SUDOKU Codes, a class of non-linear iteratively decodable codes

Jossy Sayir
圈 University of Cambridge

Chinese University of Hong Kong, 21 October 2014

Outline

- SUDOKU as channel codes
- Efficient decoding / encoding of SUDOKU
- Density Evolution
- Rate of SUDOKU codes

SUDOKU Puzzles

5			4		9			
		9		3				7
	4		5				9	
8	2			4				3
			8			1	2	
					2			
	9		2		4		1	6
4	1							
		6	9		1		3	

SUDOKU Puzzles

5	7	8	4	2	9	3	6	1
2	6	9	1	3	8	5	4	7
1	4	3	5	7	6	2	9	8
8	2	1	6	4	5	9	7	3
6	5	7	8	9	3	1	2	4
9	3	4	7	1	2	6	8	5
3	9	5	2	8	4	7	1	6
4	1	2	3	6	7	8	5	9
7	8	6	9	5	1	4	3	2

SUDOKU Puzzles

SUDOKU Puzzles

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

Coding by SUDOKU

Wikipedia "The Mathematics of SUDOKU"
There are $M=6,670,903,752,021,072,936,960$ valid SUDOKU grids.

Background

Literature

- P. Farrell, "Sudoku Codes: a Tutorial" (Ambleside 2009) - looked at distance properties of SUDOKU codes
- T. Moon \& al., BP and Sinkhorn for SUDOKU solving (2006, 2009) - algorithms to solve SUDOKU puzzles (not SUDOKU as codes)
- use in lectures since 2006 to illustrate BP decoding
- invaluable didactic tool to illustrate the use of factor graphs, trellis decoding, arithmetic decoding and other techniques
- 2 student projects in 2013/14 and strong student interest
- Proxy for the study of non-linear codes with local constraints

Non-linear Codes

Theory

- Used in achievability proofs (fixed-composition codes, typical sequence arguments, etc.)
- No practical encoders, decoders, etc.

Applications

- Simple constrained sequences (e.g. for magnetic recording)
- Other contraints, e.g., low Peak-to-Average Power Ratio (PAPR), can translate into non-linear constraints

My work on SUDOKU codes

- Efficient decoding
- Efficient encoding
- Density Evolution
- Rate of the code

My work on SUDOKU codes

- Efficient decoding
- Efficient encoding
- Density Evolution
- Rate of the code

Figure: Classic 9x9 SUDOKU simulated performance averaged over 49 codewords

Local constraints: factor graphs

Local constraints: factor graphs

Local constraints: factor graphs

Non-linear constraint e.g., $x_{1} \neq x_{2} \neq \ldots x_{d}$

Local constraints: factor graphs

Non-linear constraint
e.g., $x_{1} \neq x_{2} \neq \ldots x_{d}$
q : alphabet size
d : node degree
if $q=d,\left\{x_{1}, \ldots, x_{q}\right\} \in \mathcal{S}_{q}$
SUDOKU (permutation) constraint

Belief propagation for permutation constraints

- Messages are q-ary probability mass functions
- Variable nodes: product of incoming probabilities
- Constraint nodes:

$$
P\left(X_{i}=k \mid m_{v \sim i \rightarrow c}\right)=\sum_{i^{\prime} \neq i} \prod_{k^{\prime} \neq k} P\left(X_{i^{\prime}}=k^{\prime} \mid m_{v^{\prime} \rightarrow c}\right)
$$

- Let \mathbf{P} be the matrix of incoming messages to a constraint node, i.e., $p_{i k}$ is the probability that the variable corresponding to the i-th message takes on value k

Constraint Node Computation: Permanents

- Permanent of a matrix,

$$
\operatorname{per}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=a(e i+h f)+b(d i+g f)+c(d h+g e),
$$

same as a determinant except all "+"

- For a constraint node,

$$
m_{c \rightarrow v i}=\frac{1}{\operatorname{per} \mathbf{P}}\left[\operatorname{per}\left(\mathbf{P}_{\sim i 1}\right), \operatorname{per}\left(\mathbf{P}_{\sim i 2}\right), \ldots, \operatorname{per}\left(\mathbf{P}_{\sim i q}\right)\right],
$$

where $\mathbf{P}_{\sim i j}$ denotes the matrix \mathbf{P} with its i-th row and j-th column removed

Complexity of the constraint node operation

- Each constraint node at each iteration requires the computation of a permanent
- Brute force computation: sum of q ! products of q factors, i.e.,

Alphabet Size q	Multiplications $(q-1) \times q!$	Additions $q!-1$
4	72	23
9	$2^{\prime} 903^{\prime} 040$	$362^{\prime} 879$
16	3.14×10^{14}	2.09×10^{13}

- From Wikipedia: The permanent is more difficult to compute than the determinant. Gaussian elimination cannot be used to compute the permanent. Computing the permanent of a 0-1 matrix (matrix whose entries are 0 or 1) is $\sharp P$-complete. $F P=\sharp P$ is stronger than $P=N P$. When the entries of A are nonnegative, however, the permanent can be computed approximately in probabilistic polynomial time, up to an error of εM, where M is the value of the permanent and $\varepsilon>0$ is arbitrary. ${ }^{1}$

[^0]
Trellis-based permanent computation

- Forward multiply and add yields the permanent
- Full BCJR yields the subpermanents we need
- thanks Gottfried Lechner

Trellis-based erasure decoding

$$
\mathbf{T}_{\text {in }}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

\{34\}

$\{4\}$	$\{24\}$	$\{234\}$
$\{3\}$	$\{23\}$	$\{134\}$
	$\{14\}$	

$\{2\} \quad\{13\} \quad\{124\}$

\{1\}
\{12\}
\{123\}

Trellis-based erasure decoding

Trellis-based erasure decoding

Trellis-based erasure decoding

Trellis-based erasure decoding

$$
\mathbf{T}_{\text {in }}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Trellis-based erasure decoding

$$
\mathbf{T}_{\text {in }}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad \mathbf{T}_{\text {out }}\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Universal Encoder for Codes with a Factor Graph Description

Encoding Examples

Encoding Examples

$\log 4$

Encoding Examples

$$
\log 4+\log 3
$$

Encoding Examples

$\log 4+\log 3+\log 2$

Encoding Examples

$\log 4+\log 3+\log 2+\log 2$

Encoding Examples

$\log 4+\log 3+\log 2+\log 2+\log 2$

Encoding Examples

$\log 4+\log 3+\log 2+\log 2+\log 2+\log 2$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4
3,4			

$\log 4+\log 3+\log 2+\log 2+\log 2+\log 2+\log 2=8.59$ bits

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$$
\log (4 \cdot 3 \cdot 2)
$$

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$\log \left(4 \cdot 3 \cdot 2^{2}\right)$

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$\log \left(4 \cdot 3 \cdot 2^{2}\right)$

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$\log \left(4 \cdot 3 \cdot 2^{2}\right)$

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$\log \left(4 \cdot 3 \cdot 2^{2}\right)$

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$\log \left(4 \cdot 3 \cdot 2^{2}\right)$

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$\log \left(4 \cdot 3 \cdot 2^{2}\right)$

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$\log \left(4 \cdot 3 \cdot 2^{2}\right)$

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

$\log \left(4 \cdot 3 \cdot 2^{2}\right)$

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

Encoding Examples

3	1	4	2
4	2	1	3
2	4	3	1
1	3	2	4

3	1	4	2
4	2	3	1
2	3	1	4
$!!!$			

$$
R=\frac{\log _{4}\left(4 \cdot 3 \cdot 2^{6}\right)}{16}=0.30
$$

$$
R=0
$$

Simulation Measurements

Factor Graph		
True Rate	$R=0.2824$	$R=0.1527$
Probability of Decoding Failure	0.016	0.9995

Diagonal SUDOKUs

Alphabet size q	Number M of valid grids	Rate $R=\log M / q^{2}$
3	6	0.1812
4	0	0
5	360	0.1463
6	0	0
7	$3,200,400$	0.1571

Asymptotic Analysis

Density Evolution

Non-linear codes with local constraints vs. linear (LDPC) codes

- Concentration of the error performance
- Convergence to a cycle-free case
- Simplification by restriction to the all-one (all zero) codeword

SUDOKU constraints for the q-ary Erasure channel

- Messages $=$ subsets of $\{1, \ldots, q\}$
- Some interesting symmetries

Symmetries of the SUDOKU decoder

Proposition

All operations symmetric under alphabet and edge permutations

Proposition

The probability distribution of the cardinalities of messages \#m at iteration k is a sufficient statistic for the probability distribution of the actual messages

- $P_{k}(\# m)$ is a sufficient statistic for $P_{k+1}(\# m)$
- $P_{k}(\# m)$ is a sufficient statistic for the block error probability at iteration k

Density Evolution: the calculation

$$
m_{c i}(2)=\{2, \ldots\}
$$

Density evolution: the calculation

input \#	multipl.	output \#			
		1	2	3	4
$(\mathbf{1 , 1 , 1})$	1	1	0	0	0
$(1,1,2)$	3	2/3	1/3	0	0
$(1,1,3)$	3	1/3	2/3	0	0
$(1,1,4)$	3	0	1	0	0
(1,2,2)	3	4/9	2/9	1/3	0
$(1,2,3)$	6	2/9	2/9	5/9	0
$(1,2,4)$	6	0	1/3	2/3	0
$(1,3,3)$	3	1/9	0	8/9	0
$(1,3,4)$	6	0	0	1	0
$(1,4,4)$	3	0	0	1	0
$(2,2,2)$	1	8/27	1/9	0	16/27
$(2,2,3)$	3	4/27	2/27	0	21/27
$(2,2,4)$	3	0	1/9	0	8/9
$(2,3,3)$	3	2/27	0	0	25/27
$\vdots \vdots \vdots$:	:		:	:

Density evolution: the calculation

$$
\begin{aligned}
P_{c o}(\mathbf{1})= & \left(P_{c i}(\mathbf{1})\right)^{3}+2 P_{c i}(\mathbf{1})^{2} P_{c i}(\mathbf{2})+P_{c i}(\mathbf{1})^{2} P_{c i}(\mathbf{3})+\frac{4}{3} P_{c i}(\mathbf{1}) P_{c i}(\mathbf{2})^{2} \\
& +\frac{4}{3} P_{c i}(\mathbf{1}) P_{c i}(\mathbf{2}) P_{c i}(\mathbf{3})+\frac{1}{3} P_{c i}(\mathbf{1}) P_{c i}(\mathbf{3})^{2}+\frac{8}{27} P_{c i}(\mathbf{2})^{3} \\
& +\frac{4}{9} P_{c i}(\mathbf{2})^{2} P_{c i}(\mathbf{3})+\frac{2}{9} P_{c i}(\mathbf{2}) P_{c i}(\mathbf{3})^{2}+\frac{1}{27} P_{c i}(\mathbf{3})^{3} \\
P_{c o}(\mathbf{2})= & P_{c i}(\mathbf{1})^{2} P_{c i}(\mathbf{2})+2 P_{c i}(\mathbf{1})^{2} P_{c i}(\mathbf{3})+3 P_{c i}(\mathbf{1})^{2} P_{c i}(\mathbf{4})+\frac{2}{3} P_{c i}(\mathbf{1}) P_{c i}(\mathbf{2})^{2} \\
& +\frac{4}{3} P_{c i}(\mathbf{1}) P_{c i}(\mathbf{2}) P_{c i}(\mathbf{3})+2 P_{c i}(\mathbf{1}) P_{c i}(\mathbf{2}) P_{c i}(\mathbf{4})+\frac{1}{9} P_{c i}(\mathbf{2})^{3} \\
& +\frac{2}{9} P_{c i}(\mathbf{2})^{2} P_{c i}(\mathbf{3})+\frac{1}{3} P_{c i}(\mathbf{2})^{2} P_{c i}(\mathbf{4}) \\
P_{c o}(\mathbf{3})= & P_{c i}(\mathbf{1}) P_{c i}(\mathbf{2})^{2}+\frac{10}{3} P_{c i}(\mathbf{1}) P_{c i}(\mathbf{2}) P_{c i}(\mathbf{3})+4 P_{c i}(\mathbf{1}) P_{c i}(\mathbf{2}) P_{c i}(\mathbf{4}) \\
& +\frac{8}{3} P_{c i}(\mathbf{1}) P_{c i}(\mathbf{3})^{2}+6 P_{c i}(\mathbf{1}) P_{c i}(\mathbf{3}) P_{c i}(\mathbf{4})+\ldots
\end{aligned}
$$

Density evolution: results for regular $d_{v}=3$ graphs

Alphabet q	Threshold	Run time
3	0.8836	$<1 \mathrm{~s}$
4	0.7251	$<1 \mathrm{~s}$
5	0.6209	$<1 \mathrm{~s}$
6	0.5492	$<10 \mathrm{~s}$
7	0.4965	<1 min
8	0.4559	3 weeks
9	$?$	10^{8} years

Rate as blocklength $N \rightarrow \infty$

The rate of a SUDOKU-type code for $N \rightarrow \infty$ is currently unknown. The quantity defined below may give an indication of what the true rate might be.

Definition

For a constraint-regular factor graph with constraint degree d_{c} equal to the alphabet size q, and variable degree distribution $\lambda(x)$, the "cycle-free rate" of a code with SUDOKU type constaints is

$$
R_{c f}=\frac{\log _{q}((q-1)!)}{q-1}
$$

Rate as blocklength $N \rightarrow \infty$

The rate of a SUDOKU-type code for $N \rightarrow \infty$ is currently unknown. The quantity defined below may give an indication of what the true rate might be.

Definition

For a constraint-regular factor graph with constraint degree d_{c} equal to the alphabet size q, and variable degree distribution $\lambda(x)$, the "cycle-free rate" of a code with SUDOKU type constaints is

$$
R_{c f}=\frac{\log _{q}((q-1)!)}{q-1}
$$

$$
\frac{\log (q!)}{q}
$$

Rate as blocklength $N \rightarrow \infty$

The rate of a SUDOKU-type code for $N \rightarrow \infty$ is currently unknown. The quantity defined below may give an indication of what the true rate might be.

Definition

For a constraint-regular factor graph with constraint degree d_{c} equal to the alphabet size q, and variable degree distribution $\lambda(x)$, the "cycle-free rate" of a code with SUDOKU type constaints is

$$
R_{c f}=\frac{\log _{q}((q-1)!)}{q-1}
$$

$$
\frac{\log (q!)+\log ((q-1)!)}{q+(q-1)}
$$

Density evolution: results for regular $d_{v}=3$ graphs

Alphabet q	Threshold	$1-R_{\text {cf }}$
3	0.8836	0.6845
4	0.7251	0.5692
5	0.6209	0.5063
6	0.5492	0.4656
7	0.4965	0.4365
8	0.4559	0.4143
9	$?$	0.3967

Pascal Vontobel's Bethe approximation of the partition function of the factor graph

Rate

$$
\begin{aligned}
R & =\max \left\{0, \frac{d_{v}}{q} \log _{2}(q!)-\left(d_{v}-1\right) \log _{2} q\right\} \\
& \approx \max \left\{0, \log _{2}\left(\frac{q(2 \pi q)^{d_{v} /(2 q)}}{e^{d_{v}}}\right)\right\}
\end{aligned}
$$

$R=0$ for $d_{v}=3$ and $q<12$

Conclusion

- I calculated using density evolution an erasure threshold for $d_{v}=3$ and $q=3, \ldots, 8$, but Pascal proved that there are in fact no codewords for these dimensions (or, as he put it more precisely, sub-exponentially many codewords)
- Asymptotic analysis seems stuck between a combinatorial explosion and the requirement to go to higher alphabets
- Study specific structures like the diagonal SUDOKU, devise encoding methods and analyse performance
- Non-linear codes with local constraints are fun: they test the limit of our abilities, pose interesting problems, and the brand name "SUDOKU" seems to attract good students
- Current student project: linear codes with added non-linear constraints for joint synchronisation and coding

[^0]: ${ }^{1}$ Jerrum, M.; Sinclair, A.; Vigoda, E. (2004), "A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries", Journal of the ACM

