rook Configs. and Permanents

Number of valid rook configurations

= perm




1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1




=
∑

σ

∏

i∈[8]

θi,σ(i)

Valid Rook Configs. and Permanents

Number of valid rook configurations

= perm




1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1

1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1




=
∑

σ

∏

i∈[8]

θi,σ(i)

Valid Rook Configs. and Permanents

Number of valid rook configurations

= perm




1 0 1 1 0 1 1 1

1 1 1 0 0 0 1 0

1 1 0 1 1 0 1 1

0 0 1 1 0 1 0 1

0 1 0 1 1 1 0 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 1 1

1 1 0 1 1 1 1 1




=
∑

σ

∏

i∈[8]

θi,σ(i)

Perfect Matchings and Permanents

Number of perfect matchings

= perm




1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1




=
∑

σ

∏

i∈[8]

θi,σ(i)

Perfect Matchings and Permanents

Number of perfect matchings

= perm




1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1




=
∑

σ

∏

i∈[8]

θi,σ(i)

Perfect Matchings and Permanents

Number of perfect matchings

= perm




1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1

1 1 1 0 0 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1




=
∑

σ

∏

i∈[8]

θi,σ(i)

Perfect Matchings and Permanents

Number of perfect matchings

= perm




1 0 1 1 0 1 1 1

1 1 1 0 0 0 1 0

1 1 0 1 1 0 1 1

0 0 1 1 0 1 0 1

0 1 0 1 1 1 0 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 1 1

1 1 0 1 1 1 1 1




=
∑

σ

∏

i∈[8]

θi,σ(i)

Perfect Matchings and Permanents

Number of perfect matchings

= perm




1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1




=
∑

σ

∏

i∈[8]

θi,σ(i)

Perfect Matchings and Permanents

θi,ji j
Total sum of weighted perf. matchings

= perm




θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18

θ21 θ22 θ23 θ24 θ25 θ26 θ27 θ28

θ31 θ32 θ33 θ34 θ35 θ36 θ37 θ38

θ41 θ42 θ43 θ44 θ45 θ46 θ47 θ48

θ51 θ52 θ53 θ54 θ55 θ56 θ57 θ58

θ61 θ62 θ63 θ64 θ65 θ66 θ67 θ68

θ71 θ72 θ73 θ74 θ75 θ76 θ77 θ78

θ81 θ82 θ83 θ84 θ85 θ86 θ87 θ88




=
∑

σ

∏

i∈[8]

θi,σ(i)

Perfect Matchings and Permanents

θi,ji j
Total sum of weighted perf. matchings

= perm




θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18

θ21 θ22 θ23 θ24 θ25 θ26 θ27 θ28

θ31 θ32 θ33 θ34 θ35 θ36 θ37 θ38

θ41 θ42 θ43 θ44 θ45 θ46 θ47 θ48

θ51 θ52 θ53 θ54 θ55 θ56 θ57 θ58

θ61 θ62 θ63 θ64 θ65 θ66 θ67 θ68

θ71 θ72 θ73 θ74 θ75 θ76 θ77 θ78

θ81 θ82 θ83 θ84 θ85 θ86 θ87 θ88




=
∑

σ

∏

i∈[8]

θi,σ(i)

Graphical Model for Permanent

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

(function nodes are suitably defined based on θ)

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)

Permanent:

perm(θ) = Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)

Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)

Permanent:

perm(θ) = Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)

Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

 Many short cycles.

 The vertex degrees are high.

Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

 Many short cycles.

 The vertex degrees are high.

Both facts might suggest that the

application of the sum-product al-

gorithm to this factor graph is

rather problematic.

Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

 Many short cycles.

 The vertex degrees are high.

Both facts might suggest that the

application of the sum-product al-

gorithm to this factor graph is

rather problematic.

However, luckily this is not the

case.

Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

 Many short cycles.

 The vertex degrees are high.

Both facts might suggest that the

application of the sum-product al-

gorithm to this factor graph is

rather problematic.

However, luckily this is not the

case.

For an SPA suitability assessment,

the overall cycle structure and the

types of functions nodes are at least

as important.

Factor graphs and the

sum-product algorithm

The Sum-Product Algorithm

Let us consider the following factor graph (which is a tree).

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

The global function is

f(x1, x2, x3, x4, x5)

= fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

The Sum-Product Algorithm

The global function is

f(x1, x2, x3, x4, x5) = fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

The Sum-Product Algorithm

The global function is

f(x1, x2, x3, x4, x5) = fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

Very often one wants to calculate marginal functions. E.g.

ηX1
(x1) =

∑

x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

=
∑

x2,x3,x4,x5

fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

The Sum-Product Algorithm

The global function is

f(x1, x2, x3, x4, x5) = fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

Very often one wants to calculate marginal functions. E.g.

ηX1
(x1) =

∑

x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

=
∑

x2,x3,x4,x5

fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

ηX3
(x3) =

∑

x1,x2,x4,x5

f(x1, x2, x3, x4, x5)

=
∑

x1,x2,x4,x5

fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

etc.

The Sum-Product Algorithm

The figure shows the messages that are necessary for calculating ηX1
(x1), ηX2

(x2),

ηX3
(x3), ηX4

(x4), and ηX5
(x5).

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

The Sum-Product Algorithm

The figure shows the messages that are necessary for calculating ηX1
(x1), ηX2

(x2),

ηX3
(x3), ηX4

(x4), and ηX5
(x5).

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Edges: Messages are sent along edges.

The Sum-Product Algorithm

The figure shows the messages that are necessary for calculating ηX1
(x1), ηX2

(x2),

ηX3
(x3), ηX4

(x4), and ηX5
(x5).

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Edges: Messages are sent along edges.

Processing: Taking products and doing summations is done at the vertices.

The Sum-Product Algorithm

The figure shows the messages that are necessary for calculating ηX1
(x1), ηX2

(x2),

ηX3
(x3), ηX4

(x4), and ηX5
(x5).

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Edges: Messages are sent along edges.

Processing: Taking products and doing summations is done at the vertices.

Reuse of messages: We see that messages can be “reused” in the sense that many

partial calculations are the same; so it suffices to perform them only once.

The Sum-Product Algorithm

f1

f2

f3

f4X

µX→f4
(x)

µX→f4(x) = µf1→X(x) · µf2→X(x) · µf3→X(x)

The Sum-Product Algorithm

f1

f2

f3

f4X

µX→f4
(x)

µX→f4(x) = µf1→X(x) · µf2→X(x) · µf3→X(x)

X1

X3

µf→X4
(x4)

f X4

X2

µf→X4
(x4) =

∑

x1

∑

x2

∑

x3

f(x1, x2, x3, x4) · µX1→f (x1) · µX2→f (x2) · µX3→f (x3)

The Sum-Product Algorithm

f2

X

f1

f3

f4

Computation of marginal at variable node:

ηX(x) = µf1→X(x) · µf2→X(x)

· µf3→X(x) · µf4→X(x)

The Sum-Product Algorithm

f2

X

f1

f3

f4

Computation of marginal at variable node:

ηX(x) = µf1→X(x) · µf2→X(x)

· µf3→X(x) · µf4→X(x)

f

X2

X1

X4

X3

Computation of marginal at function node:

ηf (x1, x2, x3, x4) = f(x1, x2, x3, x4)

· µX1→f (x1) · µX2→f (x2)

· µX3→f (x3) · µX4→f (x4)

The Sum-Product Algorithm

Factor graph without cycles: in this case it is obvious what

messages have to be calculated when.

⇒Mode of operation 1

The Sum-Product Algorithm

Factor graph without cycles: in this case it is obvious what

messages have to be calculated when.

⇒Mode of operation 1

Factor graph with cycles: one has to decide what update schedule

to take.

⇒Mode of operation 2

Comments on the
Sum-Product Algorithm

If the factor graph has no cycles then it is obvious what messages

have to be calculated when.

If the factor graphs has cycles one has to decide what update

schedule to take.

Depending on the underlying semi-ring one gets different versions

of the summary-product algorithm.

For 〈R,+, · 〉 one gets the sum-product algorithm.

(This is the case discussed above.)

For 〈R+,max, · 〉 one gets the max-product algorithm.

For 〈R,min,+〉 one gets the min-sum algorithm.

etc.

Partition function (total sum)

Partition Function

Z =
∑

x1,x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

Partition Function

Z =
∑

x1,x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

Recall:

ηX1
(x1) =

∑

x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

ηX2
(x2) =

∑

x1,x3,x4,x5

f(x1, x2, x3, x4, x5)

...
...

Partition Function

Z =
∑

x1,x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

Recall:

ηX1
(x1) =

∑

x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

ηX2
(x2) =

∑

x1,x3,x4,x5

f(x1, x2, x3, x4, x5)

...
...

Define:

ZX1
=

∑

x1

ηX1
(x1)

ZX2
=

∑

x2

ηX2
(x2)

...
...

Partition Function

Z =
∑

x1,x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

Recall:

ηX1
(x1) =

∑

x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

ηX2
(x2) =

∑

x1,x3,x4,x5

f(x1, x2, x3, x4, x5)

...
...

Define:

ZX1
=

∑

x1

ηX1
(x1) = Z

ZX2
=

∑

x2

ηX2
(x2) = Z

...
...

Partition Function

Z =
∑

x1,x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

Partition Function

Z =
∑

x1,x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

Recall:

...
...

ηfC
(x1, x2, x3) =

∑

x4,x5

f(x1, x2, x3, x4, x5)

...
...

Partition Function

Z =
∑

x1,x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

Recall:

...
...

ηfC
(x1, x2, x3) =

∑

x4,x5

f(x1, x2, x3, x4, x5)

...
...

Define:

...
...

ZfC
=

∑

x1,x2,x3

ηfC
(x1, x2, x3)

...
...

Partition Function

Z =
∑

x1,x2,x3,x4,x5

f(x1, x2, x3, x4, x5)

Recall:

...
...

ηfC
(x1, x2, x3) =

∑

x4,x5

f(x1, x2, x3, x4, x5)

...
...

Define:

...
...

ZfC
=

∑

x1,x2,x3

ηfC
(x1, x2, x3) = Z

...
...

Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Z = ZX1
= ZX2

= ZX3
= ZX4

= ZX5
= ZfA = ZfB = ZfC = ZfD = ZfE

Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Z = ZX1
= ZX2

= ZX3
= ZX4

= ZX5
= ZfA = ZfB = ZfC = ZfD = ZfE

Claim:

Z =
ZfA · ZfB · ZfC · ZfD · ZfE · ZX1

· ZX2
· ZX3

· ZX4
· ZX5

Z2
X1

· Z2
X2

· Z3
X3

· Z1
X4

· Z1
X5

(Note: exponents in denominator equal variable node degrees.)

Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Z = ZX1
= ZX2

= ZX3
= ZX4

= ZX5
= ZfA = ZfB = ZfC = ZfD = ZfE

Claim:

Z =
Z#vertices

Z#edges
=

ZfA · ZfB · ZfC · ZfD · ZfE · ZX1
· ZX2

· ZX3
· ZX4

· ZX5

Z2
X1

· Z2
X2

· Z3
X3

· Z1
X4

· Z1
X5

(Note: exponents in denominator equal variable node degrees.)

Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Z = ZX1
= ZX2

= ZX3
= ZX4

= ZX5
= ZfA = ZfB = ZfC = ZfD = ZfE

Claim:

Z =
Z#vertices

Z#edges
=

ZfA · ZfB · ZfC · ZfD · ZfE · ZX1
· ZX2

· ZX3
· ZX4

· ZX5

Z2
X1

· Z2
X2

· Z3
X3

· Z1
X4

· Z1
X5

(Here we used the fact that for a graph with one component and no cycles it holds that

#vertices = #edges+ 1.)

Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Z =
ZfA · ZfB · ZfC · ZfD · ZfE · ZX1

· ZX2
· ZX3

· ZX4
· ZX5

Z2
X1

· Z2
X2

· Z3
X3

· Z1
X4

· Z1
X5

Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Z =

∏
f Zf · ∏X ZX
∏

X Z
deg(X)
X

Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Z =

∏
f Zf · ∏X ZX
∏

X Z
deg(X)
X

Bethe approximation:

Use the above type of expression also when factor graph has cycles.

Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Z =

∏
f Zf · ∏X ZX
∏

X Z
deg(X)
X

Bethe approximation:

Use the above type of expression also when factor graph has cycles.

→ Z ′
Bethe

Bethe Partition Function

Bethe Partition Function

Basically, we can evaluate the expresion for Z ′
Bethe at any iteration

of the SPA.

Bethe Partition Function

Basically, we can evaluate the expresion for Z ′
Bethe at any iteration

of the SPA.

Factor graph without cycles:

We have Z ′
Bethe = Z only at a fixed point of the SPA.

Bethe Partition Function

Basically, we can evaluate the expresion for Z ′
Bethe at any iteration

of the SPA.

Factor graph without cycles:

We have Z ′
Bethe = Z only at a fixed point of the SPA.

Factor graph with cycles:

Therefore, we call Z ′
Bethe a (local) Bethe partition function only if

we are at a fixed point of the SPA.

Bethe Partition Function

Basically, we can evaluate the expresion for Z ′
Bethe at any iteration

of the SPA.

Factor graph without cycles:

We have Z ′
Bethe = Z only at a fixed point of the SPA.

Factor graph with cycles:

Therefore, we call Z ′
Bethe a (local) Bethe partition function only if

we are at a fixed point of the SPA.

Factor graph with cycles: the SPA can have multiple fixed points.

We define the Bethe partition function to be

ZBethe , max
fixed points of SPA

Z ′
Bethe.

Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , xi,8)

Permanent:

perm(θ) = Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)

Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , xi,8)

Bethe Permanent:

permB(θ) , ZBethe

Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , xi,8)

Bethe Permanent:

permB(θ) , ZBethe

However, the SPA is a locally operating algorithm and so has its

limitations in the conclusions that it can reach.

Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , xi,8)

Bethe Permanent:

permB(θ) , ZBethe

This locality of the SPA turns out to be well-captured by so-called

finite graph covers, especially at fixed points of the SPA.

A combinatorial interpretation

of the Bethe permanent

Reminder:
Kronecker Product of twoMatrices

Consider a matrix θ of size n× n.

Consider a matrixB of sizeM ×M .

The Kronecker product of θ andB is defined to be

θ =




θ1,1 · · · θ1,n
...

...

θn,1 · · · θn,n


 −→ θ ⊗B ,




θ1,1B · · · θ1,nB
...

...

θn,1B · · · θn,nB


 .

Clearly, θ ⊗B has size (nM)× (nM).

P-lifting of a Matrix

θ =




θ1,1 · · · θ1,n
...

...

θn,1 · · · θn,n




P-lifting
−→
of θ

θ↑P ,




θ1,1P
(1,1) · · · θ1,nP

(1,n)

...
...

θn,1P
(n,1) · · · θn,nP

(n,n)


 .

P-lifting of a Matrix

Consider the non-negative matrix θ of size n× n.

LetPM×M be the set of all permutation matrices of sizeM ×M .

For every positive integerM , we defineΨM be the set

ΨM ,

{
P =

{
P(i,j)

}
(i,j)∈[n]2

∣∣∣P(i,j) ∈ PM×M

}
.

ForP ∈ ΨM we define theP-lifting of θ to be the following

(nM)× (nM)matrix

θ =




θ1,1 · · · θ1,n
...

...

θn,1 · · · θn,n




P-lifting
−→
of θ

θ↑P ,




θ1,1P
(1,1) · · · θ1,nP

(1,n)

...
...

θn,1P
(n,1) · · · θn,nP

(n,n)


 .

Degree-M Bethe Permanent

Definition: For any positive integerM , we define the degree-M Bethe

permanent of θ to be

permB,M(θ) , M

√〈
perm

(
θ↑P

)〉
P∈ΨM

.

Theorem:

permB(θ) = lim sup
M→∞

permB,M(θ).

Special Case: Permanent for n = 2

Wewant to obtain some appreciation why the Bethe permanent of θ is

close to the permanent of θ, and where the differences are.

Special Case: Permanent for n = 2

Wewant to obtain some appreciation why the Bethe permanent of θ is

close to the permanent of θ, and where the differences are.

Consider the matrix

θ =


θ1,1 θ1,2

θ2,1 θ2,2


 with perm(θ) = θ1,1θ2,2 + θ2,1θ1,2.

Special Case: Permanent for n = 2

Wewant to obtain some appreciation why the Bethe permanent of θ is

close to the permanent of θ, and where the differences are.

Consider the matrix

θ =


θ1,1 θ1,2

θ2,1 θ2,2


 with perm(θ) = θ1,1θ2,2 + θ2,1θ1,2.

In particular,

θ =


1 1

1 1


 with perm(θ) = 1 · 1 + 1 · 1 = 2.

Special Case: Permanent for n = 2

Recall that the permanent of a zero/one matrix like

θ =


1 1

1 1




equals the number of perfect matchings in the following bipartite

graph:

2

11

2

Special Case: Permanent for n = 2

Recall that the permanent of a zero/one matrix like

θ =


1 1

1 1




equals the number of perfect matchings in the following bipartite

graph:

2

11

2

Namely,

2

11

2 2

11

2

Special Case:
Degree-M Bethe Permanent for n = 2

For this θ, aP-lifting looks like

θ↑P =


1 ·P1,1 1 ·P1,2

1 ·P2,1 1 ·P2,2


 =


P1,1 P1,2

P2,1 P2,2


 .

Special Case:
Degree-M Bethe Permanent for n = 2

For this θ, aP-lifting looks like

θ↑P =


1 ·P1,1 1 ·P1,2

1 ·P2,1 1 ·P2,2


 =


P1,1 P1,2

P2,1 P2,2


 .

Applying some row and column permutations, we obtain

perm
(
θ↑P

)
= perm


I I

I P−1
2,1P2,2P

−1
1,2P1,1


 .

Special Case:
Degree-M Bethe Permanent for n = 2

For this θ, aP-lifting looks like

θ↑P =


1 ·P1,1 1 ·P1,2

1 ·P2,1 1 ·P2,2


 =


P1,1 P1,2

P2,1 P2,2


 .

Applying some row and column permutations, we obtain

perm
(
θ↑P

)
= perm


I I

I P−1
2,1P2,2P

−1
1,2P1,1


 .

Therefore,

permB,M(θ) , M

√√√√√

〈
perm


I I

I P′
2,2



〉

P′

2,2∈PM×M

.

Special Case:
Degree-2 Bethe Permanent for n = 2

ForM = 2we have

permB,2(θ) , 2

√√√√√

〈
perm


I I

I P′
2,2



〉

P′

2,2∈P2×2

Special Case:
Degree-2 Bethe Permanent for n = 2

ForM = 2we have

permB,2(θ) , 2

√√√√√

〈
perm


I I

I P′
2,2



〉

P′

2,2∈P2×2

corresponds to computing the average number of perfect matchings in

the following 2-covers (and taking the 2nd root):

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

4 2

Special Case:
Degree-2 Bethe Permanent for n = 2

ForM = 2we have

permB,2(θ) =
2

√
1

2!
· (4 + 2)

corresponds to computing the average number of perfect matchings in

the following 2-covers (and taking the 2nd root):

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

4 2

Special Case:
Degree-2 Bethe Permanent for n = 2

ForM = 2we have

permB,2(θ) =
2

√
1

2!
· (4 + 2)

=
3

√
1

2!
· 6 =

2
√
3 ≈ 1.732

corresponds to computing the average number of perfect matchings in

the following 2-covers (and taking the 2nd root):

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

4 2

Special Case:
Degree-2 Bethe Permanent for n = 2

ForM = 2we have

permB,2(θ) =
2

√
1

2!
· (4 + 2)

=
3

√
1

2!
· 6 =

2
√
3 ≈ 1.732 <

2
√
4 = 2 = perm(θ)

corresponds to computing the average number of perfect matchings in

the following 2-covers (and taking the 2nd root):

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

4 2

Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

For this graph, the perfect matchings are

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

For this graph, the perfect matchings are

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

Because this double cover consists of two independent copies of the

base graph, the number of perfect matchings is 22 = 4.

Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

For this graph, the perfect matchings are

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

For this graph, the perfect matchings are

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

The coupling of the cycles causes this graph to have fewer than

22 perfect matchings!

Special Case:
Degree-2 Bethe Permanent for n = 2

On the other hand, forM = 2we have

permB,2(θ) =
2

√
1

2!
· (4 + 2)

=
3

√
1

2!
· 6 =

2
√
3 ≈ 1.732 <

2
√
4 = 2 = perm(θ)

corresponds to computing the average number of perfect matchings in

the following 2-covers (and taking the 2nd root):

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

4 2

Special Case:
Degree-M Bethe Permanent for n = 2

For generalM we obtain

permB,M(θ) = M
√
ζSM

=
M
√
M + 1.

(ζSM
: cycle index of the symmetric group overM elements.)

A combinatorial interpretation

of the Bethe partition function

A Combinatorial Interpretation of the
Bethe Partition Function

Definition:

LetN be a factor graph.

LetM ∈ Z>0.

We define the degree-M Bethe partition function to be

ZB,M(N) , M

√〈
Z(Ñ)

〉
Ñ∈ÑM

.

A Combinatorial Interpretation of the
Bethe Partition Function

Definition:

LetN be a factor graph.

LetM ∈ Z>0.

We define the degree-M Bethe partition function to be

ZB,M(N) , M

√〈
Z(Ñ)

〉
Ñ∈ÑM

.

Note that the RHS of the above expression is based on the partition

function, and not on the Bethe partition function.

Degree-M Bethe Partition Function

ZB,M(N)

Degree-M Bethe Partition Function

ZB,M(N)
∣∣∣

ZB,M(N)
∣∣
M=1

= Z(N)

Degree-M Bethe Partition Function

ZB,M(N)
∣∣
M→∞

= ZBethe(N)
∣∣∣

ZB,M(N)
∣∣∣

ZB,M(N)
∣∣
M=1

= Z(N)

Degree-M Bethe Partition Function

ZB,M(N)
∣∣
M→∞

= ZBethe(N) (Theorem)
∣∣∣

ZB,M(N)
∣∣∣

ZB,M(N)
∣∣
M=1

= Z(N)

The Gibbs free energy function

Gibbs Free Energy
Function

p

FGibbs(p)
The Gibbs free energy function

FGibbs(p) , −
∑

a

pa · log
(
g(a)

)

+
∑

a

pa · log(pa).

Gibbs Free Energy
Function

p

p
∗

− log(ZGibbs) FGibbs(p)
The Gibbs free energy function

FGibbs(p) , −
∑

a

pa · log
(
g(a)

)

+
∑

a

pa · log(pa).

Gibbs Free Energy
Function

p

p
∗

− log(ZGibbs) FGibbs(p)
The Gibbs free energy function

FGibbs(p) , −
∑

a

pa · log
(
g(a)

)

+
∑

a

pa · log(pa).

is defined such that its minimal value is related to the partition function:

Z = exp

(
−min

p
FGibbs(p)

)
.

Gibbs Free Energy
Function

p

p
∗

− log(ZGibbs) FGibbs(p)
The Gibbs free energy function

FGibbs(p) , −
∑

a

pa · log
(
g(a)

)

+
∑

a

pa · log(pa).

is defined such that its minimal value is related to the partition function:

perm(θ) = Z = exp

(
−min

p
FGibbs(p)

)
.

Gibbs Free Energy
Function

p

p
∗

− log(ZGibbs) FGibbs(p)
The Gibbs free energy function

FGibbs(p) , −
∑

a

pa · log
(
g(a)

)

+
∑

a

pa · log(pa).

is defined such that its minimal value is related to the partition function:

perm(θ) = Z = exp

(
−min

p
FGibbs(p)

)
.

Nice, but it does not yield any computational savings by itself.

Gibbs Free Energy
Function

p

p
∗

− log(ZGibbs) FGibbs(p)

F ′(p)

− log(Z ′)

p
′

The Gibbs free energy function

FGibbs(p) , −
∑

a

pa · log
(
g(a)

)

+
∑

a

pa · log(pa).

is defined such that its minimal value is related to the partition function:

perm(θ) = Z = exp

(
−min

p
FGibbs(p)

)
.

But it suggests other optimization schemes.

The Bethe approximation

Bethe Approximation

The Bethe approximation to the Gibbs free energy function yields such

an alternative optimization scheme.

Bethe Approximation

The Bethe approximation to the Gibbs free energy function yields such

an alternative optimization scheme.

This approximation is interesting because of the following theorem:

Theorem (Yedidia/Freeman/Weiss, 2000):

Fixed points of the sum-product algorithm (SPA) correspond to

stationary points of the Bethe free energy function.

Bethe Approximation

The Bethe approximation to the Gibbs free energy function yields such

an alternative optimization scheme.

This approximation is interesting because of the following theorem:

Theorem (Yedidia/Freeman/Weiss, 2000):

Fixed points of the sum-product algorithm (SPA) correspond to

stationary points of the Bethe free energy function.

Definition: We define the Bethe permanent of θ to be

permB(θ) = ZBethe = exp

(
−min

β
FBethe(β)

)
.

Bethe Approximation

However, in general, this approach of replacing the Gibbs free energy by

the Bethe free energy comes with very few guarantees:

Bethe Approximation

However, in general, this approach of replacing the Gibbs free energy by

the Bethe free energy comes with very few guarantees:

The Bethe free energy function might have multiple local minima.

Bethe Approximation

However, in general, this approach of replacing the Gibbs free energy by

the Bethe free energy comes with very few guarantees:

The Bethe free energy function might have multiple local minima.

It is unclear how close the (global) minimum of the Bethe free

energy is to the minimum of the Gibbs free energy.

Bethe Approximation

However, in general, this approach of replacing the Gibbs free energy by

the Bethe free energy comes with very few guarantees:

The Bethe free energy function might have multiple local minima.

It is unclear how close the (global) minimum of the Bethe free

energy is to the minimum of the Gibbs free energy.

It is unclear if the sum-product algorithm converges (even to a

local minimum of the Bethe free energy).

Bethe Approximation

Luckily, in the case of the permanent approximation problem, the

above-mentioned normal factor graphN(θ) is such that the Bethe free

energy function is very well behaved. In particular, one can show that:

Bethe Approximation

Luckily, in the case of the permanent approximation problem, the

above-mentioned normal factor graphN(θ) is such that the Bethe free

energy function is very well behaved. In particular, one can show that:

The Bethe free energy function (for a suitable parametrization)

is convex and therefore has no local minima [V., 2010, 2013].

Bethe Approximation

Luckily, in the case of the permanent approximation problem, the

above-mentioned normal factor graphN(θ) is such that the Bethe free

energy function is very well behaved. In particular, one can show that:

The Bethe free energy function (for a suitable parametrization)

is convex and therefore has no local minima [V., 2010, 2013].

The minimum of the Bethe free energy is quite close to the

minimum of the Gibbs free energy. (More details later.)

Bethe Approximation

Luckily, in the case of the permanent approximation problem, the

above-mentioned normal factor graphN(θ) is such that the Bethe free

energy function is very well behaved. In particular, one can show that:

The Bethe free energy function (for a suitable parametrization)

is convex and therefore has no local minima [V., 2010, 2013].

The minimum of the Bethe free energy is quite close to the

minimum of the Gibbs free energy. (More details later.)

The sum-product algorithm converges to the minimum of the

Bethe free energy. (More details later.)

Relationship between
Permanent and Bethe Permanent

permB(θ)

Theorem (Gurvits, 2011)
↓
≤ perm(θ)

Conjecture (Gurvits, 2011)
↓
≤

√
2
n · permB(θ)

Relationship between
Permanent and Bethe Permanent

permB(θ)

Theorem (Gurvits, 2011)
↓
≤ perm(θ)

Conjecture (Gurvits, 2011)
↓
≤

√
2
n · permB(θ)

This can be rewritten as follows:

1

n
log permB(θ)

Theorem
↓
≤ 1

n
log perm(θ)

Conjecture
↓
≤ 1

n
log permB(θ) + log(

√
2)

Relationship between
Permanent and Bethe Permanent

Problem: find large classes of randommatrices such that w.h.p.

permB(θ)

Theorem (Gurvits, 2011)
↓
≤ perm(θ) ≤ O(

√
n) · permB(θ).

Relationship between
Permanent and Bethe Permanent

Problem: find large classes of randommatrices such that w.h.p.

permB(θ)

Theorem (Gurvits, 2011)
↓
≤ perm(θ) ≤ O(

√
n) · permB(θ).

This can be rewritten as follows:

1

n
log permB(θ)

Theorem
↓
≤ 1

n
log perm(θ) ≤ 1

n
log permB(θ) +O

(
1

n
log(n)

)

Sum-Product Algorithm Convergence

Theorem: Modulo someminor technical conditions on the initial

messages, the sum-product algorithm converges to the (global)

minimum of the Bethe free energy function [V., 2010, 2013].

Sum-Product Algorithm Convergence

Theorem: Modulo someminor technical conditions on the initial

messages, the sum-product algorithm converges to the (global)

minimum of the Bethe free energy function [V., 2010, 2013].

Comment: the first part of the proof of the above theorem is very

similar to the SPA convergence proof in

Bayati and Nair, “A rigorous proof of the cavity method for counting

matchings,” Allerton 2006.

Note that they consider matchings, not perfect matchings. (Although

the perfect matching case can be seen as a limiting case of thematching

setup, the convergence proof of the SPA is incomplete for that case.)

Other Topics

Other Topics

Replacing the permanent by the Bethe permanent in various setups:

Pattern maximum likelihood distribution estimate

Analysis of pseudo-codewords of LDPC codes

Kernels in machine learning

Bethe approximation of constraint coding problems:

Number of two-dimensional weight-constraint arrays

Conclusions

Conclusions

Conclusions

Loopy belief propagagion is no silver bullet.

Conclusions

Loopy belief propagagion is no silver bullet.

However, there are interesting setups where it works very well.

Conclusions

Loopy belief propagagion is no silver bullet.

However, there are interesting setups where it works very well.

Complexity of the permanent estimation based on the SPA is

remarkably low. (Hard to be beaten by any standard convex

optimization algorithm that minimizes the Bethe free energy.)

Conclusions

Loopy belief propagagion is no silver bullet.

However, there are interesting setups where it works very well.

Complexity of the permanent estimation based on the SPA is

remarkably low. (Hard to be beaten by any standard convex

optimization algorithm that minimizes the Bethe free energy.)

If the Bethe approximation does not work well, one can try better

approximations, e.g., the Kikuchi approximation.

Conclusions

Loopy belief propagagion is no silver bullet.

However, there are interesting setups where it works very well.

Complexity of the permanent estimation based on the SPA is

remarkably low. (Hard to be beaten by any standard convex

optimization algorithm that minimizes the Bethe free energy.)

If the Bethe approximation does not work well, one can try better

approximations, e.g., the Kikuchi approximation.

Note: One can also give a combinatorial interpretation of the

Kikuchi partition function.

Conclusions

Conclusions

Inspired by the approaches mentioned in this talk, Mori recently

showed that many replica method computations can be simplified

and made quite a bit more intuitive.

Conclusions

Inspired by the approaches mentioned in this talk, Mori recently

showed that many replica method computations can be simplified

and made quite a bit more intuitive.

With the help of the Bethe permanent, Gurvits recently proved

Friedland’s “Asymptotic Lower Matching Conjecture” for the

monomer-dimer entropy.

Conclusions

Inspired by the approaches mentioned in this talk, Mori recently

showed that many replica method computations can be simplified

and made quite a bit more intuitive.

With the help of the Bethe permanent, Gurvits recently proved

Friedland’s “Asymptotic Lower Matching Conjecture” for the

monomer-dimer entropy.

With the help of our reformulation of the Bethe partition function,

Ruozzi proves a conjecture by Sudderth, Wainwright, and Willsky

that the partition function of attractive graphical models (more

precisely, log-supermodular graphical models) is lower bounded

by the Bethe partition function.

References (Part 1/2)

P. O. Vontobel, “Counting in graph covers: a combinatorial

characterization of the Bethe entropy function,”

IEEE Trans. Inf. Theory, vol. 59, no 9, pp. 6018–6048, Sep. 2013.

P. O. Vontobel, “The Bethe permanent of a non-negative matrix,”

IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1866–1901, Mar. 2013.

P. O. Vontobel, “The Bethe approximation of the pattern maximum

likelihood distribution,” Proc. ISIT 2012.

F. Parvaresh and P. O. Vontobel, “Approximately counting the number of

constrained arrays via the sum-product algorithm,” Proc. ISIT 2012.

H. D. Pfister and P. O. Vontobel, “On the relevance of graph covers and

zeta functions for the analysis of SPA decoding of cycle codes,” Proc. ISIT

2013.

References (Part 2/2)

R. Mori, “Connection between annealed free energy and belief

propagation on random factor graph ensembles,” Proc. ISIT 2011.

R. Smarandache, “Pseudocodewords from Bethe permanents,” Proc. ISIT

2013.

L. Gurvits, “Unleashing the power of Schrijver’s permanental inequality

with the help of the Bethe approximation,” Elec. Coll. Comp. Compl., Dec.

2011.

N. Ruozzi, “The Bethe partition function of log-supermodular graphical

models,” Proc. NIPS, 2012.

N. Ruozzi, “Beyond log-supermodularity: lower bounds and the Bethe

partition function,” Proc. UAI, 2013.

Thank you!

	Chess Board
	Sudoku
	Other Sudoku Setups
	
	RLL Constraints
	Shannon (1948),
Figure 2
	Shannon (1948)
	Shannon (1948)
	
	Two-Dimensional RLL Constraints
	Overview
	
	Towards a Graphical Model
	Towards a Graphical Model
	Towards a Graphical Model
	Towards a Graphical Model
	
	Coloring the Surfaces \ of a Closed Strip
	Coloring the Surfaces \ of a Closed Strip
	
	
	
	
	mbox {Determinant vs. Permanent of a Matrix}
	mbox {Determinant vs. Permanent of a Matrix}
	Historical Remarks
	Exactly Computing the Permanent
	Estimating the Permanent
	Estimating the Permanent
	Estimating the Permanent
	Estimating the Permanent
	mbox {Valid,Rook,Configs.,and,Permanents}
	mbox {Valid,Rook,Configs.,and,Permanents}
	mbox {Valid,Rook,Configs.,and,Permanents}
	mbox {Valid,Rook,Configs.,and,Permanents}
	mbox {Perfect Matchings and Permanents}
	mbox {Perfect Matchings and Permanents}
	mbox {Perfect Matchings and Permanents}
	mbox {Perfect Matchings and Permanents}
	mbox {Perfect Matchings and Permanents}
	mbox {Perfect Matchings and Permanents}
	mbox {Perfect Matchings and Permanents}
	Graphical Model for Permanent
	Graphical Model for Permanent
	Graphical Model for Permanent
	
	The Sum-Product Algorithm
	The Sum-Product Algorithm
	The Sum-Product Algorithm
	The Sum-Product Algorithm
	The Sum-Product Algorithm
	The Sum-Product Algorithm
	Comments on the \ Sum-Product Algorithm
	
	Partition Function
	Partition Function
	Partition Function
	Partition Function
	Bethe Partition Function
	Graphical Model for Permanent
	Graphical Model for Permanent
	
	{gray Reminder:} \ Kronecker Product of two Matrices
	$matrP $-lifting of a Matrix
	Degree-M Bethe Permanent
	mbox {Special Case: Permanent for $n = 2$}
	mbox {Special Case: Permanent for $n = 2$}
	Special Case: \ mbox {Degree-M Bethe Permanent for $n = 2$}
	Special Case: \ mbox {Degree-2 Bethe Permanent for $n = 2$}
	Special Case: \ mbox {Degree-2 Bethe Permanent for $n = 2$}
	Special Case: \ mbox {Degree-2 Bethe Permanent for $n = 2$}
	Special Case: \ mbox {Degree-2 Bethe Permanent for $n = 2$}
	Special Case: \ mbox {Degree-M Bethe Permanent for $n = 2$}
	
	mbox {A Combinatorial Interpretation of the} \ Bethe Partition Function
	mbox {Degree-M Bethe Partition Function}
	
	Gibbs Free Energy \ Function
	
	Bethe Approximation
	Bethe Approximation
	Bethe Approximation
	Relationship between \ Permanent and Bethe Permanent
	Relationship between \ Permanent and Bethe Permanent
	mbox {Sum-Product Algorithm Convergence}
	
	Other Topics
	
	Conclusions
	Conclusions
	References 	itlecont {Part 1/2}
	References 	itlecont {Part 2/2}
	

