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Outline

I SUDOKU as channel codes
I Efficient decoding / encoding of SUDOKU
I Density Evolution
I Rate of SUDOKU codes
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SUDOKU Puzzles
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SUDOKU Puzzles
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SUDOKU Puzzles
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Coding by SUDOKU
Wikipedia “The Mathematics of SUDOKU”
There are M = 6,670,903,752,021,072,936,960 valid SUDOKU grids.
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Background

Literature

I P. Farrell, “Sudoku Codes: a Tutorial” (Ambleside 2009) - looked
at distance properties of SUDOKU codes

I T. Moon & al., BP and Sinkhorn for SUDOKU solving (2006,
2009) - algorithms to solve SUDOKU puzzles (not SUDOKU as
codes)

I use in lectures since 2006 to illustrate BP decoding
I invaluable didactic tool to illustrate the use of factor graphs, trellis

decoding, arithmetic decoding and other techniques
I 2 student projects in 2013/14 and strong student interest
I Proxy for the study of non-linear codes with local constraints
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Non-linear Codes

Theory

I Used in achievability proofs (fixed-composition codes, typical
sequence arguments, etc.)

I No practical encoders, decoders, etc.

Applications

I Simple constrained sequences (e.g. for magnetic recording)
I Other contraints, e.g., low Peak-to-Average Power Ratio (PAPR),

can translate into non-linear constraints

UNIVERSITY OF CAMBRIDGE
Department of Engineering c�Jossy Sayir



7 / 28

My work on SUDOKU codes

I Efficient decoding
I Efficient encoding
I Density Evolution
I Rate of the code
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Figure : Classic 9x9 SUDOKU simulated
performance averaged over 49 codewords
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Local constraints: factor graphs
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Local constraints: factor graphs

P
i

x

i

= 0
Linear Constraint
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Local constraints: factor graphs

Non-linear constraint
e.g., x1 6= x2 6= . . . x

d
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Local constraints: factor graphs

Non-linear constraint
e.g., x1 6= x2 6= . . . x

d

q: alphabet size
d : node degree
if q = d , {x1, . . . , xq

} 2 S
q

SUDOKU (permutation) constraint
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Belief propagation for permutation constraints

I Messages are q-ary probability mass functions
I Variable nodes: product of incoming probabilities
I Constraint nodes:

P(X
i

= k |m
v⇠i!c

) =
X

i

0 6=i

Y

k

0 6=k

P(X
i

0 = k

0|m
v

i

0!c

)

I Let P be the matrix of incoming messages to a constraint node,
i.e., p

ik

is the probability that the variable corresponding to the
i-th message takes on value k
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Constraint Node Computation: Permanents

Augustin-Louis Cauchy

I Permanent of a matrix,

per

2

4
a b c

d e f

g h i

3

5 = a(ei + hf ) + b(di + gf ) + c(dh + ge),

same as a determinant except all “+”
I For a constraint node,

m

c!vi

=
1

per P
[per(P⇠i1), per(P⇠i2), . . . , per(P⇠iq

)],

where P⇠ij

denotes the matrix P with its i-th row and j-th column
removed
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Complexity of the constraint node operation
I Each constraint node at each iteration requires the computation

of a permanent
I Brute force computation: sum of q! products of q factors, i.e.,

Alphabet
Size q

Multiplications
(q � 1)⇥ q!

Additions
q!� 1

4 72 23
9 2’903’040 362’879
16 3.14 ⇥ 1014 2.09 ⇥ 1013

I
From Wikipedia: The permanent is more difficult to compute than
the determinant. Gaussian elimination cannot be used to
compute the permanent. Computing the permanent of a 0-1
matrix (matrix whose entries are 0 or 1) is ]P-complete. FP = ]P
is stronger than P = NP. When the entries of A are nonnegative,
however, the permanent can be computed approximately in
probabilistic polynomial time, up to an error of "M, where M is
the value of the permanent and " > 0 is arbitrary.1

1Jerrum, M.; Sinclair, A.; Vigoda, E. (2004), “A polynomial-time approximation algorithm for the permanent of a matrix with
nonnegative entries”, Journal of the ACM
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Trellis-based permanent computation

; {1} {12} {123} {1234}

{2}

{3}

{4}

{13}

{14}

{23}

{24}

{34}

{124}

{134}

{234}

I Forward multiply and add yields the permanent
I Full BCJR yields the subpermanents we need
I thanks Gottfried Lechner
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Trellis-based erasure decoding

Tin =

2

664

1 1 1 1
1 0 1 0
1 1 0 0
1 1 0 0

3

775

; {1}

{2}

{3}

{4}

{12}

{13}

{14}

{23}

{24}

{34}

{123}

{124}

{134}

{234}

{1234}

UNIVERSITY OF CAMBRIDGE
Department of Engineering c�Jossy Sayir



13 / 28

Trellis-based erasure decoding

Tin =

2

664

1 1 1 1
1 0 1 0
1 1 0 0
1 1 0 0

3

775

; {1}

{2}

{3}

{4}

{12}

{13}

{14}

{23}

{24}

{34}

{123}

{124}

{134}

{234}

{1234}

UNIVERSITY OF CAMBRIDGE
Department of Engineering c�Jossy Sayir



13 / 28

Trellis-based erasure decoding

Tin =

2

664

1 1 1 1
1 0 1 0
1 1 0 0
1 1 0 0

3

775

; {1}

{2}

{3}

{4}

{12}

{13}

{14}

{23}

{24}

{34}

{123}

{124}

{134}

{234}

{1234}

UNIVERSITY OF CAMBRIDGE
Department of Engineering c�Jossy Sayir



13 / 28

Trellis-based erasure decoding

Tin =

2

664

1 1 1 1
1 0 1 0
1 1 0 0
1 1 0 0

3

775

; {1}

{2}

{3}

{4}

{12}

{13}

{14}

{23}

{24}

{34}

{123}

{124}

{134}

{234}

{1234}

UNIVERSITY OF CAMBRIDGE
Department of Engineering c�Jossy Sayir



13 / 28

Trellis-based erasure decoding

Tin =

2

664

1 1 1 1
1 0 1 0
1 1 0 0
1 1 0 0

3

775

; {1}

{2}

{3}

{4}

{12}

{13}

{14}

{23}

{24}

{34}

{123}

{124}

{134}

{234}

{1234}

UNIVERSITY OF CAMBRIDGE
Department of Engineering c�Jossy Sayir



13 / 28

Trellis-based erasure decoding

Tin =

2
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Universal Encoder for Codes with a Factor Graph
Description

Source
1,0,1,1,0,. . .

Arithmetic
Encoder 3,1,4,2,2,. . .

Message
Selector

Belief
Propagation

Encoding Failure

Successful Encoding
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Encoding Examples
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Encoding Examples

{1, 2, 3, 4}

3

log 4
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Encoding Examples

3

{1, 2, 4}

1

log 4 + log 3
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Encoding Examples

3 1

{2, 4}

4 2

log 4 + log 3 + log 2
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Encoding Examples

3 1 4 2

{2, 4}

4 2

log 4 + log 3 + log 2 + log 2
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Encoding Examples

3 1 4 2
4 2

{1, 3}

1 3

log 4+ log 3+ log 2+ log 2+ log 2
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Encoding Examples

3 1 4 2
4 2 1 3

{1, 2}

2
1

log 4+log 3+log 2+log 2+log 2+log 2
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Encoding Examples

3 1 4 2
4 2 1 3
2
1
{3, 4}

4
3

3 1
2 4

log 4+log 3+log 2+log 2+log 2+log 2+log 2 = 8.59 bits

R =
log4(4 · 3 · 26)

16
= 0.30
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Encoding Examples

3 1 4 2
4 2 1 3
2
1

4
3

3 1
2 4

R =
log4(4 · 3 · 26)

16
= 0.30

R = 0
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Encoding Examples

3 1 4 2
4 2 1 3
2
1

4
3

3 1
2 4

R =
log4(4 · 3 · 26)

16
= 0.30

3 1 4 2

log(4 · 3 · 2)

R = 0
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Encoding Examples

3 1 4 2
4 2 1 3
2
1

4
3

3 1
2 4

R =
log4(4 · 3 · 26)

16
= 0.30

3 1 4 2
4

log(4 · 3 · 22)

R = 0
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Encoding Examples

3 1 4 2
4 2 1 3
2
1

4
3

3 1
2 4

R =
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16
= 0.30

3 1 4 2
4 2 3 1
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Encoding Examples

3 1 4 2
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Encoding Examples

3 1 4 2
4 2 1 3
2
1

4
3

3 1
2 4

R =
log4(4 · 3 · 26)

16
= 0.30

3 1 4 2
4 2 3 1
2 3 1 4
!!!

R = 0
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Simulation Measurements

Factor Graph
True Rate R = 0.2824 R = 0.1527

Probability of
Decoding Failure 0.016 0.9995
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Diagonal SUDOKUs

Alphabet Number M of Rate
size q valid grids R = log M/q

2

3 6 0.1812
4 0 0
5 360 0.1463
6 0 0
7 3,200,400 0.1571
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Asymptotic Analysis

. . .

. . .

. . .

N ! 1
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Density Evolution

Non-linear codes with local constraints vs. linear (LDPC)
codes

I Concentration of the error performance
I Convergence to a cycle-free case
I Simplification by restriction to the all-one (all zero) codeword

SUDOKU constraints for the q-ary Erasure channel

I Messages = subsets of {1, . . . , q}
I Some interesting symmetries
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Symmetries of the SUDOKU decoder

Proposition
All operations symmetric under alphabet and edge permutations

Proposition
The probability distribution of the cardinalities of messages #m at
iteration k is a sufficient statistic for the probability distribution of the
actual messages

I
P

k

(#m) is a sufficient statistic for P

k+1(#m)

I
P

k

(#m) is a sufficient statistic for the block error probability at
iteration k
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Density Evolution: the calculation

m

co

(1) = {1, . . .}

m

ci

(2) = {2, . . .}
m

ci

(3) = {3, . . .}
m

ci

(4) = {4, . . .}
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Density evolution: the calculation
output #

input # multipl. 1 2 3 4
(1, 1, 1) 1 1 0 0 0
(1, 1, 2) 3 2/3 1/3 0 0
(1, 1, 3) 3 1/3 2/3 0 0
(1, 1, 4) 3 0 1 0 0
(1, 2, 2) 3 4/9 2/9 1/3 0
(1, 2, 3) 6 2/9 2/9 5/9 0
(1, 2, 4) 6 0 1/3 2/3 0
(1, 3, 3) 3 1/9 0 8/9 0
(1, 3, 4) 6 0 0 1 0
(1, 4, 4) 3 0 0 1 0
(2, 2, 2) 1 8/27 1/9 0 16/27
(2, 2, 3) 3 4/27 2/27 0 21/27
(2, 2, 4) 3 0 1/9 0 8/9
(2, 3, 3) 3 2/27 0 0 25/27
...

...
...

...
...

...
...

...
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Density evolution: the calculation

P

co

(1) =(P
ci

(1))3 + 2P

ci

(1)2
P

ci

(2) + P

ci

(1)2
P

ci

(3) +
4
3

P

ci

(1)P
ci

(2)2

+
4
3

P

ci

(1)P
ci

(2)P
ci

(3) +
1
3

P

ci

(1)P
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(3)2 +
8
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(2)3

+
4
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P

ci

(2)2
P

ci

(3) +
2
9

P

ci

(2)P
ci

(3)2 +
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(3)3

P

co

(2) =P
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(4) + . . .
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Density evolution: results for regular d

v

= 3 graphs

Alphabet q Threshold Run time
3 0.8836 <1s
4 0.7251 <1s
5 0.6209 <1s
6 0.5492 <10s
7 0.4965 <1min
8 0.4559 3 weeks
9 ? 108 years
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Rate as blocklength N ! 1
The rate of a SUDOKU-type code for N ! 1 is currently unknown.
The quantity defined below may give an indication of what the true
rate might be.

Definition
For a constraint-regular factor graph with constraint degree d

c

equal
to the alphabet size q, and variable degree distribution �(x), the
“cycle-free rate” of a code with SUDOKU type constaints is

R

cf

=
log

q

((q � 1)!)
q � 1

log(q!)
q

log(q!)+log((q�1)!)
q+(q�1)
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For a constraint-regular factor graph with constraint degree d

c

equal
to the alphabet size q, and variable degree distribution �(x), the
“cycle-free rate” of a code with SUDOKU type constaints is

R

cf

=
log

q

((q � 1)!)
q � 1

log(q!)
q

log(q!)+log((q�1)!)
q+(q�1)
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Density evolution: results for regular d

v

= 3 graphs

Alphabet q Threshold 1 � R

cf

3 0.8836 0.6845
4 0.7251 0.5692
5 0.6209 0.5063
6 0.5492 0.4656
7 0.4965 0.4365
8 0.4559 0.4143
9 ? 0.3967
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Pascal Vontobel’s Bethe approximation of the partition
function of the factor graph

Rate

R = max
⇢

0,
d

v

q

log2(q!)� (d
v

� 1) log2 q

�

⇡ max
⇢

0, log2

✓
q(2⇡q)d

v

/(2q)

e

d

v

◆�

R = 0 for d

v

= 3 and q < 12
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Conclusion

I I calculated using density evolution an erasure threshold for
d

v

= 3 and q = 3, . . . , 8, but Pascal proved that there are in fact
no codewords for these dimensions (or, as he put it more
precisely, sub-exponentially many codewords)

I Asymptotic analysis seems stuck between a combinatorial
explosion and the requirement to go to higher alphabets

I Study specific structures like the diagonal SUDOKU, devise
encoding methods and analyse performance

I Non-linear codes with local constraints are fun: they test the limit
of our abilities, pose interesting problems, and the brand name
“SUDOKU” seems to attract good students

I Current student project: linear codes with added non-linear
constraints for joint synchronisation and coding
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