Matroidal Entropy Functions: A Quartet of Theories of Information, Matroid, Design and Coding

Qi Chen ${ }^{1}$

Joint work with Mingquan Cheng ${ }^{2}$ and Baoming Bai ${ }^{1}$

1. ISN Lab and School of Telecommunication Engineering, Xidian University
2. Guangxi Normal University

The Chinese University of Hong Kong
April 20, 2023

A toy example

For a discrete random vector $\left(X_{1}, X_{2}, X_{3}\right), X_{1}, X_{2}$ and X_{3} are pairwise independent, X_{i} is a function of X_{j}, X_{k}.

$X_{1} \perp X_{2}$ and uniformly distributed on $\{0,1\}$,
$X_{3}=X_{1}+X_{2}(\bmod 2)$.

A toy example

X_{1}, X_{2} and X_{3} are parrwise independent, X_{i} is a function of X_{j}, X_{k}.
where $a=\log v$.
$X_{1} \perp X_{2}$ and uniformly distributed on $\mathbb{Z}_{v}=\{0,1, \cdots, v-1\}$ $X_{3}=X_{1}+X_{2}(\bmod v) .{ }^{1}$
${ }^{1}$ Z. Zhang and R. W. Yeung, "A non-Shannon type conditional inequality of information quantities," IEEE Trans. Info. Theory, vol. 43, no. 11 pp. 1982-1986, Nov. 1997.

Extrames rays of Γ_{3} containing matroidal entropy functions induced by matroid $U_{2,3}$

Figure: $R_{U_{2,3}}:=\left\{a \cdot \mathbf{r}_{U_{2,3}}: a \geq 0\right\}$

Matroidal entropy function

$$
\log v \cdot \mathbf{r}_{U_{2,3}}
$$

where $v \geq 2$ is an integer and $\mathbf{r}_{U_{2,3}}$ is the rank function of the uniform matroid $U_{2,3}$.

$$
\mathbf{r}_{U_{2,3}}(A)=\min \{2,|A|\} \quad \forall A \subseteq N=\{1,2,3\}
$$

Entropy functions

Entropy function

Let N be an indexed set. For a random vector $\mathbf{X}_{N}=\left(X_{i}, i \in N\right)$, the entropy function of \mathbf{X} is a set function $\mathbf{h}: 2^{N} \rightarrow \mathbb{R}$ defined by

$$
\mathbf{h}(A)=H\left(X_{A}\right)
$$

for any $A \subseteq N$.

Entropy functions

Entropy function

Let N be an indexed set. For a random vector $\mathbf{X}_{N}=\left(X_{i}, i \in N\right)$, the entropy function of \mathbf{X} is a set function $\mathbf{h}: 2^{N} \rightarrow \mathbb{R}$ defined by

$$
\mathbf{h}(A)=H\left(X_{A}\right)
$$

for any $A \subseteq N$.
Entropy space

$$
\mathcal{H}_{N} \triangleq \mathbb{R}^{2^{N}}
$$

Entropy functions

Entropy function

Let N be an indexed set. For a random vector $\mathbf{X}_{N}=\left(X_{i}, i \in N\right)$, the entropy function of \mathbf{X} is a set function $\mathbf{h}: 2^{N} \rightarrow \mathbb{R}$ defined by

$$
\mathbf{h}(A)=H\left(X_{A}\right)
$$

for any $A \subseteq N$.
Entropy space

$$
\mathcal{H}_{N} \triangleq \mathbb{R}^{2^{N}}
$$

Entropy region: Γ_{N}^{*}

$$
\Gamma_{N}^{*} \triangleq\left\{\mathbf{h} \in \mathcal{H}_{N}: \exists \mathbf{X}_{N}, \mathbf{h} \text { is the entropy function of some } \mathbf{X}_{N} \cdot\right\}
$$

When $N=\{1,2, \cdots, n\}$, we write it as Γ_{n}^{*}.

polymatroidal region

Shannon-type inequalities
For any $A, B \subseteq N$,

$$
\begin{aligned}
H\left(X_{A}\right) & \geq 0, \\
H\left(X_{A}\right) & \leq H\left(X_{B}\right) \text { if } A \subseteq B, \\
H\left(X_{A}\right)+H\left(X_{B}\right) & \geq H\left(X_{A \cap B}\right)+H\left(X_{A \cup B}\right) .
\end{aligned}
$$

Polymatroidal region: Γ_{N}

$$
\begin{aligned}
\Gamma_{N} \triangleq\left\{\mathbf{h} \in \mathcal{H}_{N}\right. & : \mathbf{h}(A) \geq 0, \\
& \mathbf{h}(A) \leq \mathbf{h}(B), \quad \text { if } A \subseteq B, \\
& \mathbf{h}(A)+\mathbf{h}(B) \geq \mathbf{h}(A \cap B)+\mathbf{h}(A \cup B) .\}
\end{aligned}
$$

Matroid

Definition

A matroid M is an ordered pair (N, \mathbf{r}), where the ground set N is a finite set and the rank function \mathbf{r} is a set function on 2^{N}, and they satisfy the conditions that: for any $A, B \subseteq N$,
$-0 \leq \mathbf{r}(A) \leq|A|$ and $\mathbf{r}(A) \in \mathbb{Z}$.

- $\mathbf{r}(A) \leq \mathbf{r}(B)$, if $A \subseteq B$,
- $\mathbf{r}(A)+\mathbf{r}(B) \geq \mathbf{r}(A \cup B)+\mathbf{r}(A \cap B)$.

The value $\mathbf{r}(N)$ is called the rank of M.

Matroid

Definition

A matroid M is an ordered pair (N, \mathbf{r}), where the ground set N is a finite set and the rank function \mathbf{r} is a set function on 2^{N}, and they satisfy the conditions that: for any $A, B \subseteq N$,

- $0 \leq \mathbf{r}(A) \leq|A|$ and $\mathbf{r}(A) \in \mathbb{Z}$.
- $\mathbf{r}(A) \leq \mathbf{r}(B)$, if $A \subseteq B$,
- $\mathbf{r}(A)+\mathbf{r}(B) \geq \mathbf{r}(A \cup B)+\mathbf{r}(A \cap B)$.

The value $\mathbf{r}(N)$ is called the rank of M.
Matroids are special cases of polymatroids
For a polymatroid $\mathbf{h} \in \Gamma_{n}$, if $\mathbf{h}(A) \in \mathbb{Z}$ and $\mathbf{h}(A) \leq|A|$, then \mathbf{h} is the rank function of a matroid.

Uniform matroid

A uniform matroid $U_{t, n}$ with $0 \leq t \leq n$ is matroid (N, r) with $|N|=n$ and

$$
\mathbf{r}(A)=\min \{t,|A|\} \quad \forall A \subseteq N
$$

When $1 \leq t \leq n-1, U_{t, n}$ is a connected matroid.

Entropy functions on the extreme rays of Γ_{N}

Theorem
For a matroid $M=(N, \mathbf{r}), \mathbf{r}$ is on an extreme ray of Γ_{N} if and only if it is connected after deleting its loops. ${ }^{2}$

For a matroid $M=(N, \mathbf{r})$,

- $C \subseteq N$ is called a circuit of M if for any $e \in C$, $\mathbf{r}(C)=\mathbf{r}(C-e)=|C|-1$,
- M is called connected if any two elements in N are in a circuit,
- a single element circuit, or a rank zero element is called a loop of M.

[^0]
Entropy functions on the extreme rays of Γ_{N}

Theorem
For a matroid $M=(N, \mathbf{r}), \mathbf{r}$ is on an extreme ray of Γ_{N} if and only if it is connected after deleting its loops. ${ }^{2}$

For a matroid $M=(N, \mathbf{r})$,

- $C \subseteq N$ is called a circuit of M if for any $e \in C$, $\mathbf{r}(C)=\mathbf{r}(C-e)=|C|-1$,
- M is called connected if any two elements in N are in a circuit,
- a single element circuit, or a rank zero element is called a loop of M.

Entropy functions on 1-dimensional faces of Γ_{N}

[^1]
Matroidal entropy functions

Definition

For matroid M and positive integer $v \geq 2$, we call the entropy function in the form

$$
\mathbf{h}=\log v \cdot \mathbf{r}_{M}
$$

matroidal entropy function induced by M with degree v.

Extrames rays of Γ_{3} containing matroidal entropy functions induced by matroid $U_{2,3}$

Figure: $R_{U_{2,3}}:=\left\{a \cdot \mathbf{r}_{U_{2,3}}: a \geq 0\right\}$

Matroidal entropy function

$$
\log v \cdot \mathbf{r}_{U_{2,3}}
$$

where $v \geq 2$ is an integer and $\mathbf{r}_{U_{2,3}}$ is the rank function of the uniform matroid $U_{2,3}$.

Extrames rays containing $U_{2,3}$ and $U_{2,4}$

Figure: $R_{U_{2,3}}:=\left\{a \cdot U_{2,3}: a \geq 0\right\}$
$O \quad \log 2 \log 3 \cdots \quad \log 6 \cdots \log v$

Figure: $R_{U_{2,4}}:=\left\{a \cdot U_{2,4}: a \geq 0\right\}$

A polymatroid on $R_{U_{2,4}}$ is entropic if and only if $a=\log v$, $v \geq 3, v \neq 6$.

The toy example for $U_{2,3}$

X_{1}, X_{2} and X_{3} are pairwise independent, X_{i} is a function of X_{j}, X_{k}.
where $a=\log v$.
$X_{1} \perp X_{2}$ and uniformly distributed on $\mathbb{Z}_{v}=\{0,1, \cdots, v-1\}$
$X_{3}=X_{1}+X_{2}(\bmod v)$.

Latin square: additive group

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

The multiplication table of the additive group $\left\langle\mathbb{Z}_{v},+\right\rangle$

Latin square: quasigroup

0	1	2	3	4
1	0	3	4	2
2	4	0	1	3
3	2	4	0	1
4	3	2	2	0

If X_{1} is uniformly distributed on rows and X_{2} is uniform distributed on columns, then X_{3} is uniformly distributed on the symbols

A bit more generalization

How to construct $X_{1}, X_{2}, X_{3}, X_{4}$ such that

- $X_{i} \perp X_{j}$ for each $1 \leq i<j \leq 4$
- X_{k} is a function of X_{i} and X_{j} for any $1 \leq i<j \leq 4$ and $k \in\{1,2,3,4\} \backslash\{i, j\}$

Figure: $R_{U_{2,4}}:=\left\{a \cdot U_{2,4}: a \geq 0\right\}$

Mutually orthogonal latin squares

X_{1}, X_{2}, X_{3} and X_{4} are uniformly distributed on the rows, columns, symbols of the first square and symbols of the second square, respectively.

Mutually orthogonal latin squares

X_{1}, X_{2}, X_{3} and X_{4} are uniformly distributed on the rows, columns, symbols of the first square and symbols of the second square, respectively.

For this case, $v \neq 2,6$

- $v \neq 2$: trivial
- $v \neq 6$: Euler's 36 officer problem

Characterizing matroidal entropy functions via variable strength orthogonal array (VOA)

Theorem
A random vector $\mathbf{X}=\left(X_{i}: i \in N\right)$ characterizes matroidal entropy function $\log v \cdot \mathbf{r}_{M}$ for a connected matroid with rank $\mathbf{r}(N) \geq 2$ if and only if random variable $Y=\mathbf{X}$ is uniformly distributed on the rows of a $\operatorname{VOA}(M, v))^{3}$

[^2] 2021.

Characterizing matroidal entropy functions via variable strength orthogonal array (VOA)

Theorem
A random vector $\mathbf{X}=\left(X_{i}: i \in N\right)$ characterizes matroidal entropy function $\log v \cdot \mathbf{r}_{M}$ for a connected matroid with rank $\mathbf{r}(N) \geq 2$ if and only if random variable $Y=\mathbf{X}$ is uniformly distributed on the rows of a $\operatorname{VOA}(M, v) .{ }^{3}$

Corollary
For a connected matroid $M=\left(N, r_{M}\right)$ with rank $\mathbf{r}(N) \geq 2$, if the polymatroid

$$
a \cdot \mathbf{r}_{M}
$$

with $a>0$ is entropic, then $a=\log v$ for some integer $v \geq 2$.

[^3] 2021.

Probabilistically characteristic set of a matroid

For a matroid M, we call the set χ_{M} of all $v \geq 2$ such that $\mathbf{h}=\log v \cdot M$ is entropic the probabilistically (p-)characteristic set of M.

Probabilistically characteristic set of a matroid

For a matroid M, we call the set χ_{M} of all $v \geq 2$ such that $\mathbf{h}=\log v \cdot M$ is entropic the probabilistically (p-)characteristic set of M.

$$
\chi U_{2,3}=\{v \in \mathbb{Z}: v \geq 2\}, \quad \chi U_{2,4}=\{v \in \mathbb{Z}: v \geq 3, v \neq 6\}
$$

Orthogonal array

Example

$$
\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 \\
1 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
1 & 2 & 0 & 1 \\
2 & 0 & 2 & 1 \\
2 & 1 & 0 & 2 \\
2 & 2 & 1 & 0
\end{array}
$$

is an $\mathrm{OA}(2,4,3)$ corresponding to the MOLS.

Orthogonal array

Definition

A $\lambda v^{t} \times n$ array T with entries from \mathbb{Z}_{v} is called an orthogonal array of strength t, factor n, level v and index λ if any $\lambda v^{t} \times t$ subarray of T contains each t-tuple in \mathbb{Z}_{v}^{t} exactly λ times as a row. We call T an $\mathrm{OA}\left(\lambda \times v^{t} ; t, n, v\right)$.

Orthogonal array

Definition

A $\lambda v^{t} \times n$ array T with entries from \mathbb{Z}_{v} is called an orthogonal array of strength t, factor n, level v and index λ if any $\lambda v^{t} \times t$ subarray of T contains each t-tuple in \mathbb{Z}_{v}^{t} exactly λ times as a row. We call T an $\mathrm{OA}\left(\lambda \times v^{t} ; t, n, v\right)$.

When $\lambda=1$, we say such orthogonal array has index unity and call it an $\mathrm{OA}(t, n, v)$ for short.

Variable strength orthogonal array(VOA)

Definition

Given a matroid $M=(N, \mathbf{r})$ with $\mathbf{r}(N) \geq 2$,

- a $v^{r(N)} \times n$ array T
- with columns indexed by N,
- entries from \mathbb{Z}_{v},
is called a variable strength orthogonal array(VOA) induced by M with level v if for any $A \subseteq N, v^{r(N)} \times|A|$ subarray of T consisting of columns indexed by A satisfy the following condition:
- each row of this subarray occurs $v^{\mathbf{r}(N)-\mathbf{r}(A)}$ times.

We also call such T a $\operatorname{VOA}(M, v)$.

Variable strength orthogonal array(VOA)

Definition

Given a matroid $M=(N, \mathbf{r})$ with $\mathbf{r}(N) \geq 2$,

- a $v^{\mathbf{r}(N)} \times n$ array T
- with columns indexed by N,
- entries from \mathbb{Z}_{v},
is called a variable strength orthogonal array(VOA) induced by M with level v if for any $A \subseteq N, v^{r(N)} \times|A|$ subarray of T consisting of columns indexed by A satisfy the following condition:
- each row of this subarray occurs $v^{\mathbf{r}(N)-\mathbf{r}(A)}$ times.

We also call such T a $\operatorname{VOA}(M, v)$.

For $U_{t, n}, \operatorname{VOA}\left(U_{t, n}, v\right)=\operatorname{OA}(t, n, v)$

Variable strength orthogonal array

Example

Let $M_{1}=\left(N, \mathbf{r}_{1}\right)$ be a matroid with $N=\{1,2,3,4,5\}$ and rank function

$$
\mathbf{r}_{1}(A)= \begin{cases}|A| & |A| \leq 2 \\ 2 & A \in\{\{1,2,3\},\{3,4,5\}\} \\ 3 & \text { o.w. }\end{cases}
$$

Then

0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0
0	0	0	1	1
0	1	1	1	0
1	0	1	1	0
1	1	0	1	1

is a $\operatorname{VOA}\left(M_{1}, 2\right)$.

Relations between $O A$ and $V O A$

Relations to coding theory

For a matroid M over a field $\operatorname{GF}(q)$, that is, M is the vector matroid of a matrix \hat{M} over $\mathrm{GF}(q)$, the set of rows of a $\operatorname{VOA}(M, q)$ is the code book of the (n, k, q) linear code generated by \hat{M}, where $k=\mathbf{r}_{M}(N)$.

Relations to coding theory

For a matroid M over a field $\operatorname{GF}(q)$, that is, M is the vector matroid of a matrix \hat{M} over $\mathrm{GF}(q)$, the set of rows of a $\operatorname{VOA}(M, q)$ is the code book of the (n, k, q) linear code generated by \hat{M}, where $k=\mathbf{r}_{M}(N)$.

Example

Let $M_{1}=\left(N, \mathbf{r}_{1}\right)$ be a matroid with $N=\{1,2,3,4,5\}$ and rank function

$$
\mathbf{r}_{1}(A)= \begin{cases}|A| & |A| \leq 2 \\ 2 & A \in\{\{1,2,3\},\{3,4,5\}\} \\ 3 & \text { o.w. }\end{cases}
$$

is the vector matroid of the matrix

$$
\hat{M}_{1}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Relations to coding theory

Example

For matrix

$$
\hat{M}_{1}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

the mapping $\mathbf{x} \mapsto \mathbf{x M}$ maps the tuples in \mathbb{Z}_{2}^{3} to the set of rows of $\operatorname{VOA}\left(M_{1}, 2\right)$ below.

$$
\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1
\end{array}
$$

It is a $(5,3,2)$ linear code.

Almost affine code

Definition

For a set of v symbols, say $\mathbb{Z}_{v}, \mathcal{C} \subseteq \mathbb{Z}_{v}^{N}$ is called an almost affine code if

$$
\begin{equation*}
\mathbf{r}(A):=\log _{v}\left|\mathcal{C}_{A}\right| \tag{1}
\end{equation*}
$$

is an integer for all $A \subseteq N .{ }^{4}$
${ }^{4}$ J. Simonis and A. Ashikhmin, "Almost affine codes," Desings, Codes Cryptogr., vol. 14, pp. 179-797, 1998.

Almost affine code

Definition

For a set of v symbols, say $\mathbb{Z}_{v}, \mathcal{C} \subseteq \mathbb{Z}_{v}^{N}$ is called an almost affine code if

$$
\begin{equation*}
\mathbf{r}(A):=\log _{v}\left|\mathcal{C}_{A}\right| \tag{1}
\end{equation*}
$$

is an integer for all $A \subseteq N .{ }^{4}$
Almost affine code induced by matroid

- For any almost affine code $\mathcal{C},(N, r)$ forms a matroid M, where the rank function \boldsymbol{r} is defined in (1). We call such almost affine code an (M, v) (almost affine) code.
- For an (M, v) code, if M is a uniform matroid $U_{t, n}$, it coincides with a (n, t, v) maximum distance separable (MDS) code.
${ }^{4}$ J. Simonis and A. Ashikhmin, "Almost affine codes," Desings, Codes Cryptogr., vol. 14, pp. 179-797, 1998.

Almost affine code

$(7,4)$ Hamming code is a characterization of the dual matroid of Fano matroid

Parity check matrix of $(7,4)$
Hamming code.

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Figure: Fano matroid

Correspondences among four fields

Some applications

- E. F. Brickell.; D. M. Davenport, "On the classification of ideal secret sharing schemes," J. Cryptol. vol. 4, 123-134, 1991.
- R. Dougherty, C. Freiling and K Zeger, "Networks, matroids, and non-Shannon information inequalities," IEEE Trans. Inf. Theory vol. 53, pp. 1949-1969, 2007. (network coding)
- S. El Rouayheb, A. Sprintson and C. Georghiades, "On the index coding problem and its relation to network coding and matroid theory", IEEE Trans. Inf. Theory vol. 56, no. 7 pp . 3187-3195, 2010.
- T. Westerbäck, R. Freij-Hollanti, T. Ernvall and C. Hollanti, "On the combinatorics of locally repairable codes via matroid theory", IEEE Trans. Inf. Theory vol. 62, no. 10 pp. 5296-5315, 2016.

An application to network coding

Figure: $\lambda_{1}=x, \lambda_{2}=y, \lambda_{3}=L_{1}(x, y), \lambda_{4}=L_{2}(x, y)$, where L_{1}, L_{2} are MOLSs. Thus, $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ forms $\operatorname{VOA}\left(U_{2,4}, v\right)$.

Determine χ_{M} of a matroid via VOA operations of the corresponding matroid operation

- Q. Chen, M. Cheng, and B. Bai, "Matroidal entropy functions: constructions, characterizations and representations," in IEEE Int.Symp. Info. Theory, Espoo, Finland June 2022.
- Q. Chen, M. Cheng, and B. Bai, "Matroidal entropy functions: constructions, characterizations and representations," in preparing for submitting to IEEE, Trans. Inf. Theory

Matroid operations

Unitary matroid operations

- deletion
- contraction
- minor

Binary matroid operations

- series connection
- parallel connection
- 2-sum

Matroid operations: deletion

Definition (Deletion)
Given a matroid $M=(N, \mathbf{r})$ and $S \subseteq N$, the matroid $M \backslash S=\left(N^{\prime}, \mathbf{r}^{\prime}\right)$ with $N^{\prime}=N \backslash S$ and

$$
\mathbf{r}^{\prime}(A)=\mathbf{r}(A), \quad \forall A \subseteq N^{\prime}
$$

is called a matroid of M deleted by S or the restriction of M on N^{\prime}.

VOA operations: deletion

For $S \subseteq N$, let $\mathbf{T} \backslash S$ denote the array whose rows are exactly those of $\mathbf{T}\left(N^{\prime}\right)$ with each occurring once, where $N^{\prime}=N \backslash S$.
$\mathbf{T}: \operatorname{VOA}\left(U_{3,4}, 2\right)$

$\mathbf{T} \backslash\{3,4\}: \operatorname{VOA}\left(U_{2,2}, 2\right)$

$$
\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}
$$

Note that

$$
U_{2,2} \simeq U_{3,4} \backslash\{3,4\} .
$$

VOA operations:deletions

Proposition
For a $\operatorname{VOA}(M, v) \mathbf{T}$ and $S \subseteq N, \mathbf{T} \backslash S$ is a $\operatorname{VOA}(M \backslash S, v)$.

Matroid operations: contractions

Definition (Contraction)
Given a matroid $M=(N, \mathbf{r})$ and $S \subseteq N$, the matroid $M / S=\left(N^{\prime}, \mathbf{r}^{\prime}\right)$ with $N^{\prime}=N \backslash S$ and

$$
\mathbf{r}^{\prime}(A)=\mathbf{r}(A \cup S)-\mathbf{r}(S), \quad \forall A \subseteq N^{\prime}
$$

is called the contraction of S from M.

VOA operations: contraction

For a $\operatorname{VOA}(M, v) \mathbf{T}$ and $S \subseteq N$, let a be a row of $\mathbf{T}(S)$. We denote by $\mathbf{T}_{I S \text { : }}$ the array whose rows are $\mathbf{c}(N \backslash S)$ with \mathbf{c} the rows of \mathbf{T} and $\mathbf{c}(S)=\mathbf{a}$.

$$
\begin{array}{r}
\mathbf{T}: \operatorname{VOA}\left(U_{3,4}, 2\right) \\
0 \\
0
\end{array} 0
$$

$$
\mathbf{T}_{\mid\{4\}: 0}: \operatorname{VOA}\left(U_{2,3}, 2\right)
$$

$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

Note that

$$
U_{2,3} \simeq U_{3,4} /\{4\} .
$$

VOA operations: contractions

Proposition
For a $\operatorname{VOA}(M, v) \mathbf{T}$ and $S \subseteq N, \mathbf{T}_{\mid S: \mathbf{a}}$ is a $\operatorname{VOA}(M / S, v)$ where \mathbf{a} is any row of $\mathbf{T}(S)$.

Matroid operations: minors

Definition (Minor)

For a sequence of disjoint $S_{1}, S_{2}, \ldots, S_{k} \subseteq N, M$ being deleted or contracted by S_{i}, the result can be written in the form of $M \backslash S / T$, where S is the union of the deleted S_{i} and T is the union of the contracted S_{j}. Such $M \backslash S / T$ is called a minor of M.

Matroid operations: minors

Definition (Minor)

For a sequence of disjoint $S_{1}, S_{2}, \ldots, S_{k} \subseteq N, M$ being deleted or contracted by S_{i}, the result can be written in the form of $M \backslash S / T$, where S is the union of the deleted S_{i} and T is the union of the contracted S_{j}. Such $M \backslash S / T$ is called a minor of M.

Theorem
Let M be a matroid and M^{\prime} be its minor. Then $\chi_{M} \subseteq \chi_{M^{\prime}}$.
Proof sketch.
If $\operatorname{VOA}(M, v)$ is constructible, so is $\operatorname{VOA}\left(M^{\prime}, v\right)$.

Matroid operations

Unitary matroid operations

- deletion
- contraction
- minor

Binary matroid operations

- series connection
- parallel connection
- 2-sum

Matroid operations: series and parallel connections

Definition (Series and parallel connections)

For two matroids $M_{1}=\left(N_{1}, \mathbf{r}_{1}\right)$ and $M_{2}=\left(N_{2}, \mathbf{r}_{2}\right)$ with $p_{i} \in N_{i}$, p_{i} neither loops nor coloops, $i=1,2$, and any $p \notin N_{1} \cup N_{2}$ the series connection $S\left(\left(M_{1} ; p_{1}\right),\left(M_{2} ; p_{2}\right)\right)$ of M_{1} and M_{2} with respect to base points p_{1} and p_{2} is a matroid with ground set $N \triangleq\left(N_{1} \backslash p_{1}\right) \cup\left(N_{2} \backslash p_{2}\right) \cup p$ and family of circuits

$$
\begin{align*}
\mathcal{C}_{S}= & \mathcal{C}\left(M_{1} \backslash p_{1}\right) \cup \mathcal{C}\left(M_{2} \backslash p_{2}\right) \\
& \cup\left\{\left(C_{1}-p_{1}\right) \cup\left(C_{2}-p_{2}\right) \cup p: C_{i} \in \mathcal{C}\left(M_{i}\right), i=1,2\right\} \tag{2}
\end{align*}
$$

and the parallel connection $P\left(\left(M_{1} ; p_{1}\right),\left(M_{2} ; p_{2}\right)\right)$ of M_{1} and M_{2} with respect to base points p_{1} and p_{2} is a matroid with ground set N and family of circuits

$$
\begin{align*}
\mathcal{C}_{P}= & \mathcal{C}\left(M_{1} \backslash p_{1}\right) \cup \mathcal{C}\left(M_{2} \backslash p_{2}\right) \cup\left\{\left(C_{1}-p_{1}\right) \cup p: C_{1} \in \mathcal{C}\left(M_{1}\right)\right\} \\
& \cup\left\{\left(C_{2}-p_{2}\right) \cup p: C_{2} \in \mathcal{C}\left(M_{2}\right)\right\} \tag{3}
\end{align*}
$$

Matroid operations: series and parallel connections

VOA operations: series connections

Let

- \mathbf{T}_{1} be a $\operatorname{VOA}\left(M_{1}, v\right)$ with $M_{1}=\left(N_{1}, \mathbf{r}_{1}\right)$,
- \mathbf{T}_{2} be a $\operatorname{VOA}\left(M_{2}, v\right)$ with $M_{1}=\left(N_{2}, \mathbf{r}_{2}\right)$,
- v an integer and
- \mathbf{U} be any $\operatorname{VOA}\left(U_{2,3}, v\right)$.

We construct a $v^{r s} \times\left(\left|N_{1}\right|+\left|N_{2}\right|-1\right)$ array \mathbf{T} with columns indexed by $N=\left(N_{1} \backslash p_{1}\right) \cup\left(N_{2} \backslash p_{2}\right) \cup p$ according to the following rule, where $r_{S}=\mathbf{r}_{1}\left(N_{1}\right)+\mathbf{r}_{2}\left(N_{2}\right)$.

- For any row \mathbf{a}_{1} of \mathbf{T}_{1} and \mathbf{a}_{2} of \mathbf{T}_{2}, we construct a row \mathbf{b} of \mathbf{T} such that
- $\mathbf{b}\left(N_{1} \backslash p_{1}\right)=\mathbf{a}_{1}\left(N_{1} \backslash p_{1}\right), \mathbf{b}\left(N_{2} \backslash p_{2}\right)=\mathbf{a}_{2}\left(N_{2} \backslash p_{2}\right)$ and $\left(\mathbf{a}_{1}\left(p_{1}\right), \mathbf{a}_{2}\left(p_{2}\right), \mathbf{b}(p)\right)$ is a row of \mathbf{U}.
We denote such constructed \mathbf{T} by $S\left(\left(\mathbf{T}_{1} ; p_{1}\right),\left(\mathbf{T}_{2} ; p_{2}\right)\right)$ or $S\left(\mathbf{T}_{1}, \mathbf{T}_{2}\right)$ if there is no ambiguity. It can be checked that \mathbf{T} is a VOA.

VOA operations: series connections

$$
\begin{array}{ccccccccc}
\mathbf{T}_{1}: \operatorname{VOA}\left(U_{2,3}, 2\right) & \mathbf{T}_{2}: \operatorname{VOA}\left(U_{2,3}, 2\right) & S\left(\mathbf{T}_{1}, \mathbf{T}_{2}\right) \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 \\
& & & & 1 & 1 & 0 \\
& & & & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & 1
\end{array}
$$

$\mathbf{U}: \operatorname{VOA}\left(U_{2,3}, 2\right)$

$$
\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

is a $\operatorname{VOA}\left(U_{4,5}, 2\right)$, where $U_{4,5} \simeq S\left(U_{2,3}, U_{2,3}\right)$.

VOA operations: series connections

Proposition
For a $\operatorname{VOA}\left(M_{1}, v\right) \mathbf{T}_{1}$ and a $\operatorname{VOA}\left(M_{2}, v\right) \mathbf{T}_{2}$, the array $S\left(\left(\mathbf{T}_{1} ; p_{1}\right),\left(\mathbf{T}_{2} ; p_{2}\right)\right)$ is a $\operatorname{VOA}\left(S\left(\left(M_{1} ; p_{1}\right),\left(M_{2}, p_{2}\right)\right), v\right)$.

VOA operations: parallel connections

Let
$\rightarrow \mathbf{T}_{1}$ be a $\operatorname{VOA}\left(M_{1}, v\right)$ with $M_{1}=\left(N_{1}, \mathbf{r}_{1}\right)$,
$\rightarrow \mathbf{T}_{2}$ be a $\operatorname{VOA}\left(M_{2}, v\right)$ with $M_{1}=\left(N_{1}, \mathbf{r}_{2}\right)$ and

- v an integer.

We construct a $v^{r P} \times\left(\left|N_{1}\right|+\left|N_{2}\right|-1\right)$ array \mathbf{T} with columns indexed by $N=\left(N_{1} \backslash p_{1}\right) \cup\left(N_{2} \backslash p_{2}\right) \cup p$ according to the following rule, where $r_{P}=r_{1}+r_{2}-1$.

- For any row \mathbf{a}_{1} of \mathbf{T}_{1} and \mathbf{a}_{2} of \mathbf{T}_{2} with $\mathbf{a}_{1}\left(p_{1}\right)=\mathbf{a}_{2}\left(p_{2}\right)$, we construct row \mathbf{b} of \mathbf{T} such that
- $\mathbf{b}\left(N_{i} \backslash p_{i}\right)=\mathbf{a}_{i}, i=1,2$, and $\mathbf{b}(p)=\mathbf{a}_{1}\left(p_{1}\right)$.

We denote such constructed \mathbf{T} by $P\left(\left(\mathbf{T}_{1} ; p_{1}\right),\left(\mathbf{T}_{2} ; p_{2}\right)\right)$ or $P\left(\mathbf{T}_{1}, \mathbf{T}_{2}\right)$ if there is no ambiguity. It can be checked that \mathbf{T} is a VOA.

VOA operations: parallel connections

Example

$$
\begin{array}{ccccccccc}
\mathbf{T}_{1}: \operatorname{VOA}\left(U_{2,3}, 2\right) & \mathbf{T}_{2}: \operatorname{VOA}\left(U_{2,3}, 2\right) & P\left(\mathbf{T}_{1}, \mathbf{T}_{2}\right) \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
& & & & & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 \\
& & & & 1 & 1 & 0 & 1 & 0
\end{array}
$$

is a $\operatorname{VOA}\left(M_{1}, 2\right)$, where

$$
M_{1}=P\left(U_{2,3}, U_{2,3}\right)
$$

VOA operations: parallel connections

Proposition
For a $\operatorname{VOA}\left(M_{1}, v\right) \mathbf{T}_{1}$ and a $\operatorname{VOA}\left(M_{2}, v\right) \mathbf{T}_{2}$, the array $P\left(\left(\mathbf{T}_{1} ; p_{1}\right),\left(\mathbf{T}_{2} ; p_{2}\right)\right)$ is a $\operatorname{VOA}\left(P\left(\left(M_{1} ; p_{1}\right),\left(M_{2}, p_{2}\right)\right), v\right)$.

Matroid operations: 2-sum

Definition

For matroids $M_{1}=\left(N_{1}, \mathbf{r}_{1}\right)$ and $M_{2}=\left(N_{2}, \mathbf{r}_{2}\right)$, the 2-sum of them $M_{1} \oplus_{2} M_{2}$ is defined by $S\left(M_{1}, M_{2}\right) / p$ or equivalently $P\left(M_{1}, M_{2}\right) \backslash p$.

VOA operations: 2-sum

Let

- \mathbf{T}_{1} be a $\operatorname{VOA}\left(M_{1}, v\right)$ with $M_{1}=\left(N_{1}, \mathbf{r}_{1}\right)$,
- \mathbf{T}_{2} be a $\operatorname{VOA}\left(M_{2}, v\right)$ with $M_{1}=\left(N_{1}, \mathbf{r}_{2}\right)$,
- v an integer.

We construct $\mathbf{T}_{1} \oplus_{2} \mathbf{T}_{2}$ by

- $\left.S\left(\mathbf{T}_{1}, \mathbf{T}_{2}\right)\right|_{p: a}$ for some $a \in \mathbb{Z}_{v}$, or equivalently
- $P\left(\mathbf{T}_{1}, \mathbf{T}_{2}\right) \backslash p$.

Proposition

For a $\operatorname{VOA}\left(M_{1}, v\right) \mathbf{T}_{1}$ and $\operatorname{VOA}\left(M_{2}, v\right) \mathbf{T}_{2}, \mathbf{T}_{1} \oplus_{2} \mathbf{T}_{2}$ is a $\operatorname{VOA}\left(M_{1} \oplus_{2} M_{2}, v\right)$.

Characteristic set of binary VOA operations

Theorem
For any matroids M_{1} and $M_{2}, \chi_{M_{1} \oplus_{2} M_{2}}=\chi_{M_{1}} \cap \chi_{M_{2}}$.

Smaller building blocks

Corollary

The p-characteristic set of a connected matroid is the intersection of the p-characteristic set of its 3-connected components.

Regular matroids

Definition

A matroid M is regular if it is represented by a totally unimodular matrix, i.e., a matrix over \mathbb{R} for which every square submatrix has determinant in $\{-1,1,0\}$.
Theorem
For a matroid $M, \chi_{M}=\{v \in \mathbb{Z}: v \geq 2\}$ if and only if M is regular.
Proof Sketch.

- For the if part construct a totally unimodular matrix, i.e., a matrix over a ring \mathbb{Z}_{v};
- for the only if part, excluded minor of regular matroid $U_{2,4}, F_{7}$ and F_{7}^{*}.

Regular matroids

Definition

A matroid M is regular if it is represented by a totally unimodular matrix, i.e., a matrix over \mathbb{R} for which every square submatrix has determinant in $\{-1,1,0\}$.

Theorem

For a matroid $M, \chi_{M}=\{v \in \mathbb{Z}: v \geq 2\}$ if and only if M is regular.
Proof Sketch.

- For the if part construct a totally unimodular matrix, i.e., a matrix over a ring \mathbb{Z}_{v};
- for the only if part, excluded minor of regular matroid $U_{2,4}, F_{7}$ and F_{7}^{*}.

Remark

It is a generalization of the matroid representation problem over a field.

Whirl matroids

Figure: The wheel graph \mathcal{W}_{r}

Definition

The whirl matroid \mathcal{W}^{r} is a matroid by relaxing the circuit-hyperplane A, i.e., the rim of the wheel matroid $M\left(\mathcal{W}_{r}\right)$.
Note that $\mathcal{W}^{2}=U_{2,4}$.

Whirl matroids

Proposition

For matroid $\mathcal{W}^{r}, r \geq 2, \chi_{\mathcal{W}}{ }^{r}=\chi_{U_{2,4}}=\{v \in \mathbb{Z}: v \geq 3, v \neq 6\}$.

Matroids with the same p-characteristic set as $U_{2,4}$

Theorem
For any matroid M, let M_{i} be its connected components, and $M_{i, j}$ be the 3-connected components of M_{i}. Then $\chi_{M}=\chi_{U_{2,4}}$ if each of these $M_{i, j}$ is either a regular matroid or a \mathcal{W}^{r} with $r \geq 2$, and at least one of them is a \mathcal{W}^{r}.

Thank you!

[^0]: ${ }^{2}$ H. Q. Nguyen, "Semimodular functions and combinatorial geometries," Trans. AMS.,vol. 238, pp. 355-383, April 1978.

[^1]: ${ }^{2}$ H. Q. Nguyen, "Semimodular functions and combinatorial geometries," Trans. AMS.,vol. 238, pp. 355-383, April 1978.

[^2]: ${ }^{3}$ Q. Chen, M. Cheng and B. Bai, "Matroidal entropy functions: a quartet of theories of information, matroid, design and coding," Entropy, vol. 23:3, 1-11,

[^3]: ${ }^{3}$ Q. Chen, M. Cheng and B. Bai, "Matroidal entropy functions: a quartet of theories of information, matroid, design and coding," Entropy, vol. 23:3, 1-11,

