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A toy example

For a discrete random vector (X1,X2,X3), X1,X2 and X3 are
pairwise independent, Xi is a function of Xj ,Xk .

X1 ⊥ X2 and uniformly distributed on {0, 1},
X3 = X1 + X2 (mod 2).



A toy example

X1,X2 and X3 are pairwise independent, Xi is a function of Xj ,Xk .

where a = log v .
X1 ⊥ X2 and uniformly distributed on Zv = {0, 1, · · · , v − 1}
X3 = X1 + X2 (mod v). 1

1Z. Zhang and R. W. Yeung, “A non-Shannon type conditional inequality of
information quantities,” IEEE Trans. Info. Theory, vol. 43, no. 11 pp.
1982-1986, Nov. 1997.



Extrames rays of Γ3 containing matroidal entropy functions
induced by matroid U2,3

Figure: RU2,3 := {a · rU2,3 : a ≥ 0}

Matroidal entropy function

log v · rU2,3

where v ≥ 2 is an integer and rU2,3 is the rank function of the
uniform matroid U2,3.

rU2,3(A) = min{2, |A|} ∀A ⊆ N = {1, 2, 3}.



Entropy functions

Entropy function

Let N be an indexed set. For a random vector XN = (Xi , i ∈ N),
the entropy function of X is a set function h : 2N → R defined by

h(A) = H(XA),

for any A ⊆ N.

Entropy space

HN , R2N

Entropy region:Γ∗N

Γ∗N , {h ∈ HN : ∃ XN , h is the entropy function of some XN .}

When N = {1, 2, · · · , n}, we write it as Γ∗n.
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polymatroidal region

Shannon-type inequalities

For any A,B ⊆ N,

H(XA) ≥ 0,

H(XA) ≤ H(XB) if A ⊆ B,

H(XA) + H(XB) ≥ H(XA∩B) + H(XA∪B).

Polymatroidal region:ΓN

ΓN , {h ∈ HN : h(A) ≥ 0,

h(A) ≤ h(B), if A ⊆ B,

h(A) + h(B) ≥ h(A ∩ B) + h(A ∪ B).}



Matroid

Definition
A matroid M is an ordered pair (N, r), where the ground set N is a
finite set and the rank function r is a set function on 2N , and they
satisfy the conditions that: for any A,B ⊆ N,

I 0 ≤ r(A) ≤ |A| and r(A) ∈ Z.

I r(A) ≤ r(B), if A ⊆ B,

I r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B).

The value r(N) is called the rank of M.

Matroids are special cases of polymatroids

For a polymatroid h ∈ Γn, if h(A) ∈ Z and h(A) ≤ |A|, then h is
the rank function of a matroid.
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Uniform matroid

A uniform matroid Ut,n with 0 ≤ t ≤ n is matroid (N, r) with
|N| = n and

r(A) = min{t, |A|} ∀A ⊆ N.

When 1 ≤ t ≤ n − 1, Ut,n is a connected matroid.



Entropy functions on the extreme rays of ΓN

Theorem
For a matroid M = (N, r), r is on an extreme ray of ΓN if and only
if it is connected after deleting its loops. 2

For a matroid M = (N, r),

I C ⊆ N is called a circuit of M if for any e ∈ C ,
r(C ) = r(C − e) = |C | − 1,

I M is called connected if any two elements in N are in a circuit,

I a single element circuit, or a rank zero element is called a loop
of M.

Entropy functions on 1-dimensional faces of ΓN

2H. Q. Nguyen, “Semimodular functions and combinatorial geometries,”
Trans. AMS.,vol. 238, pp. 355-383, April 1978.
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Matroidal entropy functions

Definition
For matroid M and positive integer v ≥ 2, we call the entropy
function in the form

h = log v · rM
matroidal entropy function induced by M with degree v .



Extrames rays of Γ3 containing matroidal entropy functions
induced by matroid U2,3

Figure: RU2,3 := {a · rU2,3 : a ≥ 0}

Matroidal entropy function

log v · rU2,3

where v ≥ 2 is an integer and rU2,3 is the rank function of the
uniform matroid U2,3.



Extrames rays containing U2,3 and U2,4

Figure: RU2,3 := {a · U2,3 : a ≥ 0}

Figure: RU2,4 := {a · U2,4 : a ≥ 0}

A polymatroid on RU2,4 is entropic if and only if a = log v ,
v ≥ 3, v 6= 6.



The toy example for U2,3

X1,X2 and X3 are pairwise independent, Xi is a function of Xj ,Xk .

where a = log v .
X1 ⊥ X2 and uniformly distributed on Zv = {0, 1, · · · , v − 1}
X3 = X1 + X2 (mod v).



Latin square: additive group

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

The multiplication table of the additive group 〈Zv ,+〉



Latin square: quasigroup

0 1 2 3 4

1 0 3 4 2

2 4 0 1 3

3 2 4 0 1

4 3 2 2 0

If X1 is uniformly distributed on rows and X2 is uniform distributed
on columns, then X3 is uniformly distributed on the symbols



A bit more generalization

How to construct X1,X2,X3,X4 such that

I Xi ⊥ Xj for each 1 ≤ i < j ≤ 4

I Xk is a function of Xi and Xj for any 1 ≤ i < j ≤ 4 and
k ∈ {1, 2, 3, 4} \ {i , j}

Figure: RU2,4 := {a · U2,4 : a ≥ 0}



Mutually orthogonal latin squares

X1,X2,X3 and X4 are uniformly distributed on the rows, columns,
symbols of the first square and symbols of the second square,
respectively.

For this case, v 6= 2, 6

I v 6= 2: trivial

I v 6= 6: Euler’s 36 officer problem
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Characterizing matroidal entropy functions via variable
strength orthogonal array(VOA)

Theorem
A random vector X = (Xi : i ∈ N) characterizes matroidal entropy
function log v · rM for a connected matroid with rank r(N) ≥ 2 if
and only if random variable Y = X is uniformly distributed on the
rows of a VOA(M, v). 3

Corollary

For a connected matroid M = (N, rM) with rank r(N) ≥ 2, if the
polymatroid

a · rM
with a > 0 is entropic, then a = log v for some integer v ≥ 2.

3Q. Chen, M. Cheng and B. Bai, “Matroidal entropy functions: a quartet of
theories of information, matroid, design and coding,” Entropy, vol. 23:3, 1-11,
2021.
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Probabilistically characteristic set of a matroid

For a matroid M, we call the set χM of all v ≥ 2 such that
h = log v ·M is entropic the probabilistically (p-)characteristic set
of M.

χU2,3 = {v ∈ Z : v ≥ 2}, χU2,4 = {v ∈ Z : v ≥ 3, v 6= 6}
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Orthogonal array

Example

0 1 2

1 2 0

2 0 1

0 1 2

2 0 1

1 2 0

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

is an OA(2, 4, 3) corresponding
to the MOLS.



Orthogonal array

Definition
A λv t × n array T with entries from Zv is called an orthogonal
array of strength t, factor n, level v and index λ if any λv t × t
subarray of T contains each t-tuple in Zt

v exactly λ times as a
row. We call T an OA(λ× v t ; t, n, v).

When λ = 1, we say such orthogonal array has index unity and call
it an OA(t, n, v) for short.
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Variable strength orthogonal array(VOA)

Definition
Given a matroid M = (N, r) with r(N) ≥ 2,

I a v r(N) × n array T

I with columns indexed by N,

I entries from Zv ,

is called a variable strength orthogonal array(VOA) induced by M
with level v if for any A ⊆ N, v r(N) × |A| subarray of T consisting
of columns indexed by A satisfy the following condition:

I each row of this subarray occurs v r(N)−r(A) times.

We also call such T a VOA(M, v).

For Ut,n, VOA(Ut,n, v) = OA(t, n, v)
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Variable strength orthogonal array

Example

Let M1 = (N, r1) be a matroid with N = {1, 2, 3, 4, 5} and rank
function

r1(A) =


|A| |A| ≤ 2

2 A ∈ {{1, 2, 3}, {3, 4, 5}}
3 o.w.

Then
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 0 0 0
0 0 0 1 1
0 1 1 1 0
1 0 1 1 0
1 1 0 1 1

is a VOA(M1, 2).



Relations between OA and VOA

OA with index
unity

VOA

OA with index



Relations to coding theory

For a matroid M over a field GF (q), that is, M is the vector
matroid of a matrix M̂ over GF (q), the set of rows of a
VOA(M, q) is the code book of the (n, k, q) linear code generated
by M̂, where k = rM(N).

Example
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|A| |A| ≤ 2
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is the vector matroid of the matrix

M̂1 =

1 0 1 0 1
0 1 1 0 1
0 0 0 1 1
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Relations to coding theory

Example

For matrix

M̂1 =

1 0 1 0 1
0 1 1 0 1
0 0 0 1 1


the mapping x 7→ xM maps the tuples in Z3

2 to the set of rows of
VOA(M1, 2) below.

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 0 0 0
0 0 0 1 1
0 1 1 1 0
1 0 1 1 0
1 1 0 1 1

It is a (5, 3, 2) linear code.



Almost affine code

Definition
For a set of v symbols, say Zv , C ⊆ ZN

v is called an almost affine
code if

r(A) := logv |CA| (1)

is an integer for all A ⊆ N. 4

Almost affine code induced by matroid

I For any almost affine code C, (N, r) forms a matroid M,
where the rank function r is defined in (1). We call such
almost affine code an (M, v) (almost affine) code.

I For an (M, v) code, if M is a uniform matroid Ut,n, it
coincides with a (n, t, v) maximum distance separable (MDS)
code.

4J. Simonis and A. Ashikhmin, “Almost affine codes,”Desings, Codes
Cryptogr., vol. 14, pp. 179–797, 1998.
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Almost affine code

linear code MDS code 

affine code 

almost affine code 



(7, 4) Hamming code is a characterization of the dual
matroid of Fano matroid

Parity check matrix of (7, 4)
Hamming code.1 0 0 1 1 0 1

0 1 0 1 0 1 1
0 0 1 0 1 1 1


Figure: Fano matroid



Correspondences among four fields

Matroid

Matroidal
entropy
function

Variable strength  
orthogonal array 

Almost affine
code

Uniform
Matroid

Symmetrical
matroidal
entropy
function

   Orthogonal array
with index unity 

MDS code



Some applications

I E. F. Brickell.; D. M. Davenport, “On the classification of
ideal secret sharing schemes,” J. Cryptol. vol. 4, 123-134,
1991.

I R. Dougherty, C. Freiling and K Zeger,“Networks, matroids,
and non-Shannon information inequalities,” IEEE Trans. Inf.
Theory vol. 53, pp. 1949-1969, 2007. (network coding)

I S. El Rouayheb, A. Sprintson and C. Georghiades, “On the
index coding problem and its relation to network coding and
matroid theory”, IEEE Trans. Inf. Theory vol. 56, no.7 pp.
3187-3195, 2010.

I T. Westerbäck, R. Freij-Hollanti, T. Ernvall and C. Hollanti,
“On the combinatorics of locally repairable codes via matroid
theory”, IEEE Trans. Inf. Theory vol. 62, no.10 pp.
5296-5315, 2016.



An application to network coding

Figure: λ1 = x , λ2 = y , λ3 = L1(x , y), λ4 = L2(x , y), where L1, L2 are
MOLSs. Thus, {λ1, λ2, λ3, λ4} forms VOA(U2,4, v).



Determine χM of a matroid via VOA operations of the
corresponding matroid operation

I Q. Chen, M. Cheng, and B. Bai,“Matroidal entropy functions:
constructions, characterizations and representations,” in IEEE
Int.Symp. Info. Theory, Espoo, Finland June 2022.

I Q. Chen, M. Cheng, and B. Bai,“Matroidal entropy functions:
constructions, characterizations and representations,” in
preparing for submitting to IEEE, Trans. Inf. Theory



Matroid operations

Unitary matroid operations

I deletion

I contraction

I minor

Binary matroid operations

I series connection

I parallel connection

I 2-sum



Matroid operations: deletion

Definition (Deletion)

Given a matroid M = (N, r) and S ⊆ N, the matroid
M \ S = (N ′, r′) with N ′ = N \ S and

r′(A) = r(A), ∀A ⊆ N ′

is called a matroid of M deleted by S or the restriction of M on N ′.



VOA operations: deletion

For S ⊆ N, let T \ S denote the array whose rows are exactly those
of T(N ′) with each occurring once, where N ′ = N \ S .

T : VOA(U3,4, 2)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

T\{3, 4} : VOA(U2,2, 2)

0 0
0 1
1 0
1 1

Note that
U2,2 ' U3,4 \ {3, 4}.



VOA operations:deletions

Proposition

For a VOA(M, v) T and S ⊆ N, T \ S is a VOA(M \ S , v).



Matroid operations: contractions

Definition (Contraction)

Given a matroid M = (N, r) and S ⊆ N, the matroid
M/S = (N ′, r′) with N ′ = N \ S and

r′(A) = r(A ∪ S)− r(S), ∀A ⊆ N ′

is called the contraction of S from M.



VOA operations: contraction

For a VOA(M, v) T and S ⊆ N, let a be a row of T(S). We
denote by T|S :a the array whose rows are c(N \ S) with c the rows
of T and c(S) = a.

T : VOA(U3,4, 2)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

T|{4}:0 : VOA(U2,3, 2)

0 0 0
0 1 1
1 0 1
1 1 0

Note that
U2,3 ' U3,4/{4}.



VOA operations: contractions

Proposition

For a VOA(M, v) T and S ⊆ N, T|S :a is a VOA(M/S , v) where a
is any row of T(S).



Matroid operations: minors

Definition (Minor)

For a sequence of disjoint S1,S2, . . . ,Sk ⊆ N, M being deleted or
contracted by Si , the result can be written in the form of
M \ S/T , where S is the union of the deleted Si and T is the
union of the contracted Sj . Such M \ S/T is called a minor of M.

Theorem
Let M be a matroid and M ′ be its minor. Then χM ⊆ χM′ .

Proof sketch.
If VOA(M, v) is constructible, so is VOA(M ′, v).
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Matroid operations

Unitary matroid operations

I deletion

I contraction

I minor

Binary matroid operations

I series connection

I parallel connection

I 2-sum



Matroid operations: series and parallel connections

Definition (Series and parallel connections)

For two matroids M1 = (N1, r1) and M2 = (N2, r2) with pi ∈ Ni ,
pi neither loops nor coloops, i = 1, 2, and any p 6∈ N1 ∪ N2 the
series connection S((M1; p1), (M2; p2)) of M1 and M2 with respect
to base points p1 and p2 is a matroid with ground set
N , (N1 \ p1) ∪ (N2 \ p2) ∪ p and family of circuits

CS =C(M1 \ p1) ∪ C(M2 \ p2)

∪ {(C1 − p1) ∪ (C2 − p2) ∪ p : Ci ∈ C(Mi ), i = 1, 2} (2)

and the parallel connection P((M1; p1), (M2; p2)) of M1 and M2

with respect to base points p1 and p2 is a matroid with ground set
N and family of circuits

CP =C(M1 \ p1) ∪ C(M2 \ p2) ∪ {(C1 − p1) ∪ p : C1 ∈ C(M1)}
∪ {(C2 − p2) ∪ p : C2 ∈ C(M2)} (3)



Matroid operations: series and parallel connections



VOA operations: series connections

Let

I T1 be a VOA(M1, v) with M1 = (N1, r1),

I T2 be a VOA(M2, v) with M1 = (N2, r2),

I v an integer and

I U be any VOA(U2,3, v).

We construct a v rS × (|N1|+ |N2| − 1) array T with columns
indexed by N = (N1 \ p1)∪ (N2 \ p2)∪ p according to the following
rule, where rS = r1(N1) + r2(N2).

I For any row a1 of T1 and a2 of T2, we construct a row b of T
such that

I b(N1 \ p1) = a1(N1 \ p1), b(N2 \ p2) = a2(N2 \ p2) and
(a1(p1), a2(p2),b(p)) is a row of U.

We denote such constructed T by S((T1; p1), (T2; p2)) or
S(T1,T2) if there is no ambiguity. It can be checked that T is a
VOA.



VOA operations: series connections

T1 : VOA(U2,3, 2)

0 0 0
0 1 1
1 0 1
1 1 0

T2 : VOA(U2,3, 2)

0 0 1
0 1 0
1 0 0
1 1 1

S(T1,T2)

0 0 0 0 1
0 0 0 1 0
0 1 1 0 1
0 1 1 1 0
...

...
...

...
...

1 1 1 1 1

is a VOA(U4,5, 2), where
U4,5 ' S(U2,3,U2,3).

U : VOA(U2,3, 2)

0 0 0
0 1 1
1 0 1
1 1 0



VOA operations: series connections

Proposition

For a VOA(M1, v) T1 and a VOA(M2, v) T2, the array
S((T1; p1), (T2; p2)) is a VOA(S((M1; p1), (M2, p2)), v).



VOA operations: parallel connections

Let

I T1 be a VOA(M1, v) with M1 = (N1, r1),

I T2 be a VOA(M2, v) with M1 = (N1, r2) and

I v an integer.

We construct a v rP × (|N1|+ |N2| − 1) array T with columns
indexed by N = (N1 \ p1)∪ (N2 \ p2)∪ p according to the following
rule, where rP = r1 + r2 − 1.

I For any row a1 of T1 and a2 of T2 with a1(p1) = a2(p2), we
construct row b of T such that

I b(Ni \ pi ) = ai , i = 1, 2, and b(p) = a1(p1).

We denote such constructed T by P((T1; p1), (T2; p2)) or
P(T1,T2) if there is no ambiguity. It can be checked that T is a
VOA.



VOA operations: parallel connections

Example

T1 : VOA(U2,3, 2)

0 0 0
0 1 1
1 0 1
1 1 0

T2 : VOA(U2,3, 2)

0 0 1
0 1 0
1 0 0
1 1 1

P(T1,T2)

0 0 0 0 1
0 0 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0

is a VOA(M1, 2), where
M1 = P(U2,3,U2,3).



VOA operations: parallel connections

Proposition

For a VOA(M1, v) T1 and a VOA(M2, v) T2, the array
P((T1; p1), (T2; p2)) is a VOA(P((M1; p1), (M2, p2)), v).



Matroid operations: 2-sum

Definition
For matroids M1 = (N1, r1) and M2 = (N2, r2), the 2-sum of them
M1 ⊕2 M2 is defined by S(M1,M2)/p or equivalently
P(M1,M2) \ p.



VOA operations: 2-sum

Let

I T1 be a VOA(M1, v) with M1 = (N1, r1),

I T2 be a VOA(M2, v) with M1 = (N1, r2),

I v an integer.

We construct T1 ⊕2 T2 by

I S(T1,T2)|p:a for some a ∈ Zv , or equivalently

I P(T1,T2) \ p.

Proposition

For a VOA(M1, v) T1 and a VOA(M2, v) T2, T1 ⊕2 T2 is a
VOA(M1 ⊕2 M2, v).



Characteristic set of binary VOA operations

Theorem
For any matroids M1 and M2, χM1⊕2M2 = χM1 ∩ χM2 .



Smaller building blocks

Corollary

The p-characteristic set of a connected matroid is the intersection
of the p-characteristic set of its 3-connected components.



Regular matroids

Definition
A matroid M is regular if it is represented by a totally unimodular
matrix, i.e., a matrix over R for which every square submatrix has
determinant in {−1, 1, 0}.

Theorem
For a matroid M, χM = {v ∈ Z : v ≥ 2} if and only if M is regular.

Proof Sketch.
I For the if part construct a totally unimodular matrix, i.e., a

matrix over a ring Zv ;

I for the only if part, excluded minor of regular matroid U2,4, F7
and F ∗7 .

Remark
It is a generalization of the matroid representation problem over a
field.
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Whirl matroids

Figure: The wheel graph Wr

Definition
The whirl matroid W r is a matroid by relaxing the
circuit-hyperplane A, i.e., the rim of the wheel matroid M(Wr ).

Note that W2 = U2,4.



Whirl matroids

Proposition

For matroid W r , r ≥ 2, χW r = χU2,4 = {v ∈ Z : v ≥ 3, v 6= 6}.



Matroids with the same p-characteristic set as U2,4

Theorem
For any matroid M, let Mi be its connected components, and Mi ,j

be the 3-connected components of Mi . Then χM = χU2,4 if each of
these Mi ,j is either a regular matroid or a W r with r ≥ 2, and at
least one of them is a W r .



Thank you!


