Matroidal Entropy Functions: A Quartet of Theories of Information, Matroid, Design and Coding

Qi Chen¹

Joint work with Mingquan Cheng 2 and Baoming Bai 1

1. ISN Lab and School of Telecommunication Engineering, Xidian University 2. Guangxi Normal University

> The Chinese University of Hong Kong April 20, 2023

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A toy example

For a discrete random vector (X_1, X_2, X_3) , X_1, X_2 and X_3 are pairwise independent, X_i is a function of X_i, X_k .

 $X_1 \perp X_2$ and uniformly distributed on $\{0, 1\}$, $X_3 = X_1 + X_2 \pmod{2}$.

A toy example

 X_1, X_2 and X_3 are pairwise independent, X_i is a function of X_i, X_k .

¹Z. Zhang and R. W. Yeung, "A non-Shannon type conditional inequality of information quantities," *IEEE Trans. Info. Theory*, vol. 43, no. 11 pp. 1982-1986, Nov. 1997.

Extrames rays of Γ_3 containing matroidal entropy functions induced by matroid $U_{2,3}$

$$O \quad \log 2 \ \log 3 \ \cdots \ \log v$$

Figure: $R_{U_{2,3}} := \{ a \cdot \mathbf{r}_{U_{2,3}} : a \ge 0 \}$

Matroidal entropy function

 $\log v \cdot \mathbf{r}_{U_{2,3}}$

where $v \ge 2$ is an integer and $\mathbf{r}_{U_{2,3}}$ is the rank function of the uniform matroid $U_{2,3}$.

$$\mathbf{r}_{U_{2,3}}(A) = \min\{2, |A|\} \quad \forall A \subseteq N = \{1, 2, 3\}.$$

・ロト・日本・モト・モー シック

Entropy functions

Entropy function

Let *N* be an indexed set. For a random vector $\mathbf{X}_N = (X_i, i \in N)$, the entropy function of **X** is a set function $\mathbf{h} : 2^N \to \mathbb{R}$ defined by

$$\mathbf{h}(A)=H(X_A),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for any $A \subseteq N$.

Entropy functions

Entropy function

Let *N* be an indexed set. For a random vector $\mathbf{X}_N = (X_i, i \in N)$, the entropy function of **X** is a set function $\mathbf{h} : 2^N \to \mathbb{R}$ defined by

$$\mathbf{h}(A)=H(X_A),$$

for any $A \subseteq N$.

Entropy space

$$\mathcal{H}_N \triangleq \mathbb{R}^{2^N}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Entropy functions

Entropy function

Let *N* be an indexed set. For a random vector $\mathbf{X}_N = (X_i, i \in N)$, the entropy function of **X** is a set function $\mathbf{h} : 2^N \to \mathbb{R}$ defined by

$$\mathbf{h}(A)=H(X_A),$$

for any $A \subseteq N$.

Entropy space

$$\mathcal{H}_N \triangleq \mathbb{R}^{2^N}$$

Entropy region: Γ_N^*

 $\Gamma_N^* \triangleq \{ \mathbf{h} \in \mathcal{H}_N : \exists \mathbf{X}_N, \mathbf{h} \text{ is the entropy function of some } \mathbf{X}_N. \}$ When $N = \{1, 2, \dots, n\}$, we write it as Γ_n^* .

polymatroidal region

Shannon-type inequalities For any $A, B \subseteq N$,

$$egin{aligned} & H(X_A) \geq 0, \ & H(X_A) \leq H(X_B) & ext{if } A \subseteq B, \ & H(X_A) + H(X_B) \geq H(X_{A \cap B}) + H(X_{A \cup B}). \end{aligned}$$

Polymatroidal region: Γ_N

$$\begin{split} \mathsf{\Gamma}_N &\triangleq \{\mathbf{h} \in \mathcal{H}_N : \mathbf{h}(A) \geq 0, \\ \mathbf{h}(A) \leq \mathbf{h}(B), & \text{if } A \subseteq B, \\ \mathbf{h}(A) + \mathbf{h}(B) \geq \mathbf{h}(A \cap B) + \mathbf{h}(A \cup B). \} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Matroid

Definition

A matroid M is an ordered pair (N, \mathbf{r}) , where the ground set N is a finite set and the rank function \mathbf{r} is a set function on 2^N , and they satisfy the conditions that: for any $A, B \subseteq N$,

•
$$0 \leq \mathbf{r}(A) \leq |A|$$
 and $\mathbf{r}(A) \in \mathbb{Z}$.

▶
$$\mathbf{r}(A) \leq \mathbf{r}(B)$$
, if $A \subseteq B$,

►
$$\mathbf{r}(A) + \mathbf{r}(B) \ge \mathbf{r}(A \cup B) + \mathbf{r}(A \cap B).$$

The value $\mathbf{r}(N)$ is called the rank of M.

Matroid

Definition

A matroid M is an ordered pair (N, \mathbf{r}) , where the ground set N is a finite set and the rank function \mathbf{r} is a set function on 2^N , and they satisfy the conditions that: for any $A, B \subseteq N$,

•
$$0 \leq \mathbf{r}(A) \leq |A|$$
 and $\mathbf{r}(A) \in \mathbb{Z}$.

▶
$$\mathbf{r}(A) \leq \mathbf{r}(B)$$
, if $A \subseteq B$,

►
$$\mathbf{r}(A) + \mathbf{r}(B) \ge \mathbf{r}(A \cup B) + \mathbf{r}(A \cap B).$$

The value $\mathbf{r}(N)$ is called the rank of M.

Matroids are special cases of polymatroids

For a polymatroid $\mathbf{h} \in \Gamma_n$, if $\mathbf{h}(A) \in \mathbb{Z}$ and $\mathbf{h}(A) \leq |A|$, then \mathbf{h} is the rank function of a matroid.

Uniform matroid

A uniform matroid $U_{t,n}$ with $0 \le t \le n$ is matroid (N, \mathbf{r}) with |N| = n and

$$\mathbf{r}(A) = \min\{t, |A|\} \quad \forall A \subseteq N.$$

When $1 \le t \le n-1$, $U_{t,n}$ is a connected matroid.

Entropy functions on the extreme rays of Γ_N

Theorem

For a matroid $M = (N, \mathbf{r})$, \mathbf{r} is on an extreme ray of Γ_N if and only if it is connected after deleting its loops.²

For a matroid $M = (N, \mathbf{r})$,

- $C \subseteq N$ is called a circuit of M if for any $e \in C$, $\mathbf{r}(C) = \mathbf{r}(C - e) = |C| - 1$,
- ▶ *M* is called connected if any two elements in *N* are in a circuit,
- a single element circuit, or a rank zero element is called a loop of *M*.

²H. Q. Nguyen, "Semimodular functions and combinatorial geometries," *Trans. AMS.*,vol. 238, pp. 355-383, April 1978.

Entropy functions on the extreme rays of Γ_N

Theorem

For a matroid $M = (N, \mathbf{r})$, \mathbf{r} is on an extreme ray of Γ_N if and only if it is connected after deleting its loops.²

For a matroid $M = (N, \mathbf{r})$,

- $C \subseteq N$ is called a circuit of M if for any $e \in C$, $\mathbf{r}(C) = \mathbf{r}(C - e) = |C| - 1$,
- ▶ *M* is called connected if any two elements in *N* are in a circuit,
- a single element circuit, or a rank zero element is called a loop of *M*.

Entropy functions on 1-dimensional faces of Γ_N

²H. Q. Nguyen, "Semimodular functions and combinatorial geometries," *Trans. AMS.*,vol. 238, pp. 355-383, April 1978.

Matroidal entropy functions

Definition

For matroid M and positive integer $v \ge 2$, we call the entropy function in the form

 $\mathbf{h} = \log \mathbf{v} \cdot \mathbf{r}_M$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

matroidal entropy function induced by M with degree v.

Extrames rays of Γ_3 containing matroidal entropy functions induced by matroid $U_{2,3}$

$$O \quad \log 2 \ \log 3 \ \cdots \ \log v$$

Figure: $R_{U_{2,3}} := \{ a \cdot \mathbf{r}_{U_{2,3}} : a \ge 0 \}$

Matroidal entropy function

 $\log v \cdot \mathbf{r}_{U_{2,3}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $v \ge 2$ is an integer and $\mathbf{r}_{U_{2,3}}$ is the rank function of the uniform matroid $U_{2,3}$.

Extrames rays containing $U_{2,3}$ and $U_{2,4}$

$$O \quad \log 2 \ \log 3 \ \cdots \ \log v$$

Figure: $R_{U_{2,3}} := \{a \cdot U_{2,3} : a \ge 0\}$

$$O \quad \log 2 \ \log 3 \ \cdots \ \log 6 \ \cdots \ \log v$$

Figure: $R_{U_{2,4}} := \{a \cdot U_{2,4} : a \ge 0\}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

A polymatroid on $R_{U_{2,4}}$ is entropic if and only if $a = \log v$, $v \ge 3, v \ne 6$.

The toy example for $U_{2,3}$

 X_1, X_2 and X_3 are pairwise independent, X_i is a function of X_i, X_k .

 $X_1 \perp X_2$ and uniformly distributed on $\mathbb{Z}_{v} = \{0, 1, \cdots, v-1\}$ $X_3 = X_1 + X_2 \pmod{v}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Latin square: additive group

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The multiplication table of the additive group $\langle \mathbb{Z}_{v},+
angle$

Latin square: quasigroup

0	1	2	3	4
1	0	3	4	2
2	4	0	1	3
3	2	4	0	1
4	3	2	2	0

If X_1 is uniformly distributed on rows and X_2 is uniform distributed on columns, then X_3 is uniformly distributed on the symbols

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A bit more generalization

How to construct X_1, X_2, X_3, X_4 such that

•
$$X_i \perp X_j$$
 for each $1 \le i < j \le 4$

• X_k is a function of X_i and X_j for any $1 \le i < j \le 4$ and $k \in \{1, 2, 3, 4\} \setminus \{i, j\}$

$$O \quad \log 2 \ \log 3 \ \cdots \ \log 6 \ \cdots \ \log v$$

Figure: $R_{U_{2,4}} := \{a \cdot U_{2,4} : a \ge 0\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mutually orthogonal latin squares

± /

$$A := \begin{bmatrix} A & K & Q & J \\ Q & J & A & K \\ J & Q & K & A \\ K & A & J & Q \end{bmatrix}, \qquad B := \begin{bmatrix} \blacklozenge & \heartsuit & \diamondsuit & \clubsuit \\ \clubsuit & \diamondsuit & \heartsuit & \bigstar \\ \diamondsuit & \clubsuit & \diamondsuit \\ \diamondsuit & \clubsuit & \diamondsuit \\ \diamondsuit & \clubsuit & \diamondsuit \end{bmatrix}$$

 X_1, X_2, X_3 and X_4 are uniformly distributed on the rows, columns, symbols of the first square and symbols of the second square, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mutually orthogonal latin squares

$$A := \begin{bmatrix} A & K & Q & J \\ Q & J & A & K \\ J & Q & K & A \\ K & A & J & Q \end{bmatrix}, \qquad B := \begin{bmatrix} \blacklozenge & \heartsuit & \diamondsuit & \clubsuit \\ \clubsuit & \diamondsuit & \heartsuit & \bigstar \\ \diamondsuit & \clubsuit & \diamondsuit \\ \diamondsuit & \clubsuit & \diamondsuit \\ \diamondsuit & \clubsuit & \diamondsuit \end{bmatrix}$$

 X_1, X_2, X_3 and X_4 are uniformly distributed on the rows, columns, symbols of the first square and symbols of the second square, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- For this case, $v \neq 2, 6$
 - \blacktriangleright $v \neq 2$: trivial
 - ▶ $v \neq 6$: Euler's 36 officer problem

Characterizing matroidal entropy functions via variable strength orthogonal array(VOA)

Theorem

A random vector $\mathbf{X} = (X_i : i \in N)$ characterizes matroidal entropy function log $v \cdot \mathbf{r}_M$ for a connected matroid with rank $\mathbf{r}(N) \ge 2$ if and only if random variable $Y = \mathbf{X}$ is uniformly distributed on the rows of a VOA(M, v).³

³Q. Chen, M. Cheng and B. Bai, "Matroidal entropy functions: a quartet of theories of information, matroid, design and coding," *Entropy*, vol. 23:3, 1-11, 2021.

Characterizing matroidal entropy functions via variable strength orthogonal array(VOA)

Theorem

A random vector $\mathbf{X} = (X_i : i \in N)$ characterizes matroidal entropy function log $v \cdot \mathbf{r}_M$ for a connected matroid with rank $\mathbf{r}(N) \ge 2$ if and only if random variable $Y = \mathbf{X}$ is uniformly distributed on the rows of a VOA(M, v).³

Corollary

For a connected matroid $M = (N, \mathbf{r}_M)$ with rank $\mathbf{r}(N) \ge 2$, if the polymatroid

 $a \cdot \mathbf{r}_M$

with a > 0 is entropic, then $a = \log v$ for some integer $v \ge 2$.

³Q. Chen, M. Cheng and B. Bai, "Matroidal entropy functions: a quartet of theories of information, matroid, design and coding," *Entropy*, vol. 23:3, 1-11, 2021.

Probabilistically characteristic set of a matroid

For a matroid M, we call the set χ_M of all $v \ge 2$ such that $\mathbf{h} = \log v \cdot M$ is entropic the probabilistically (p-)characteristic set of M.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Probabilistically characteristic set of a matroid

For a matroid M, we call the set χ_M of all $v \ge 2$ such that $\mathbf{h} = \log v \cdot M$ is entropic the probabilistically (p-)characteristic set of M.

$$\chi_{U_{2,3}} = \{ v \in \mathbb{Z} : v \ge 2 \}, \quad \chi_{U_{2,4}} = \{ v \in \mathbb{Z} : v \ge 3, v \ne 6 \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Orthogonal array

Example

0	1	2
1	2	0
2	0	1

0	1	2
2	0	1
1	2	0

0	0	0	0
0	1	1	1
0	2	2	2
1	0	1	2
1	1	2	0
1	2	0	1
2	0	2	1
2	1	0	2
2	2	1	0

is an OA(2, 4, 3) corresponding to the MOLS.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Orthogonal array

Definition

A $\lambda v^t \times n$ array T with entries from \mathbb{Z}_v is called an orthogonal array of strength t, factor n, level v and index λ if any $\lambda v^t \times t$ subarray of T contains each t-tuple in \mathbb{Z}_v^t exactly λ times as a row. We call T an $OA(\lambda \times v^t; t, n, v)$.

Orthogonal array

Definition

A $\lambda v^t \times n$ array T with entries from \mathbb{Z}_v is called an orthogonal array of strength t, factor n, level v and index λ if any $\lambda v^t \times t$ subarray of T contains each t-tuple in \mathbb{Z}_v^t exactly λ times as a row. We call T an $OA(\lambda \times v^t; t, n, v)$.

When $\lambda = 1$, we say such orthogonal array has *index unity* and call it an OA(t, n, v) for short.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Variable strength orthogonal array(VOA)

Definition

Given a matroid $M = (N, \mathbf{r})$ with $\mathbf{r}(N) \ge 2$,

- ▶ a $v^{\mathbf{r}(N)} \times n$ array T
- ▶ with columns indexed by *N*,
- entries from \mathbb{Z}_{v} ,

is called a variable strength orthogonal array(VOA) induced by M with level v if for any $A \subseteq N$, $v^{r(N)} \times |A|$ subarray of T consisting of columns indexed by A satisfy the following condition:

• each row of this subarray occurs $v^{r(N)-r(A)}$ times.

We also call such T a VOA(M, v).

Variable strength orthogonal array(VOA)

Definition

Given a matroid $M = (N, \mathbf{r})$ with $\mathbf{r}(N) \ge 2$,

- ▶ a $v^{\mathbf{r}(N)} \times n$ array T
- ▶ with columns indexed by *N*,
- ► entries from Z_v,

is called a variable strength orthogonal array(VOA) induced by M with level v if for any $A \subseteq N$, $v^{r(N)} \times |A|$ subarray of T consisting of columns indexed by A satisfy the following condition:

• each row of this subarray occurs $v^{\mathbf{r}(N)-\mathbf{r}(A)}$ times. We also call such T a VOA(M, v).

For $U_{t,n}$, $\operatorname{VOA}(U_{t,n}, v) = \operatorname{OA}(t, n, v)$

Variable strength orthogonal array

Example

Let $M_1 = (N, \mathbf{r}_1)$ be a matroid with $N = \{1, 2, 3, 4, 5\}$ and rank function

$$\mathbf{r}_1(A) = \begin{cases} |A| & |A| \le 2\\ 2 & A \in \{\{1, 2, 3\}, \{3, 4, 5\}\}\\ 3 & \text{o.w.} \end{cases}$$

Then

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

is a VOA $(M_1, 2)$.

Relations between OA and VOA

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Relations to coding theory

For a matroid M over a field GF(q), that is, M is the vector matroid of a matrix \hat{M} over GF(q), the set of rows of a VOA(M, q) is the code book of the (n, k, q) linear code generated by \hat{M} , where $k = \mathbf{r}_M(N)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relations to coding theory

For a matroid M over a field GF(q), that is, M is the vector matroid of a matrix \hat{M} over GF(q), the set of rows of a VOA(M, q) is the code book of the (n, k, q) linear code generated by \hat{M} , where $k = \mathbf{r}_M(N)$.

Example

Let $M_1 = (N, \mathbf{r}_1)$ be a matroid with $N = \{1, 2, 3, 4, 5\}$ and rank function

$$\mathbf{r}_1(A) = \begin{cases} |A| & |A| \le 2\\ 2 & A \in \{\{1, 2, 3\}, \{3, 4, 5\}\}\\ 3 & \text{o.w.} \end{cases}$$

is the vector matroid of the matrix

$$\hat{M}_1 = egin{bmatrix} 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Relations to coding theory

Example

For matrix

$$\hat{M}_1 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

the mapping $\mathbf{x} \mapsto \mathbf{x}M$ maps the tuples in \mathbb{Z}_2^3 to the set of rows of $VOA(M_1, 2)$ below.

0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0
0	0	0	1	1
0	1	1	1	0
1	0	1	1	0
1	1	Δ	1	1

It is a (5, 3, 2) linear code.
Almost affine code

Definition

For a set of v symbols, say \mathbb{Z}_v , $\mathcal{C} \subseteq \mathbb{Z}_v^N$ is called an almost affine code if

$$\mathbf{r}(A) := \log_{v} |\mathcal{C}_{A}| \tag{1}$$

is an integer for all $A \subseteq N$.⁴

⁴J. Simonis and A. Ashikhmin, "Almost affine codes," *Desings, Codes Cryptogr.*, vol. 14, pp. 179–797, 1998.

Almost affine code

Definition

For a set of v symbols, say \mathbb{Z}_v , $\mathcal{C} \subseteq \mathbb{Z}_v^N$ is called an almost affine code if

$$\mathbf{r}(A) := \log_{\nu} |\mathcal{C}_A| \tag{1}$$

is an integer for all $A \subseteq N$.⁴

Almost affine code induced by matroid

- For any almost affine code C, (N, \mathbf{r}) forms a matroid M, where the rank function \mathbf{r} is defined in (1). We call such almost affine code an (M, v) (almost affine) code.
- ► For an (M, v) code, if M is a uniform matroid U_{t,n}, it coincides with a (n, t, v) maximum distance separable (MDS) code.

⁴J. Simonis and A. Ashikhmin, "Almost affine codes," *Desings, Codes Cryptogr.*, vol. 14, pp. 179–797, 1998.

Almost affine code

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

(7, 4) Hamming code is a characterization of the dual matroid of Fano matroid

.

Parity check matrix of (7,4) Hamming code.

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Figure: Fano matroid

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Correspondences among four fields

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

Some applications

- E. F. Brickell.; D. M. Davenport, "On the classification of ideal secret sharing schemes," J. Cryptol. vol. 4, 123-134, 1991.
- R. Dougherty, C. Freiling and K Zeger, "Networks, matroids, and non-Shannon information inequalities," *IEEE Trans. Inf. Theory* vol. 53, pp. 1949-1969, 2007. (network coding)
- S. El Rouayheb, A. Sprintson and C. Georghiades, "On the index coding problem and its relation to network coding and matroid theory", *IEEE Trans. Inf. Theory* vol. 56, no.7 pp. 3187-3195, 2010.
- T. Westerbäck, R. Freij-Hollanti, T. Ernvall and C. Hollanti, "On the combinatorics of locally repairable codes via matroid theory", *IEEE Trans. Inf. Theory* vol. 62, no.10 pp. 5296-5315, 2016.

An application to network coding

Figure: $\lambda_1 = x, \lambda_2 = y, \lambda_3 = L_1(x, y), \lambda_4 = L_2(x, y)$, where L_1, L_2 are MOLSs. Thus, $\{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ forms $VOA(U_{2,4}, v)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Determine χ_M of a matroid via VOA operations of the corresponding matroid operation

- Q. Chen, M. Cheng, and B. Bai, "Matroidal entropy functions: constructions, characterizations and representations," in IEEE Int.Symp. Info. Theory, Espoo, Finland June 2022.
- Q. Chen, M. Cheng, and B. Bai, "Matroidal entropy functions: constructions, characterizations and representations," in preparing for submitting to IEEE, Trans. Inf. Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Matroid operations

Unitary matroid operations

- deletion
- contraction
- minor

Binary matroid operations

- series connection
- parallel connection

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

2-sum

Matroid operations: deletion

Definition (Deletion)

Given a matroid $M = (N, \mathbf{r})$ and $S \subseteq N$, the matroid $M \setminus S = (N', \mathbf{r}')$ with $N' = N \setminus S$ and

$$\mathbf{r}'(A) = \mathbf{r}(A), \quad \forall A \subseteq N'$$

is called a matroid of M deleted by S or the restriction of M on N'.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

VOA operations: deletion

For $S \subseteq N$, let $\mathbf{T} \setminus S$ denote the array whose rows are exactly those of $\mathbf{T}(N')$ with each occurring once, where $N' = N \setminus S$.

VOA operations: deletions

Proposition For a VOA(M, v) **T** and $S \subseteq N$, **T** \ S is a VOA($M \setminus S, v$).

Matroid operations: contractions

Definition (Contraction)

Given a matroid $M = (N, \mathbf{r})$ and $S \subseteq N$, the matroid $M/S = (N', \mathbf{r}')$ with $N' = N \setminus S$ and

$$\mathbf{r}'(A) = \mathbf{r}(A \cup S) - \mathbf{r}(S), \quad \forall A \subseteq N'$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is called the contraction of S from M.

VOA operations: contraction

For a VOA(M, v) **T** and $S \subseteq N$, let **a** be a row of **T**(S). We denote by **T**_{|S:a} the array whose rows are **c**($N \setminus S$) with **c** the rows of **T** and **c**(S) = **a**.

\mathbf{T} : VOA($U_{3,4}, 2$)				$\mathbf{T}_{ \{4\}:0}:\mathrm{VOA}(\mathit{U}_{2,3},2)$	
0	0	0	0	0 0 0	
0	0	1	1	0 1 1	
0	1	0	1	1 0 1	
0	1	1	0	1 1 0	
1	0	0	1		
1	0	1	0	Note that	
1	1	0	0	$U_{2,3} \simeq U_{3,4}/\{4\}.$	
1	1	1	1		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

VOA operations: contractions

Proposition

For a VOA(M, v) **T** and $S \subseteq N$, $\mathbf{T}_{|S|s}$ is a VOA(M/S, v) where **a** is any row of $\mathbf{T}(S)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Matroid operations: minors

Definition (Minor)

For a sequence of disjoint $S_1, S_2, \ldots, S_k \subseteq N$, M being deleted or contracted by S_i , the result can be written in the form of $M \setminus S/T$, where S is the union of the deleted S_i and T is the union of the contracted S_i . Such $M \setminus S/T$ is called a minor of M.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Matroid operations: minors

Definition (Minor)

For a sequence of disjoint $S_1, S_2, \ldots, S_k \subseteq N$, M being deleted or contracted by S_i , the result can be written in the form of $M \setminus S/T$, where S is the union of the deleted S_i and T is the union of the contracted S_j . Such $M \setminus S/T$ is called a minor of M.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem

Let M be a matroid and M' be its minor. Then $\chi_M \subseteq \chi_{M'}$.

Proof sketch.

If VOA(M, v) is constructible, so is VOA(M', v).

Matroid operations

Unitary matroid operations

- deletion
- contraction
- minor

Binary matroid operations

- series connection
- parallel connection

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

2-sum

Matroid operations: series and parallel connections

Definition (Series and parallel connections)

For two matroids $M_1 = (N_1, \mathbf{r}_1)$ and $M_2 = (N_2, \mathbf{r}_2)$ with $p_i \in N_i$, p_i neither loops nor coloops, i = 1, 2, and any $p \notin N_1 \cup N_2$ the series connection $S((M_1; p_1), (M_2; p_2))$ of M_1 and M_2 with respect to base points p_1 and p_2 is a matroid with ground set $N \triangleq (N_1 \setminus p_1) \cup (N_2 \setminus p_2) \cup p$ and family of circuits

$$C_{S} = \mathcal{C}(M_{1} \setminus p_{1}) \cup \mathcal{C}(M_{2} \setminus p_{2})$$
$$\cup \{(C_{1} - p_{1}) \cup (C_{2} - p_{2}) \cup p : C_{i} \in \mathcal{C}(M_{i}), i = 1, 2\}$$
(2)

and the parallel connection $P((M_1; p_1), (M_2; p_2))$ of M_1 and M_2 with respect to base points p_1 and p_2 is a matroid with ground set N and family of circuits

$$\mathcal{C}_{P} = \mathcal{C}(M_1 \setminus p_1) \cup \mathcal{C}(M_2 \setminus p_2) \cup \{(C_1 - p_1) \cup p : C_1 \in \mathcal{C}(M_1)\} \\ \cup \{(C_2 - p_2) \cup p : C_2 \in \mathcal{C}(M_2)\}$$
(3)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Matroid operations: series and parallel connections

・ロト ・四ト ・ヨト ・ヨト

- 2

VOA operations: series connections

Let

- \mathbf{T}_1 be a VOA (M_1, v) with $M_1 = (N_1, \mathbf{r}_1)$,
- ▶ **T**₂ be a VOA(M_2 , v) with $M_1 = (N_2, \mathbf{r}_2)$,
- v an integer and
- **U** be any $VOA(U_{2,3}, v)$.

We construct a $v^{r_S} \times (|N_1| + |N_2| - 1)$ array **T** with columns indexed by $N = (N_1 \setminus p_1) \cup (N_2 \setminus p_2) \cup p$ according to the following rule, where $r_S = \mathbf{r}_1(N_1) + \mathbf{r}_2(N_2)$.

For any row a₁ of T₁ and a₂ of T₂, we construct a row b of T such that

▶
$$\mathbf{b}(N_1 \setminus p_1) = \mathbf{a}_1(N_1 \setminus p_1)$$
, $\mathbf{b}(N_2 \setminus p_2) = \mathbf{a}_2(N_2 \setminus p_2)$ and $(\mathbf{a}_1(p_1), \mathbf{a}_2(p_2), \mathbf{b}(p))$ is a row of **U**.

We denote such constructed **T** by $S((\mathbf{T}_1; p_1), (\mathbf{T}_2; p_2))$ or $S(\mathbf{T}_1, \mathbf{T}_2)$ if there is no ambiguity. It can be checked that **T** is a VOA.

VOA operations: series connections

1 1 0

\mathbf{T}_1 : VOA($U_{2,3}, 2$)	\mathbf{T}_2 : VOA $(U_{2,3}, 2)$	$S(T_1,T_2)$
0 0 0	0 0 1	00001
0 1 1	0 1 0	0 0 0 1 0
1 0 1	1 0 0	0 1 1 0 1
1 1 0	$1 \ 1 \ 1$	0 1 1 1 0
		: : : : :
		$1 \ 1 \ 1 \ 1 \ 1$
U:VOA(U	is a VOA($U_{4,5}$, 2), where	
0 0	0	$O_{4,5} = O(O_{2,3}, O_{2,3}).$
0 1	1	
1 0	1	

VOA operations: series connections

Proposition

For a VOA (M_1, v) **T**₁ and a VOA (M_2, v) **T**₂, the array $S((\mathbf{T}_1; p_1), (\mathbf{T}_2; p_2))$ is a VOA $(S((M_1; p_1), (M_2, p_2)), v)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

VOA operations: parallel connections

Let

- \mathbf{T}_1 be a VOA (M_1, v) with $M_1 = (N_1, \mathbf{r}_1)$,
- ▶ **T**₂ be a VOA(M_2, v) with $M_1 = (N_1, \mathbf{r}_2)$ and

v an integer.

We construct a $v^{r_P} \times (|N_1| + |N_2| - 1)$ array **T** with columns indexed by $N = (N_1 \setminus p_1) \cup (N_2 \setminus p_2) \cup p$ according to the following rule, where $r_P = r_1 + r_2 - 1$.

For any row \mathbf{a}_1 of \mathbf{T}_1 and \mathbf{a}_2 of \mathbf{T}_2 with $\mathbf{a}_1(p_1) = \mathbf{a}_2(p_2)$, we construct row **b** of **T** such that

 $\blacktriangleright \mathbf{b}(N_i \setminus p_i) = \mathbf{a}_i, i = 1, 2, \text{ and } \mathbf{b}(p) = \mathbf{a}_1(p_1).$

We denote such constructed **T** by $P((\mathbf{T}_1; p_1), (\mathbf{T}_2; p_2))$ or $P(\mathbf{T}_1, \mathbf{T}_2)$ if there is no ambiguity. It can be checked that **T** is a VOA.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

VOA operations: parallel connections

is a VOA $(M_1, 2)$, where $M_1 = P(U_{2,3}, U_{2,3})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

VOA operations: parallel connections

Proposition

For a VOA (M_1, v) **T**₁ and a VOA (M_2, v) **T**₂, the array $P((\mathbf{T}_1; p_1), (\mathbf{T}_2; p_2))$ is a VOA $(P((M_1; p_1), (M_2, p_2)), v)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Matroid operations: 2-sum

Definition

For matroids $M_1 = (N_1, \mathbf{r}_1)$ and $M_2 = (N_2, \mathbf{r}_2)$, the 2-sum of them $M_1 \oplus_2 M_2$ is defined by $S(M_1, M_2)/p$ or equivalently $P(M_1, M_2) \setminus p$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

VOA operations: 2-sum

Let

- \mathbf{T}_1 be a VOA (M_1, v) with $M_1 = (N_1, \mathbf{r}_1)$,
- \mathbf{T}_2 be a VOA (M_2, v) with $M_1 = (N_1, \mathbf{r}_2)$,
- v an integer.

We construct $T_1 \oplus_2 T_2$ by

▶ $S(\mathsf{T}_1, \mathsf{T}_2)|_{p:a}$ for some $a \in \mathbb{Z}_v$, or equivalently

$$\blacktriangleright P(\mathbf{T}_1,\mathbf{T}_2) \setminus p.$$

Proposition

For a VOA (M_1, v) \mathbf{T}_1 and a VOA (M_2, v) \mathbf{T}_2 , $\mathbf{T}_1 \oplus_2 \mathbf{T}_2$ is a VOA $(M_1 \oplus_2 M_2, v)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Characteristic set of binary VOA operations

Theorem

For any matroids M_1 and M_2 , $\chi_{M_1\oplus_2 M_2} = \chi_{M_1} \cap \chi_{M_2}$.

Smaller building blocks

Corollary

The *p*-characteristic set of a connected matroid is the intersection of the *p*-characteristic set of its 3-connected components.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Regular matroids

Definition

A matroid M is regular if it is represented by a totally unimodular matrix, i.e., a matrix over \mathbb{R} for which every square submatrix has determinant in $\{-1, 1, 0\}$.

Theorem

For a matroid M, $\chi_M = \{v \in \mathbb{Z} : v \ge 2\}$ if and only if M is regular.

Proof Sketch.

- For the if part construct a totally unimodular matrix, i.e., a matrix over a ring Z_v;
- for the only if part, excluded minor of regular matroid $U_{2,4}$, F_7 and F_7^* .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Regular matroids

Definition

A matroid M is regular if it is represented by a totally unimodular matrix, i.e., a matrix over \mathbb{R} for which every square submatrix has determinant in $\{-1, 1, 0\}$.

Theorem

For a matroid M, $\chi_M = \{v \in \mathbb{Z} : v \ge 2\}$ if and only if M is regular.

Proof Sketch.

- ► For the if part construct a totally unimodular matrix, i.e., a matrix over a ring Z_v;
- ▶ for the only if part, excluded minor of regular matroid $U_{2,4}$, F_7 and F_7^* .

Remark

It is a generalization of the matroid representation problem over a field.

Whirl matroids

Figure: The wheel graph W_r

Definition

The whirl matroid W^r is a matroid by relaxing the circuit-hyperplane A, i.e., the rim of the wheel matroid $M(W_r)$. Note that $W^2 = U_{2,4}$.

Whirl matroids

Proposition

For matroid \mathcal{W}^r , $r \geq 2$, $\chi_{\mathcal{W}^r} = \chi_{U_{2,4}} = \{ v \in \mathbb{Z} : v \geq 3, v \neq 6 \}$.

Matroids with the same p-characteristic set as $U_{2,4}$

Theorem

For any matroid M, let M_i be its connected components, and $M_{i,j}$ be the 3-connected components of M_i . Then $\chi_M = \chi_{U_{2,4}}$ if each of these $M_{i,j}$ is either a regular matroid or a W^r with $r \ge 2$, and at least one of them is a W^r .

Thank you!