SUDOKU Codes, a class of non-linear iteratively decodable codes

Jossy Sayir

UNIVERSITY OF CAMBRIDGE Department of Engineering

Chinese University of Hong Kong, 21 October 2014

Outline

- SUDOKU as channel codes
- Efficient decoding / encoding of SUDOKU
- Density Evolution
- Rate of SUDOKU codes

5			4		9			
		9		3				7
	4		5				9	
8	2			4				3
			8			1	2	
					2			
	9		2		4		1	6
4	1							
		6	9		1		3	

5	7	8	4	2	9	3	6	1
2	6	9	1	3	8	5	4	7
1	4	3	5	7	6	2	9	8
8	2	1	6	4	5	9	7	3
6	5	7	8	9	3	1	2	4
9	3	4	7	1	2	6	8	5
3	9	5	2	8	4	7	1	6
4	1	2	3	6	7	8	5	9
7	8	6	9	5	1	4	3	2

3		4	
	2		
			1

3	1	4	2
4	2	1	3
2	4	3	1
	_	_	

Coding by SUDOKU

Wikipedia "The Mathematics of SUDOKU"

There are M = 6,670,903,752,021,072,936,960 valid SUDOKU grids.

Background

Literature

- P. Farrell, "Sudoku Codes: a Tutorial" (Ambleside 2009) looked at distance properties of SUDOKU codes
- T. Moon & al., BP and Sinkhorn for SUDOKU solving (2006, 2009) - algorithms to solve SUDOKU puzzles (not SUDOKU as codes)
- use in lectures since 2006 to illustrate BP decoding
- invaluable didactic tool to illustrate the use of factor graphs, trellis decoding, arithmetic decoding and other techniques
- 2 student projects in 2013/14 and strong student interest
- Proxy for the study of non-linear codes with local constraints

Non-linear Codes

Theory

- Used in achievability proofs (fixed-composition codes, typical sequence arguments, etc.)
- ► No practical encoders, decoders, etc.

Applications

- Simple constrained sequences (e.g. for magnetic recording)
- Other contraints, e.g., low Peak-to-Average Power Ratio (PAPR), can translate into non-linear constraints

My work on SUDOKU codes

- Efficient decoding
- Efficient encoding
- Density Evolution
- Rate of the code

My work on SUDOKU codes

- Efficient decoding
- Efficient encoding
- Density Evolution
- Rate of the code

Figure : Classic 9x9 SUDOKU simulated performance averaged over 49 codewords

Non-linear constraint e.g., $x_1 \neq x_2 \neq \dots x_d$ q: alphabet size d: node degree if q = d, $\{x_1, \dots, x_q\} \in S_q$ SUDOKU (permutation) constraint

Belief propagation for permutation constraints

- Messages are q-ary probability mass functions
- Variable nodes: product of incoming probabilities
- Constraint nodes:

$$P(X_i = k | m_{v \sim i \rightarrow c}) = \sum_{i' \neq i} \prod_{k' \neq k} P(X_{i'} = k' | m_{v_{i'} \rightarrow c})$$

Let P be the matrix of incoming messages to a constraint node, i.e., p_{ik} is the probability that the variable corresponding to the *i*-th message takes on value k

Permanent of a matrix,

$$\operatorname{per} \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] = a(ei + hf) + b(di + gf) + c(dh + ge),$$

same as a determinant except all "+"

For a constraint node.

$$m_{\mathbf{c} \rightarrow vi} = \frac{1}{\operatorname{per} \mathbf{P}}[\operatorname{per}(\mathbf{P}_{\sim i1}), \operatorname{per}(\mathbf{P}_{\sim i2}), \dots, \operatorname{per}(\mathbf{P}_{\sim iq})],$$

where $\mathbf{P}_{\sim ii}$ denotes the matrix \mathbf{P} with its *i*-th row and *j*-th column removed

10 / 28

Complexity of the constraint node operation

- Each constraint node at each iteration requires the computation of a permanent
- ► Brute force computation: sum of *q*! products of *q* factors, i.e.,

Alphabet	Multiplications	Additions
Size q	(q-1) imes q!	<i>q</i> ! – 1
4	72	23
9	2'903'040	362'879
16	$3.14 imes 10^{14}$	$2.09 imes 10^{13}$

► *From Wikipedia:* The permanent is more difficult to compute than the determinant. Gaussian elimination cannot be used to compute the permanent. Computing the permanent of a 0-1 matrix (matrix whose entries are 0 or 1) is #P-complete. FP = #P is stronger than P = NP. When the entries of *A* are nonnegative, however, the permanent can be computed approximately in probabilistic polynomial time, up to an error of εM , where *M* is the value of the permanent and $\varepsilon > 0$ is arbitrary.¹

¹ Jerrum, M.; Sinclair, A.; Vigoda, E. (2004), "A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries", Journal of the ACM

Trellis-based permanent computation

- Forward multiply and add yields the permanent
- Full BCJR yields the subpermanents we need
- thanks Gottfried Lechner

$$\mathbf{T}_{in} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} 34 \\ \{4\} & \{24\} & \{234\} \\ \\ \{23\} & \\ \{13\} & \\ \{14\} \\ \\ \{2\} & \{13\} & \\ \{12\} \\ \\ \{123\} & \\ \{1234\} \end{bmatrix}$$

UNIVERSITY OF CAMBRIDGE Department of Engineering

Ø

©Jossy Sayir

47

Department of Engineering

UNIVERSITY OF CAMBRIDGE Department of Engineering

©Jossy Sayir

UNIVERSITY OF CAMBRIDGE Department of Engineering

© Jossy Sayir

Universal Encoder for Codes with a Factor Graph Description

log 4

 $\log 4 + \log 3$

 $\log 4 + \log 3 + \log 2$

©Jossy Sayir

 $\log 4 + \log 3 + \log 2 + \log 2$

 $\log 4 + \log 3 + \log 2 + \log 2 + \log 2$

©Jossy Sayir

 $\log 4 + \log 3 + \log 2 + \log 2 + \log 2 + \log 2$

15 / 28

©Jossy Sayir

 $\log 4 + \log 3 + \log 2 = 8.59 \text{ bits}$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$\log(4 \cdot 3 \cdot 2)$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$\log(4 \cdot 3 \cdot 2^2)$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$\log(4 \cdot 3 \cdot 2^2)$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$\log(4 \cdot 3 \cdot 2^2)$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$\log(4 \cdot 3 \cdot 2^2)$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$\log(4 \cdot 3 \cdot 2^2)$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$\log(4 \cdot 3 \cdot 2^2)$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$\log(4 \cdot 3 \cdot 2^2)$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

$$\log(4 \cdot 3 \cdot 2^2)$$

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

©Jossy Sayir

3	1	4	2
4	2	1	3
2	1	2	-1
2	4	S	1

3	1	4	2
4	2	3	1
2	3	1	4
!!!			

$$R = \frac{\log_4(4 \cdot 3 \cdot 2^6)}{16} = 0.30$$

R = 0

Simulation Measurements

©Jossy Sayir

Diagonal SUDOKUs

Alphabet	Number M of	Rate
size q	valid grids	$R = \log M/q^2$
3	6	0.1812
4	0	0
5	360	0.1463
6	0	0
7	3,200,400	0.1571

Asymptotic Analysis

UNIVERSITY OF CAMBRIDGE Department of Engineering

Density Evolution

Non-linear codes with local constraints vs. linear (LDPC) codes

- Concentration of the error performance
- Convergence to a cycle-free case
- Simplification by restriction to the all-one (all zero) codeword

SUDOKU constraints for the q-ary Erasure channel

- ► Messages = subsets of {1,...,q}
- Some interesting symmetries

Symmetries of the SUDOKU decoder

Proposition

All operations symmetric under alphabet and edge permutations

Proposition

The probability distribution of the cardinalities of messages #m at iteration *k* is a sufficient statistic for the probability distribution of the actual messages

- $P_k(\#m)$ is a sufficient statistic for $P_{k+1}(\#m)$
- ► P_k(#m) is a sufficient statistic for the block error probability at iteration k

Density Evolution: the calculation

			outp	out #	
input #	multipl.	1	2	3	4
(1,1,1)	1	1	0	0	0
(1, 1, 2)	3	2/3	1/3	0	0
(1,1,3)	3	1/3	2/3	0	0
(1,1,4)	3	0	1	0	0
(1, 2, 2)	3	4/9	2/9	1/3	0
(1, 2, 3)	6	2/9	2/9	5/9	0
(1, 2, 4)	6	0	1/3	2/3	0
(1,3,3)	3	1/9	0	8/9	0
(1,3,4)	6	0	0	1	0
(1,4,4)	3	0	0	1	0
(2, 2, 2)	1	8/27	1/9	0	16/27
(2, 2, 3)	3	4/27	2/27	0	21/27
(2, 2, 4)	3	0	1/9	0	8/9
(2, 3, 3)	3	2/27	0	0	25/27
: : :	:	:	:	:	:

$$\begin{split} P_{co}(1) = &(P_{ci}(1))^3 + 2P_{ci}(1)^2 P_{ci}(2) + P_{ci}(1)^2 P_{ci}(3) + \frac{4}{3} P_{ci}(1) P_{ci}(2)^2 \\ &+ \frac{4}{3} P_{ci}(1) P_{ci}(2) P_{ci}(3) + \frac{1}{3} P_{ci}(1) P_{ci}(3)^2 + \frac{8}{27} P_{ci}(2)^3 \\ &+ \frac{4}{9} P_{ci}(2)^2 P_{ci}(3) + \frac{2}{9} P_{ci}(2) P_{ci}(3)^2 + \frac{1}{27} P_{ci}(3)^3 \\ P_{co}(2) = &P_{ci}(1)^2 P_{ci}(2) + 2P_{ci}(1)^2 P_{ci}(3) + 3P_{ci}(1)^2 P_{ci}(4) + \frac{2}{3} P_{ci}(1) P_{ci}(2)^2 \\ &+ \frac{4}{3} P_{ci}(1) P_{ci}(2) P_{ci}(3) + 2P_{ci}(1) P_{ci}(2) P_{ci}(4) + \frac{1}{9} P_{ci}(2)^3 \\ &+ \frac{2}{9} P_{ci}(2)^2 P_{ci}(3) + \frac{1}{3} P_{ci}(2)^2 P_{ci}(4) \\ P_{co}(3) = &P_{ci}(1) P_{ci}(2)^2 + \frac{10}{3} P_{ci}(1) P_{ci}(2) P_{ci}(3) + 4P_{ci}(1) P_{ci}(2) P_{ci}(4) \\ &+ \frac{8}{3} P_{ci}(1) P_{ci}(3)^2 + 6P_{ci}(1) P_{ci}(3) P_{ci}(4) + \dots \end{split}$$

Density evolution: results for regular $d_v = 3$ graphs

Alphabet q	Threshold	Run time
3	0.8836	<1s
4	0.7251	<1s
5	0.6209	<1s
6	0.5492	<10s
7	0.4965	<1min
8	0.4559	3 weeks
9	?	10 ⁸ years

Rate as blocklength $N \to \infty$

The rate of a SUDOKU-type code for $N \rightarrow \infty$ is currently unknown. The quantity defined below may give an indication of what the true rate might be.

Definition

For a constraint-regular factor graph with constraint degree d_c equal to the alphabet size q, and variable degree distribution $\lambda(x)$, the "cycle-free rate" of a code with SUDOKU type constaints is

$$R_{cf} = \frac{\log_q\left((q-1)!\right)}{q-1}$$

Rate as blocklength $N \rightarrow \infty$

The rate of a SUDOKU-type code for $N \rightarrow \infty$ is currently unknown. The quantity defined below may give an indication of what the true rate might be.

Definition

For a constraint-regular factor graph with constraint degree d_c equal to the alphabet size q, and variable degree distribution $\lambda(x)$, the "cycle-free rate" of a code with SUDOKU type constaints is

$$R_{cf} = \frac{\log_q \left((q-1)! \right)}{q-1}$$

25 / 28

Rate as blocklength $N \rightarrow \infty$

The rate of a SUDOKU-type code for $N \rightarrow \infty$ is currently unknown. The quantity defined below may give an indication of what the true rate might be.

Definition

For a constraint-regular factor graph with constraint degree d_c equal to the alphabet size q, and variable degree distribution $\lambda(x)$, the "cycle-free rate" of a code with SUDOKU type constaints is

$$R_{cf} = \frac{\log_q\left((q-1)!\right)}{q-1}$$

Density evolution: results for regular $d_v = 3$ graphs

Alphabet q	Threshold	$1 - R_{cf}$
3	0.8836	0.6845
4	0.7251	0.5692
5	0.6209	0.5063
6	0.5492	0.4656
7	0.4965	0.4365
8	0.4559	0.4143
9	?	0.3967

Pascal Vontobel's Bethe approximation of the partition function of the factor graph

Rate
$$R = \max\left\{0, \frac{d_v}{q}\log_2(q!) - (d_v - 1)\log_2 q\right\}$$
$$\approx \max\left\{0, \log_2\left(\frac{q(2\pi q)^{d_v/(2q)}}{e^{d_v}}\right)\right\}$$

R = 0 for $d_v = 3$ and q < 12

Conclusion

- I calculated using density evolution an erasure threshold for d_v = 3 and q = 3,...,8, but Pascal proved that there are in fact no codewords for these dimensions (or, as he put it more precisely, sub-exponentially many codewords)
- Asymptotic analysis seems stuck between a combinatorial explosion and the requirement to go to higher alphabets
- Study specific structures like the diagonal SUDOKU, devise encoding methods and analyse performance
- Non-linear codes with local constraints are fun: they test the limit of our abilities, pose interesting problems, and the brand name "SUDOKU" seems to attract good students
- Current student project: linear codes with added non-linear constraints for joint synchronisation and coding

