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Question: in how many ways can we place 8 non-attacking rooks
on a chess board?
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Row condition: exactly one rook per row.
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Column condition: exactly one rook per column.
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Question: in how many ways can we place 8 non-attacking rooks
on this modified chess board?
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Question: in how many ways can we place 8 non-attacking rooks
on this modified chess board?
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Question: how many Sudoku arrays are there?
(More technically: how many valid configurations are there?)
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Question: how many Sudoku arrays are there?
(More technically: how many valid configurations are there?)
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1D constraints in communications



RLL Constraints

A (d, k) RLL constraint imposes:
At least d zero symbols between two ones.

At most &k zero symbols between two ones.
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A (d, k) RLL constraint imposes:
At least d zero symbols between two ones.
At most &k zero symbols between two ones.
Question: how many sequences of length 7 fulfill these constraints?

Answer: typically, the answer to such questions looks like

N(T) =exp (C-T + o(T)).



RLL Constraints

A (d, k) RLL constraint imposes:

At least d zero symbols between two ones.

At most &k zero symbols between two ones.
Question: how many sequences of length 7 fulfill these constraints?
Answer: typically, the answer to such questions looks like

N(T) =exp (C - T+ o(T)).

C". “capacity” or “entropy.”
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Shannon (1948), Figure 2
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Fig. 2— Graphical representation of the constraints on telegraph symbols.



Shannon (1948)

Definition: The capacity C of a discrete channel is given by

logN(T)

C = Lim

T —o0

where N(T') is the number of allowed signals of duration 7.



Shannon (1948)

Definition: The capacity C of a discrete channel is given by

€ — Lim logN(T)

T —oo

where N(T') is the number of allowed signals of duration 7.

Theorem 1: Let bs) be the duration of the s™ symbol which is allowable in state i and leads to state j.
Then the channel capacity C is equal to logW where W is the largest real root of the determinant equation:

(s)
ZW_bij —(51']' =0
S

where d;; = 1 if i = j and is zero otherwise.
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2D constraints in communications



Two-Dimensional RLL Constraints
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A (dy, k; ds, ko) RLL constraint imposes:

Question: How many arrays of size m x n
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A (dy, k; ds, ko) RLL constraint imposes:

Question: How many arrays of size m x n
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Answer: Typically, the answer to such
questions looks like

N(m,n) = exp (C' - mn + o(mn)).



Two-Dimensional RLL Constraints
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A (dy, k; ds, ko) RLL constraint imposes:

Question: How many arrays of size m x n
fulfill these constraints?

Answer: Typically, the answer to such
questions looks like

N(m,n) = exp (C' - mn + o(mn)).

C'. “capacity” or “entropy.”
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Setting up a graphical model

Permanent of a matrix

Factor graphs and the sum-product algorithm

The total sum of a factor graph and its Bethe approximation
A combinatorial interpretation of the Bethe approximation
Further comments

Conclusions
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Question: in how many ways can we place 8 non-attacking rooks
on a chess board?
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Some considerations
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The permanent of a matrix
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Determinant vs. Permanent of a Matrix
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Consider the matrix 0 = | 05, 655 05
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The determinant of 9:

det(0) = +011022035 + 012093031 + 013651039
— 011093030 — 0190910535 — 01302203, .



Determinant vs. Permanent of a Matrix

(01 61n 613
Consider the matrix 0 = | 05, 655 05

\Os1 02 033

The determinant of 9:

det(0) = +011022035 + 012093031 + 013651039
— 011093030 — 0190910535 — 01302203, .

The permanent of 6:

perm(0) = + 011090033 + 012023031 + 013021035
+ 011093039 + 0120910355 4 01302203
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The determinant of an n x n-matrix @

det(8) = sgn(o) || 0ioe).

o i€[n]

where the sum is over all n! permutations of the set [n] = {1,...,n}.
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Determinant vs. Permanent of a Matrix

The determinant of an n x n-matrix @

det(8) = sgn(o) || 0ioe).

o i€[n]

where the sum is over all n! permutations of the set [n] = {1,...,n}.

The permanent of an n x n-matrix 6:

perm(6 Z H 0 o(i)-

GZE

The permanent turns up in a variety of contexts, especially in
combinatorial problems, statistical physics (partition function), ...



Historical Remarks

In 1812, Binet and Cauchy independently introduced functions that are
nowadays called permanents.

G. P. M. Binet, “Mémoire sur un systeme de formules
analytiques, et leur application a des considrations
géomeétriques,” Journal de UEcole Polytechnique, Paris 9,
pp. 280-302, 1812.

L. A. Cauchy, “Mémoire sur les fonctions qui ne peuvent
obtenir que deux valeurs égales et de signes contraires
par suite des transpositions opérées entre les variables
guelles renferment,” Journal de UEcole Polytechnique,
Paris 10, pp. 29-112, 1812.
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Exactly Computing the Permanent

Brute-force computation:
O(n-nl) = O0(n*?- (n/e)") arithmetic operations.
Ryser’s algorithm:
O(n -2") arithmetic operations.
Complexity class [Valiant, 1979]:
#P (“sharp P” or “number P”),

where #P is the set of the counting problems associated with the
decision problems in the set NP. (Note that even the computation
of the permanent of zero-one matrices is #P-complete.)



Estimating the Permanent

More efficient algorithms are possible if one does not want to compute
the permanent of a matrix exactly.
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For a matrix that contains positive and negative entries:

— “constructive and destructive interference of terms
in the summation.”



Estimating the Permanent

More efficient algorithms are possible if one does not want to compute
the permanent of a matrix exactly.

For a matrix that contains positive and negative entries:

— “constructive and destructive interference of terms
in the summation.”

For a matrix that contains only non-negative entries:

— “constructive interference of terms in the summation.”
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FROM NOW ON: we focus on the case where all entries of the matrix are
non-negative, i.e.
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Estimating the Permanent

FROM NOW ON: we focus on the case where all entries of the matrix are
non-negative, i.e.

Markov chain Monte Carlo based methods: [Broder, 1986], ...

Godsil-Gutman formula based methods: [Karmarkar et al., 1993],
[Barvinok, 1997ff.], [Chien, Rasmussen, Sinclair, 2004], ...

Fully polynomial-time randomized approximation schemes
(FPRAS): [Jerrum, Sinclair, Vigoda, 2004], ...

Bethe-approximation-based / sum-product-algorithm-based
methods: [Chertkov et al., 2008], [Huang and Jebara, 2009], ...



Estimating the Permanent
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Estimating the Permanent
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Perfect Matchings and Permanents
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Perfect Matchings and Permanents
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Perfect Matchings and Permanents
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Graphical Model for Permanent

Global function:

9(611,17 e 7a’8,8)

= H Geol j (@15, -+ 5 g j) X
J
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1

Permanent:

perm(0) = Z = Z glai, ..., asg)

ai,i,...,as,s

[’i

(function nodes are suitably defined based on 0)



Graphical Model for Permanent
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perm(6)



Graphical Model for Permanent

4 Many short cycles.

Geol.1

4 The vertex degrees are high.

Gcol,2
\« Sl
s\\\("lilz
—N\Se =
NI KL
oﬁ@&? @'fi'i":o.
SN KT
A i
NSRS

XSS
LR NS
'/ 4 <3 \‘Q
LB SRISTAN
LA AR
2R

Gcol,3

Gcol 4

Gcol 5

DA LT
O

A Jeol,6

Gcol,7

Grow,8 Gcol 8

(function nodes are suitably defined based on 0)

(variable nodes have been omitted)



Graphical Model for Permanent

Geol.1

Gcol 2
\‘\w =
‘t‘ﬂ(’" 77
SNNe = _IB%
AP e L LS COl,
IROX IR S KN
XX v,"zoxoxy/ Gcol 4

%9, K>
SEKL K3

L YK

X EAAN KL XR
NS BT BEXS Geol,5
/’oz' KIS

75T XS
=N
ST ET AN Gcol 6

Gcol,7

Gcol 8

(function nodes are suitably defined based on 0)

(variable nodes have been omitted)

4 Many short cycles.

4 The vertex degrees are high.

Both facts might suggest that the
application of the sum-product al-
gorithm to this factor graph is
rather problematic.



Graphical Model for Permanent

< (
\‘:\“‘( ""; 75
N\ =
N <SS <Ly
NS KLt~
ESRSK KGEA
NS JES
LS o‘ox» 419’» <SS
CRIOEARREZRA
XX 2K NRIQXS
TSRS

<> <I=

75 SN

2\

(function nodes are suitably defined based on 0)

(variable nodes have been omitted)

Geol.1
Gcol 2
Gcol,3
Gcol 4
Gcol 5
Gcol,6
Gcol,7

Gcol 8

4 Many short cycles.

4 The vertex degrees are high.

Both facts might suggest that the
application of the sum-product al-
gorithm to this factor graph is
rather problematic.

However, luckily this is not the
case.



Graphical Model for Permanent

Grow,1

Grow,2

7

) </
NN vt
R L
NS LY
XSS
/‘(“}‘ﬁ‘){ SKOLZAN
NI SEK A7
SRS SIARL IS
XSS 40\./‘\.»'& S5
/Ax{‘kgm 2K SN
Grow,5 4 %7 XK

l}!’:\ P

SN S \ S
0 AS RO
S IR
SN

Grow,3

Grow 4

Grow,6

Grow,7

Grow,8

(function nodes are suitably defined based on 0)

(variable nodes have been omitted)

Geol.1
Gcol 2
Gcol,3
Gcol 4
Gcol 5
Gcol,6
Gcol,7

Gcol 8

4 Many short cycles.

4 The vertex degrees are high.

Both facts might suggest that the
application of the sum-product al-
gorithm to this factor graph is
rather problematic.

However, luckily this is not the
case.

For an SPA suitability assessment,
the overall cycle structure and the
types of functions nodes are at least
as important.



Factor graphs and the

sum-product algorithm



The Sum-Product Algorithm

Let us consider the following factor graph (which is a tree).

fa Xy
X1 /D
Jc X3
X2 JE

/B X5

The global function is

f(xla L2, L3, Ly, 565)

= fa(z1) - [3(22) - fo(w1, 22, 73) - fp(23,74)

'fE($37$5)-



The Sum-Product Algorithm

The global function is

f(x1, 22,23, 24, 25) = fa(x1) - fB(22) - fo(x1,22,23) - fo(23,24) - [R(23,25).



The Sum-Product Algorithm

The global function is

f(x1, 22,23, 24, 25) = fa(x1) - fB(22) - fo(x1,22,23) - fo(23,24) - [R(23,25).

Very often one wants to calculate marginal functions. E.q.

nx, (@) = ) (w1, 0,23, 74, 25)

L2,X3,L4,T5

= 3" falw) - flea) - fol(or,wa,m8) - folws wa) - fiuls, vs).

L2,X3,L4,T5



The Sum-Product Algorithm

The global function is

f(x1, 22,23, 24, 25) = fa(x1) - fB(22) - fo(x1,22,23) - fo(23,24) - [R(23,25).

Very often one wants to calculate marginal functions. E.q.

nx, (1) = Z f(z1, 22,3, T4, T5)

L2,X3,L4,T5

> falar) - f(x2) - fo(ar,x2,33) - foles, 24) - fe(s, os).

L2,X3,L4,T5

77X3(I'3) — Z f($17$27$37$47$5>

L1,L2,X4,T5

= 3 fal@) - fu@s) - fo(@r,ma,w5) - fo(ws, 24) - folws, s).

L1,L2,L4,T5

etc.



The Sum-Product Algorithm

The figure shows the messages that are necessary for calculating 7 x, (z1), nx, (z2),

NXs (583), NX, <$4>7 and NXs5 <$5)




The Sum-Product Algorithm

The figure shows the messages that are necessary for calculating 7 x, (z1), nx, (z2),

NXs (583), NX, <$4>7 and NXs5 <$5)

Edges: Messages are sent along edges.



The Sum-Product Algorithm

The figure shows the messages that are necessary for calculating 7 x, (z1), nx, (z2),

NXs (583)’ NX, <$4>7 and NXs5 <$5)

Edges: Messages are sent along edges.

Processing: Taking products and doing summations is done at the vertices.



The Sum-Product Algorithm

The figure shows the messages that are necessary for calculating 7 x, (z1), nx, (z2),

NXs (583)’ NX, ($4>7 and NXs5 <$5)

Edges: Messages are sent along edges.
Processing: Taking products and doing summations is done at the vertices.

Reuse of messages: We see that messages can be “reused” in the sense that many
partial calculations are the same; so it suffices to perform them only once.



The Sum-Product Algorithm

px—p,(T) = pp-x (@) - pfy—x (@) - pofy—x ()



The Sum-Product Algorithm

px—p,(T) = pp-x (@) - pfy—x (@) - pofy—x ()

X1
J X4
CO———— O
/ prox,(Ta)
X3

Mf—>X4 T4) ZZZf T1,T2,T3,T4) ,LLX1—>f($1) MX2—>f(372) :LLX3—>f(x3)

r1 T2 I3




The Sum-Product Algorithm

1 |
¢ Computation of marginal at variable node:
X
f2 . . () . fa UX(SU) — UfH—=X (33) ) MfQ—)X(x)
T pgysx (@) - g ()

f3.



The Sum-Product Algorithm

1 |
¢ Computation of marginal at variable node:
X
f2 . . () . fa 77X(5’3) — UfH—=X (33) ) Mf2—>X(x)
T pgysx (@) - g ()
B .
x10) Computation of marginal at function node:
¢ f<— 77f(£17$273337x4) :f($1,$2,$3,334)
X O—M—Ox
\ c oy f(@1) X p(22)

X Q " U Xs3—f (333) ' HX4—>f(334)



The Sum-Product Algorithm

Factor graph without cycles: in this case it is obvious what
messages have to be calculated when.

— Mode of operation 1



The Sum-Product Algorithm

Factor graph without cycles: in this case it is obvious what
messages have to be calculated when.

— Mode of operation 1

Factor graph with cycles: one has to decide what update schedule
to take.

— Mode of operation 2



Comments on the
Sum-Product Algorithm

If the factor graph has no cycles then it is obvious what messages
have to be calculated when.

If the factor graphs has cycles one has to decide what update
schedule to take.

Depending on the underlying semi-ring one gets different versions
of the summary-product algorithm.

* For (R, +, - ) one gets the sum-product algorithm.
(This is the case discussed above.)

* For (R*, max, -) one gets the max-product algorithm.

* For (R, min, +) one gets the min-sum algorithm.

° efc.



Partition function (total sum)



Partition Function

Z = Z f(x1, 22, 23, 24, T5)

L1,T2,L3,L4,T5



Partition Function

Z = Z f($1,$2,$3,$4,$5)

L1,XL2,XL3,T4,Th

Recall:

77X1($1) — Z f($1,$2,$3,$4,375)

L2,XL3,T4,T5

77X2<$2) — Z f($1,$2,$3,$4,$5)

L1,XL3,T4,T5



Partition Function

Recall:

T x, (371) —

e (aj?) —

Z = Z f($1,$2,$3,$4,$5)

L1,T2,L3,L4,T5

Z f($1,$27373,$4,375) ZX1 — Z nXl (le)

L2,L3,L4,T5 I1

Z f($1,372,$3,$4,375) ZX2 — Z nNx, <x2)

L1,XL3,T4,T5 L2



Partition Function

Z = Z f($1,$2,$3,$4,$5)

L1,XL2,XL3,T4,Th

Recall: Define;

el ('271) — Z f($1,$27373,$4,375) ZX1 — Z r'e (le) = Z

L2,L3,L4,L5 T1

11X, (CCZ) — Z f($1,372,$3,$4,375) ZX2 — Z nx, (CUQ) =4

L1,L3,T4,L5 o



Partition Function

Z = Z f(x1, 22, 23, 24, T5)

L1,T2,L3,L4,T5



Partition Function

4 = Z f($17$27$37$47$5)

L1,XL2,XL3,T4,Th

Recall:

nfc($17$27$3) — 2531f0£1,$2,$3,$4,$5)

T4,Ts



Partition Function

Z = :E:: gf<;E17:E27:E37:E47:E5)

L1,T2,L3,L4,T5

Recall: Define:

Nfe(x1,x2,23) = Zf(xl,arg,xg,a:4,x5) Zte, = Z Nfe(x1,x2,23)

L4,T5 L1,L2,T3



Partition Function

Z = Z f($1,$2,$3,$4,$5)

L1,XL2,XL3,T4,Th

Recall: Define:

nfc(x17x27x3) — Zf(xl,wz,x3,$4,$5) L, = Z T]fc(fCl,CEQ,Zlfg):Z

L4,T5 L1,L2,T3



Partition Function




Partition Function




Partition Function

= Z;

D

= 7

E

ZfA ' ZfB ' ch ' ZfD ' ZfE Lixy Ly Lxy  LXy DX
Z%, - 2%, L%, - Zx, - Zx,

(Note: exponents in denominator equal variable node degrees.)



Partition Function

Z:ZXl:ZXQZZX3:ZX4:ZX5:ZfA:ZfB:Zf

C

:Zf

D

:Zf

E

Claim:

,_ 7 #fvertices _ ZfA : ZfB .ch : ZfD . ZfE . ZX1 'ZX2 : ZX3 : ZX4 : ZX5
7/ #edges Z)2<1 : Z)Q( = Zf;’( L Z}Q : Z)l(5

(Note: exponents in denominator equal variable node degrees.)



Partition Function

2 =2x, = Zxy, = Zxy = 4x, = Lxy = Ly = Ly = Ljo = Lfy, = Ly

Claim:

7 _ Z#vertices _ ZfA . ZfB . ch . ZfD . ZfE . ZXl . ZX2 . ZX3 . ZX4 . ZX5
7 #edges Z)Q(1 : Z)Q(2 : Z§(3 : Z)1<4 : Z)1(5

(Here we used the fact that for a graph with one component and no cycles it holds that

#vertices = #edges + 1.)



Partition Function




Partition Function




Partition Function

7 Hf Zf - HX Zx
[T 2"

Bethe approximation:
Use the above type of expression also when factor graph has cycles.



Partition Function

7 Hf Zf - HX Zx
HX Z;i(eg(X)

Bethe approximation:

Use the above type of expression also when factor graph has cycles.
— Z]%ethe



Bethe Partition Function



Bethe Partition Function

Basically, we can evaluate the expresion for /}, _,, . at any iteration
of the SPA.



Bethe Partition Function

Basically, we can evaluate the expresion for /}, _,, . at any iteration
of the SPA.

Factor graph without cycles:

We have 73 ,,. = Z only at a fixed point of the SPA.



Bethe Partition Function

Basically, we can evaluate the expresion for /}, _,, . at any iteration
of the SPA.

Factor graph without cycles:

We have 73 ,,. = Z only at a fixed point of the SPA.

Factor graph with cycles:

Therefore, we call 7, a (local) Bethe partition function only if
we are at a fixed point of the SPA.



Bethe Partition Function

Basically, we can evaluate the expresion for /}, _,, . at any iteration
of the SPA.

Factor graph without cycles:

We have 73 ,,. = Z only at a fixed point of the SPA.

Factor graph with cycles:

Therefore, we call 7, a (local) Bethe partition function only if
we are at a fixed point of the SPA.

Factor graph with cycles: the SPA can have multiple fixed points.
We define the Bethe partition function to be

A /
ZBethe — max ZBethe y
fixed points of SPA



Graphical Model for Permanent

Global function:

Grow,1 Gcol,1

Grow,2 - (Jcol,2 g(a'l,h RN a8,8)

AN
N X NS N K T —— — ) ) )
T NS | [ geari(any, - as;)
SIS BT PS8 ;

Irow ¥ N\ CO

A AN "
SO KD
2000V Grow,i\Ai 15 - -+, Ti8
Grow,5 Nz ‘@i}( >£‘§)‘t“( Gcol,5 .

(4

L2
KT KNI

O
AT RIS
TALAKIXS

Grow .6 Gcol,6

Permanent:

Gcol,7

Gcol 8 perm<8)

Grow,7

Z — Z g(CLl,l, c ooy a/8,8)

aii,...,as,s8

Grow,8

(function nodes are suitably defined based on )

(variable nodes have been omitted)



Graphical Model for Permanent

Global function:

Grow,1 Gcol,1

Grow,2 - (Jcol,2 g(a'l,h RN a8,8)

AN
N X NS N K T —— — ) ) )
T NS | [ geari(any, - as;)
SIS BT PS8 ;

Irow ¥ N\ CO

A AN "
SO KD
2000V Grow,i\Ai 15 - -+, Ti8
Grow,5 Nz ‘@i}( >£‘§)‘t“( Gcol,5 .

(4

L2
KT KNI

O
AT RIS
TALAKIXS

Grow .6 Gcol,6

Bethe Permanent:

Gcol,7

A
Gcol 8 permB<9) — ZBethe

Grow,7

Grow,8

(function nodes are suitably defined based on )

(variable nodes have been omitted)



Graphical Model for Permanent

N\ AN
XK XL Ko Gcol 3
QN LXK T7X
.‘sx&é,»@';o.//

9%

SRS YLLK
NZSSEK TR~

SRR K
SEET NS
S E %:fé%zx‘ﬁ
157 RIS
ALA KRS X
7 /‘\&‘E\“‘(

— 7SN
row,

Gcol 8

Gcol 4

Gcol,5

Gcol 6

Gcol,7

However, the SPA is a locally operating algorithm and so has its

Global function:

Q(Cll,l, e ,@8,8)

= chol,j(al,ja Ly ag5) X
J
H grow,i(afi,la <. 7xz',8)
i

Bethe Permanent:

perig (6) é ZBethe

limitations in the conclusions that it can reach.



Graphical Model for Permanent

N\ AN
XK XL Ko Gcol 3
QN LXK T7X
.‘sx&é,»@';o.//

9%

SRS YLLK
NZSSEK TR~

SRR K
SEET NS
S E %:fé%zx‘ﬁ
157 RIS
ALA KRS X
7 /‘\&‘E\“‘(

— 7SN
row,

Gcol 8

Gcol 4

Gcol,5

Gcol 6

Gcol,7

This locality of the SPA turns out to be well-captured by so-called
finite graph covers, especially at fixed points of the SPA.

Global function:

Q(Cll,l, e ,@8,8)

= chol,j(al,ja Ly ag5) X
J
H grow,i(afi,la <. 7xz',8)
i

Bethe Permanent:

perig (6) é ZBethe



A combinatorial interpretation

of the Bethe permanent



Reminder:

Kronecker Product of two Matrices

Consider a matrix @ of size n x n.

Consider a matrix B of size M x M.

The Kronecker product of 6 and B is defined to be

(0,1 - 0,,)

\gm gn,n)

—5 OB=

Clearly, 6 ® B has size (n M) x (nM).

(0,,B

\QMB .




P-lifting of a Matrix

(L) .. (1,n)
P-lifting /91’1P O1nb \

—
of

o172

(6,1 6., )

\gmp(n,l) gn’np(n,n) )

\gm gn’n)



P-lifting of a Matrix

Consider the non-negative matrix 0 of size n x n.
Let P,/ s De the set of all permutation matrices of size M x M.

For every positive integer )M, we define U, be the set

A ij ij
Uy = {P — {P( j)}(i,j)e[n]Q Pd) prM}.

For P € V,, we define the P-lifting of 6 to be the following
(nM) x (nM) matrix

(6,1 - 6., )

(L) ... (L)
P-lifting (01,7 b1, PO

—
of

0T £

\gmp(n,l) Qn,an’n))

\Qn,l gn’n)



Degree-)\/ Bethe Permanent

Definition: For any positive integer M, we define the degree-/ Bethe
permanent of 0 to be

permg ;,(0) = J‘</<perm (HTP)>P@1/ .

Theorem:

permg(6) = limsup permg ;,(0).
M —00



Special Case: Permanent forn = 2

We want to obtain some appreciation why the Bethe permanent of 0 is
close to the permanent of 0, and where the differences are.



Special Case: Permanent forn = 2

We want to obtain some appreciation why the Bethe permanent of 0 is
close to the permanent of 0, and where the differences are.

Consider the matrix

011 012 .
6 = with perm(@) — 61716272 —+ 92,191,2.
Oo1 029



Special Case: Permanent forn = 2

We want to obtain some appreciation why the Bethe permanent of 0 is
close to the permanent of 0, and where the differences are.

Consider the matrix

01 012
01 029

6 = with perm(@) — 61716272 —+ 92,191,2.

In particular,

I 1
0 = with perm(f)=1-14+1-1=2.
I 1



Special Case: Permanent forn = 2

Recall that the permanent of a zero/one matrix like

equals the number of perfect matchings in the following bipartite
graph:




Special Case: Permanent forn = 2

Recall that the permanent of a zero/one matrix like

equals the number of perfect matchings in the following bipartite
graph:

Namely,




Special Case:
Degree-)\/ Bethe Permanent forn =2

For this 8, a P-lifting looks like

o1 _ 1-Py; 1-Pyo B Pi1 Pio
1-Poy 1-Pao Py, Pay



Special Case:
Degree-)\/ Bethe Permanent forn =2

For this 8, a P-lifting looks like
l- P1,1 1- P1,2 P1,1 P1,2

HTP _

1-Poy 1-Pao Py, Pay

Applying some row and column permutations, we obtain

I I

perm (HTP) = perm 1 !
I Py1P2osPioP;



Special Case:
Degree-)\/ Bethe Permanent forn =2

For this 8, a P-lifting looks like
l- P1,1 1- P1,2 P1,1 P1,2

HTP _

1-Poy 1-Pao Py, Pay

Applying some row and column permutations, we obtain

I I

perm (HTP) = perm 1 !
I Py1P2osPioP;

Therefore,

. I 1
permg 5,(0) = M| ( perm
\ I P,

P’272€73M><M



Special Case:
Degree-2 Bethe Permanent for n = 2

For M = 2 we have

N I 1
permg »(0) = 2| { perm
\ I P,
’ P’272€732><2




Special Case:
Degree-2 Bethe Permanent for n = 2

For M = 2 we have

. I 1
permg »(0) = 2| { perm
I P,

P’272€732><2

corresponds to computing the average number of perfect matchings in
the following 2-covers (and taking the 2nd root):

1/ 1/ 1/ 1/
1" D\ /D 1" 1" D\ /D 1
2/ X 2/ 2

2" E/ \:I 2" 2 2




Special Case:
Degree-2 Bethe Permanent for n = 2

For M = 2 we have

/1
permp ,(0) = \/ o (4+2)

corresponds to computing the average number of perfect matchings in
the following 2-covers (and taking the 2nd root):

1 1 1 1
1" E\ /D 1" 1" E\ /D 1
» X y )

2" E/ \:I 2" 2 2




Special Case:
Degree-2 Bethe Permanent for n = 2

For M = 2 we have

permg ,(60) = f/ - (4+2)

2!

1 )
:\3/5-6:\@%1.732

corresponds to computing the average number of perfect matchings in
the following 2-covers (and taking the 2nd root):

1 1 1 1
1" E\ /D 1" 1" E\ /D 1
» X y )

2" E/ \:I 2" 2 2




Special Case:
Degree-2 Bethe Permanent for n = 2

For M = 2 we have

permpg 5(0) = \2/ ~ (4+2)

2!

/1 ) )
= ¢ 5-6:\/§%1.732 < ﬂzQZperm(H)

corresponds to computing the average number of perfect matchings in
the following 2-covers (and taking the 2nd root):

1 1 1 1
1" E\ /D 1" 1" E\ /D 1
» X y )

2" E/ \:I 2" 2 2




Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1 1
1” D\ /D 1//

K

2 2/
2// E/ \j 2//




Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1 1
1// E\ /j 1//

2/><2/

2// E/ \j 2//

For this graph, the perfect matchings are

1 1
1/ E\ /:‘ 1
2! 2/
2" 2" 2" E/ \J 2"

—_
=
I

N2

2




Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1 1
1// E\ /j 1//

2/><2/

2// E/ \j 2//

For this graph, the perfect matchings are

e~ ,,
% MIZAN .,
Because this double cover consists of two independent copies of the
base graph, the number of perfect matchings is 2°> = 4.

—_

[\




Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1 1
1” D\ /D 1//

2 2/
2// 2//




Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1 1
1// E\ /j 1//

2 2/
2// 2//

For this graph, the perfect matchings are




Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph

1 1
1// E\ /j 1//

2 2/
2// 2//

For this graph, the perfect matchings are

PN e y y

"
2/ 2/ 2/ /
2// 2// 2// 2//

The coupling of the cycles causes this graph to have fewer than
22 perfect matchings!

N



Special Case:

Degree-2 Bethe Permanent for n = 2
On the other hand, for M = 2 we have

o/ 1
permp 5(0) = \/g - (4+2)

31 2 2
:\/5.6:\/§z1.732 < V4 =2=rperm(0)

corresponds to computing the average number of perfect matchings in
the following 2-covers (and taking the 2nd root):

1 1 1 1
1" D\ /D 1" 1" D\ /D 1"
2/ X 2/ 2/

2" u/ \a 2" 2" 2

4 2



Special Case:
Degree-)\/ Bethe Permanent forn =2

For general M we obtain

((s,,: cycle index of the symmetric group over M elements.)



A combinatorial interpretation

of the Bethe partition function



A Combinatorial Interpretation of the
Bethe Partition Function

Definition: W o W
Let N be a factor graph. W
Let M € Z-.

We define the degree-/ Bethe partition function to be




A Combinatorial Interpretation of the
Bethe Partition Function

Definition: W o W
Let N be a factor graph. W
Let M € Z-.

We define the degree-/ Bethe partition function to be

Note that the RHS of the above expression is based on the partition
function, and not on the Bethe partition function.




Degree-/\/ Bethe Partition Function

o =T EF




Degree-/\/ Bethe Partition Function

o =T EF

Zemu(N)|,,_, = Z(N) N



Degree-/\/ Bethe Partition Function

ZB7M(N)}M—>OO — ZBethe(N)

)
P =T EF

Zemu(N)|,,_, = Z(N) N




Degree-/\/ Bethe Partition Function

ZB,M(N) ‘M%oo = ZBethe(N) (Theorem)

)
P =T EF

Zemu(N)|,,_, = Z(N) N




The Gibbs free energy function



Gibbs Free Energy
Function

The Gibbs free energy function

Fains(P) = — Zpa -log (g(a))

+ ) pa-log(pa).




Gibbs Free Energy

Function A

\

_ 10g<ZGibbs> \

The Gibbs free energy function

Faibbs(P) £ — Zpa -log (g(2))

+ ) pa-10g(pa)-



Gibbs Free Energy

Function A

\

— log(Zaibbs) \\ /

Faibbs(P)

The Gibbs free energy function
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Function A

\

— log(Zaibbs) \\ /

Faibbs(P)

The Gibbs free energy function

Faibbs(P) £ — Zpa -log (g(2)) D

+ ) pa-10g(pa)-

is defined such that its minimal value is related to the partition function:

b

perm(6) = Z = exp (— min FGibbS(p)> .

Nice, but it does not yield any computational savings by itself.



Gibbs Free Energy i

Function Q
F'(p)

—log(Zaipbs) \

. , Fivbs(P)
The Gibbs free energy function

Faibbs(P) £ — Zpa -log (g(2)) D

+ ) pa - log(pa)-

is defined such that its minimal value is related to the partition function:

b

perm(6) = Z = exp (— min FGibbS(p)> .

But it suggests other optimization schemes.
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The Bethe approximation to the Gibbs free energy function yields such
an alternative optimization scheme.

This approximation is interesting because of the following theorem:

Theorem (Yedidia/Freeman/Weiss, 2000):
Fixed points of the sum-product algorithm (SPA) correspond to
stationary points of the Bethe free energy function.

Definition: We define the Bethe permanent of 0 to be

permB(e) — ZBethe — eXpP (_ mﬂin FBethe(/B)) :
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However, in general, this approach of replacing the Gibbs free energy by
the Bethe free energy comes with very few guarantees:

The Bethe free energy function might have multiple local minima.

It is unclear how close the (global) minimum of the Bethe free
energy is to the minimum of the Gibbs free energy.

It is unclear if the sum-product algorithm converges (even to a
local minimum of the Bethe free energy).



Bethe Approximation

Luckily, in the case of the permanent approximation problem, the
above-mentioned normal factor graph N(6) is such that the Bethe free
energy function is very well behaved. In particular, one can show that:



Bethe Approximation

Luckily, in the case of the permanent approximation problem, the
above-mentioned normal factor graph N(6) is such that the Bethe free
energy function is very well behaved. In particular, one can show that:

The Bethe free energy function (for a suitable parametrization)
is convex and therefore has no local minima [V., 2010, 2013].



Bethe Approximation

Luckily, in the case of the permanent approximation problem, the
above-mentioned normal factor graph N(6) is such that the Bethe free
energy function is very well behaved. In particular, one can show that:

The Bethe free energy function (for a suitable parametrization)
is convex and therefore has no local minima [V., 2010, 2013].

The minimum of the Bethe free energy is quite close to the
minimum of the Gibbs free energy. (More details later.)



Bethe Approximation

Luckily, in the case of the permanent approximation problem, the
above-mentioned normal factor graph N(6) is such that the Bethe free
energy function is very well behaved. In particular, one can show that:

The Bethe free energy function (for a suitable parametrization)
is convex and therefore has no local minima [V., 2010, 2013].

The minimum of the Bethe free energy is quite close to the
minimum of the Gibbs free energy. (More details later.)

The sum-product algorithm converges to the minimum of the
Bethe free energy. (More details later.)



Relationship between
Permanent and Bethe Permanent

Theorem (Gurvits, 2011) Conjecture (Gurvits, 2011)

\ i
permg(6) < perm(60) < V2" - permy(0)



Relationship between
Permanent and Bethe Permanent

Theorem (Gurvits, 2011) Conjecture (Gurvits, 2011)

\ i
permg(6) < perm(60) < V2" - permy(0)

This can be rewritten as follows:

Theorem Conjecture
1 v 1 v 1

—logpermy(0) < —logperm(0) < —logpermy(0) + log(v/2)
n n n
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Relationship between
Permanent and Bethe Permanent

Problem: find large classes of random matrices such that w.h.p.

Theorem (Gurvits, 2011)

!
permg(0) < perm(60)

O(v/n) - permg(0).

I

This can be rewritten as follows:

Theorem

L

1 1 1 1
—logpermg(0) < —logperm(0) < —logpermy(0)+ O (—log(n)>
n n n n
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Sum-Product Algorithm Convergence

Theorem: Modulo some minor technical conditions on the initial
messages, the sum-product algorithm converges to the (global)
minimum of the Bethe free energy function [V., 2010, 2013].

Comment: the first part of the proof of the above theorem is very
similar to the SPA convergence proof in

Bayati and Nair, “A rigorous proof of the cavity method for counting
matchings,” Allerton 2006.

Note that they consider matchings, not perfect matchings. (Although
the perfect matching case can be seen as a limiting case of the matching
setup, the convergence proof of the SPA is incomplete for that case.)
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Other Topics

Replacing the permanent by the Bethe permanent in various setups:

Pattern maximum likelihood distribution estimate
Analysis of pseudo-codewords of LDPC codes

Kernels in machine learning

Bethe approximation of constraint coding problems:

Number of two-dimensional weight-constraint arrays
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Conclusions

Loopy belief propagagion is no silver bullet.
However, there are interesting setups where it works very well.

Complexity of the permanent estimation based on the SPA is
remarkably low. (Hard to be beaten by any standard convex
optimization algorithm that minimizes the Bethe free energy.)

If the Bethe approximation does not work well, one can try better
approximations, e.g., the Kikuchi approximation.

Note: One can also give a combinatorial interpretation of the
Kikuchi partition function.
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Conclusions

Inspired by the approaches mentioned in this talk, Mori recently
showed that many replica method computations can be simplified
and made quite a bit more intuitive.

With the help of the Bethe permanent, Gurvits recently proved
Friedland’s “Asymptotic Lower Matching Conjecture” for the
monomer-dimer entropy.

With the help of our reformulation of the Bethe partition function,
Ruozzi proves a conjecture by Sudderth, Wainwright, and Willsky
that the partition function of attractive graphical models (more
precisely, log-supermodular graphical models) is lower bounded
by the Bethe partition function.
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Thank you!
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