
Analysis of MPI Algorithms
via Zeta Functions

Pascal O. Vontobel

Talk at CUHK, May 13, 2014

(Based on joint work with Henry D. Pfister, TAMU.)

graph

zeta

function

Bethe free energy

and its pseudo-dual

pseudo-codewords

graph covers

relaxation

linear programming

Theorem by Yedidia et al.

on fixed points of the SPA
EXIT charts

area theorem

density

evolution

graph

zeta

function

Bethe free energy

and its pseudo-dual

pseudo-codewords

graph covers

relaxation

linear programming

Theorem by Yedidia et al.

on fixed points of the SPA

density

evolution

EXIT charts

area theorem

EXIT charts

area theorem

density

evolution
graph

zeta

function

Bethe free energy

and its pseudo-dual

pseudo-codewords

graph covers

linear programming

relaxation

on fixed points of the SPA

Theorem by Yedidia et al.

on fixed points of the SPA

Theorem by Yedidia et al.

EXIT charts

area theorem

density

evolution
graph

zeta

function

Bethe free energy

and its pseudo-dual

pseudo-codewords

graph covers

linear programming

relaxation

on fixed points of the SPA

Theorem by Yedidia et al.

EXIT charts

area theorem

density

evolution
graph

zeta

function

Bethe free energy

linear programming

relaxation

and its pseudo-dual

pseudo-codewords

graph covers

on fixed points of the SPA

Theorem by Yedidia et al.

EXIT charts

area theorem

density

evolution

pseudo-codewords

graph covers

linear programming

relaxation

and its pseudo-dual

graph

zeta

function

Bethe free energy

on fixed points of the SPA

Theorem by Yedidia et al.

EXIT charts

area theorem

density

evolution

pseudo-codewords

graph covers
graph

zeta

function

Bethe free energy

linear programming

relaxation

and its pseudo-dual

on fixed points of the SPA

Theorem by Yedidia et al.

EXIT charts

area theorem
linear programming

relaxation

density

evolution

pseudo-codewords

graph covers
graph

zeta

function

Bethe free energy

and its pseudo-dual

on fixed points of the SPA

Theorem by Yedidia et al.

EXIT charts

area theorem
linear programming

relaxation

density

evolution

pseudo-codewords

graph covers
graph

zeta

function

Bethe free energy

and its pseudo-dual

We are looking for a unifying perspective to these topics.

Bethe free energy

and its pseudo-dual

on fixed points of the SPA

Theorem by Yedidia et al.

linear programming

relaxation

pseudo-codewords

graph covers

EXIT charts

area theorem

density

evolution
graph

zeta

function

We are looking for a unifying perspective to these topics.

Bethe free energy

and its pseudo-dual

on fixed points of the SPA

Theorem by Yedidia et al.

linear programming

relaxation

pseudo-codewords

graph covers

EXIT charts

area theorem

density

evolution
graph

zeta

function

We are looking for a unifying perspective to these topics.

Hans Bethe

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+ +

++

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+ +

++

+ +

+ +

++

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+ +

+

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+ +

+

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+ +

+

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+ +

+

+ +

+

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

+ +

+

+ +

+

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

+ +

+

+ +

+

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

+ +

+

+ +

+

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

+ +

+ +

++

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

Pinball

3

1 2

Cycle Code NFG –vs– Community Det. NFG

+

+

+

+

+

=

=

=

=

=

=

=

+

=

=

= =

=

=

+

+

+

+

+

+

+

cycle code

normal factor graph

community detection

normal factor graph

Cycle Code NFG –vs– Community Det. NFG

+

+

+

+

+

=

=

=

=

=

=

=

+

=

=

= =

=

=

+

+

+

+

+

+

+

cycle code

normal factor graph
�

community detection

normal factor graph

Connection given by normal factor graph duality, cf. [Forney, 2001].

+ +

+ +

++

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

What Can a Power Series Do For You?

Consider the power series θ(V):

θ(V) ,
∑

k

θkV
k
= 1V

0
+ 2V

1
+ 8V

3
+ 16V

4
+ 64V

6
+ 128V

7
+ · · ·

What Can a Power Series Do For You?

Consider the power series θ(V):

θ(V) ,
∑

k

θkV
k
= 1V

0
+ 2V

1
+ 8V

3
+ 16V

4
+ 64V

6
+ 128V

7
+ · · ·

We can obtain useful information from

What Can a Power Series Do For You?

Consider the power series θ(V):

θ(V) ,
∑

k

θkV
k
= 1V

0
+ 2V

1
+ 8V

3
+ 16V

4
+ 64V

6
+ 128V

7
+ · · ·

We can obtain useful information from

. . . the exponents of θ(V)

What Can a Power Series Do For You?

Consider the power series θ(V):

θ(V) ,
∑

k

θkV
k
= 1V

0
+ 2V

1
+ 8V

3
+ 16V

4
+ 64V

6
+ 128V

7
+ · · ·

We can obtain useful information from

. . . the exponents of θ(V)

. . . the coefficients of θ(V)

What Can a Power Series Do For You?

Consider the power series θ(V):

θ(V) ,
∑

k

θkV
k
= 1V

0
+ 2V

1
+ 8V

3
+ 16V

4
+ 64V

6
+ 128V

7
+ · · ·

We can obtain useful information from

. . . the exponents of θ(V)

. . . the coefficients of θ(V)

. . . the evaluation of θ(V) for some V

What Can a Power Series Do For You?

Consider the power series θ(V):

θ(V) ,
∑

k

θkV
k
= 1V

0
+ 2V

1
+ 8V

3
+ 16V

4
+ 64V

6
+ 128V

7
+ · · ·

We can obtain useful information from

. . . the exponents of θ(V)

. . . the coefficients of θ(V)

. . . the evaluation of θ(V) for some V

. . . the convergence radius of θ(V)

What Can a Power Series Do For You?

Consider the power series θ(V):

θ(V) ,
∑

k

θkV
k
= 1V

0
+ 2V

1
+ 8V

3
+ 16V

4
+ 64V

6
+ 128V

7
+ · · ·

We can obtain useful information from

. . . the exponents of θ(V)

. . . the coefficients of θ(V)

. . . the evaluation of θ(V) for some V

. . . the convergence radius of θ(V)

. . .

What Can a Power Series Do For You?

Consider the power series θ(V1, . . . ,Vn):

θ(V1, . . . ,Vn) ,
∑

k1,...,kn

θk1,...,kn
V

k1

1
· · ·Vkn

n

We can obtain useful information from

. . . the exponent vectors of θ(V1, . . . ,Vn)

. . . the coefficients of θ(V1, . . . ,Vn)

. . . the evaluation of θ(V1, . . . ,Vn) for some (V1, . . . ,Vn)

. . . the convergence region of θ(V1, . . . ,Vn)

. . .

What Can a Power Series Do For You?

Consider the power series (zeta function) ζ(V):

ζ(V) ,
∑

k

ζkV
k

We can obtain useful information from

. . . the expon. vecs. of ζ(V)

. . . the coefficients of ζ(V)

. . . the evaluation of ζ(V) for some V

. . . the convergence region of ζ(V)

. . .

Use of zeta functions for analyzing graphical models.

What Can a Power Series Do For You?

Consider the power series (zeta function) ζ(V):

ζ(V) ,
∑

k

ζkV
k

We can obtain useful information from

. . . the expon. vecs. of ζ(V) [Koetter, Li, V., Walker, 2004/2007]

. . . the coefficients of ζ(V)

. . . the evaluation of ζ(V) for some V

. . . the convergence region of ζ(V)

. . .

Use of zeta functions for analyzing graphical models.

What Can a Power Series Do For You?

Consider the power series (zeta function) ζ(V):

ζ(V) ,
∑

k

ζkV
k

We can obtain useful information from

. . . the expon. vecs. of ζ(V) [Koetter, Li, V., Walker, 2004/2007]

. . . the coefficients of ζ(V) [V., 2009/2010]

. . . the evaluation of ζ(V) for some V

. . . the convergence region of ζ(V)

. . .

Use of zeta functions for analyzing graphical models.

What Can a Power Series Do For You?

Consider the power series (zeta function) ζ(V):

ζ(V) ,
∑

k

ζkV
k

We can obtain useful information from

. . . the expon. vecs. of ζ(V) [Koetter, Li, V., Walker, 2004/2007]

. . . the coefficients of ζ(V) [V., 2009/2010]

. . . the evaluation of ζ(V) for some V [Watanabe, 2009/2010]

. . . the convergence region of ζ(V)

. . .

Use of zeta functions for analyzing graphical models.

What Can a Power Series Do For You?

Consider the power series (zeta function) ζ(V):

ζ(V) ,
∑

k

ζkV
k

We can obtain useful information from

. . . the expon. vecs. of ζ(V) [Koetter, Li, V., Walker, 2004/2007]

. . . the coefficients of ζ(V) [V., 2009/2010] [today]

. . . the evaluation of ζ(V) for some V [Watanabe, 2009/2010]

. . . the convergence region of ζ(V) [today]

. . .

Use of zeta functions for analyzing graphical models.

+ +

+ +

++

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

Communication Model

Channel
Decoding

Channel
Encoding

SinkSource Channel

Communication Model

Channel
Decoding

Channel
Encoding

SinkDMS Channel
XU Y X̂ Û

Communication Model

Channel
Decoding

Channel
Encoding

SinkDMS Channel
XU Y X̂ Û

Information word: u = (u1, . . . , uk) ∈ U
k

Sent codeword: x = (x1, . . . , xn) ∈ C ⊆ Xn

Received word: y = (y1, . . . , yn) ∈ Yn

Communication Model

Channel
Decoding

Channel
Encoding

SinkDMS Channel
XU Y X̂ Û

Information word: u = (u1, . . . , uk) ∈ U
k

Sent codeword: x = (x1, . . . , xn) ∈ C ⊆ Xn

Received word: y = (y1, . . . , yn) ∈ Yn

Decoding: Based on y we would like to estimate the transmitted

codeword x̂ or the information word û.

Communication Model

Channel
Decoding

Channel
Encoding

SinkDMS Channel
XU Y X̂ Û

Information word: u = (u1, . . . , uk) ∈ U
k

Sent codeword: x = (x1, . . . , xn) ∈ C ⊆ Xn

Received word: y = (y1, . . . , yn) ∈ Yn

Decoding: Based on y we would like to estimate the transmitted

codeword x̂ or the information word û.

Depending on what criterion we optimize, we obtain different decoding

algorithms.

Symbol-Wise MAP Decoding (Part 1)

Channel Channel
DecodingCoding

SinkBSS Channel
XU Y X̂ Û

Symbol-Wise MAP Decoding (Part 1)

Channel Channel
DecodingCoding

SinkBSS Channel
XU Y X̂ Û

Minimizing the symbol error probability (for each i = 1, . . . , k) results in

symbol-wise MAP decoding.

For each i = 1, . . . , k:

û
symbol

i
(y) = argmax

ui∈U

PUi |Y(ui|y) = argmax
ui∈U

PUi,Y(ui, y).

Symbol-Wise MAP Decoding (Part 2)

Rewriting symbol-wise MAP decoding for symbol i we obtain

û
symbol

i
(y) = argmax

ui∈U

PUi,Y(ui, y)

Symbol-Wise MAP Decoding (Part 2)

Rewriting symbol-wise MAP decoding for symbol i we obtain

û
symbol

i
(y) = argmax

ui∈U

PUi,Y(ui, y)

= argmax
ui∈U

︸ ︷︷ ︸

∑

u∈Uk , x∈Xn

ui fixed

PUXY(u, x, y),
︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

Symbol-Wise MAP Decoding (Part 2)

Rewriting symbol-wise MAP decoding for symbol i we obtain

û
symbol

i
(y) = argmax

ui∈U

PUi,Y(ui, y)

= argmax
ui∈U

︸ ︷︷ ︸

∑

u∈Uk , x∈Xn

ui fixed

PUXY(u, x, y),
︸ ︷︷ ︸

Joint pmf/pdf

︸ ︷︷ ︸

︸ ︷︷ ︸

Symbol-Wise MAP Decoding (Part 2)

Rewriting symbol-wise MAP decoding for symbol i we obtain

û
symbol

i
(y) = argmax

ui∈U

PUi,Y(ui, y)

= argmax
ui∈U

︸ ︷︷ ︸

∑

u∈Uk , x∈Xn

ui fixed

PUXY(u, x, y),
︸ ︷︷ ︸

Joint pmf/pdf

︸ ︷︷ ︸

Marginal function
︸ ︷︷ ︸

Symbol-Wise MAP Decoding (Part 2)

Rewriting symbol-wise MAP decoding for symbol i we obtain

û
symbol

i
(y) = argmax

ui∈U

PUi,Y(ui, y)

= argmax
ui∈U

︸ ︷︷ ︸

Decision taking

∑

u∈Uk , x∈Xn

ui fixed

PUXY(u, x, y),
︸ ︷︷ ︸

Joint pmf/pdf

︸ ︷︷ ︸

Marginal function
︸ ︷︷ ︸

Symbol-Wise MAP Decoding (Part 2)

Rewriting symbol-wise MAP decoding for symbol i we obtain

û
symbol

i
(y) = argmax

ui∈U

PUi,Y(ui, y)

= argmax
ui∈U

︸ ︷︷ ︸

Decision taking

∑

u∈Uk , x∈Xn

ui fixed

PUXY(u, x, y),
︸ ︷︷ ︸

Joint pmf/pdf

︸ ︷︷ ︸

Marginal function
︸ ︷︷ ︸

Decision about symbol ui based on symbol-wise decoding

Binary Linear Codes

Let H be a parity-check matrix, e.g.

H =





1 1 1 0 0

0 1 0 1 1




.

Binary Linear Codes

Let H be a parity-check matrix, e.g.

H =





1 1 1 0 0

0 1 0 1 1




.

The code C described by H is then

C =
{

(x1, x2, x3, x4, x5) ∈ F5
2

∣
∣
∣
∣ H · xT

= 0T (mod 2)
}

.

Binary Linear Codes

Let H be a parity-check matrix, e.g.

H =





1 1 1 0 0

0 1 0 1 1




.

The code C described by H is then

C =
{

(x1, x2, x3, x4, x5) ∈ F5
2

∣
∣
∣
∣ H · xT

= 0T (mod 2)
}

.

A vector x ∈ F5
2
is a codeword if and only if

H · xT
= 0T (mod 2).

Binary Linear Codes

This means that x is a codeword if and only if x fulfills the following two

equations:

H =





1 1 1 0 0

0 1 0 1 1





Binary Linear Codes

This means that x is a codeword if and only if x fulfills the following two

equations:

H =





1 1 1 0 0

0 1 0 1 1




⇒

x1 + x2 + x3 = 0 (mod 2)

Binary Linear Codes

This means that x is a codeword if and only if x fulfills the following two

equations:

H =





1 1 1 0 0

0 1 0 1 1




⇒

x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)

Binary Linear Codes

This means that x is a codeword if and only if x fulfills the following two

equations:

H =





1 1 1 0 0

0 1 0 1 1




⇒

x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)

In summary,

C =
{

(x1, x2, x3, x4, x5) ∈ F5
2

∣
∣
∣
∣ H · xT

= 0T (mod 2)
}

=






(x1, x2, x3, x4, x5) ∈ F5
2

∣
∣
∣
∣
∣
∣
∣
∣

x1 + x2 + x3 = 0 (mod 2)

x2 + x4 + x5 = 0 (mod 2)






.

Graphical Representation of a Code

H =





1 1 1 0 0

0 1 0 1 1





x1

x2

x3

x4

x5

Graphical Representation of a Code

H =





1 1 1 0 0

0 1 0 1 1





x1

x2

x3

x4

x5

Graphical Representation of a Code

H =





1 1 1 0 0

0 1 0 1 1





x1

x2

x3

x4

x5

FG of a Data Communication System
based on a parity-check code

H =





1 1 1 0 0

0 1 0 1 1





fXOR(x1, x2, x3) = [x1 + x2 + x3 = 0 (mod 2)]
x2

x1

x3

x4

x5

fXOR(x2, x4, x5) = [x2 + x4 + x5 = 0 (mod 2)]

FG of a Data Communication System
based on a parity-check code

H =





1 1 1 0 0

0 1 0 1 1





fXOR(1)x2

x1

x3

x4

x5

fXOR(2)

FG of a Data Communication System
based on a parity-check code

H =





1 1 1 0 0

0 1 0 1 1





fXOR(1)x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

fXOR(2)

Symbol-Wise MAP Decoding

Remember, symbol-wise MAP decoding for symbol i can be written as

û
symbol

i
(y) = argmax

ui∈U
︸ ︷︷ ︸

Decision taking

∑

u∈Uk , x∈Xn

ui fixed

PUXY(u, x, y),
︸ ︷︷ ︸

Joint pmf/pdf

︸ ︷︷ ︸

Marginal function
︸ ︷︷ ︸

Decision about symbol ui based on symbol-wise decoding

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

SPA Decoding (Factor graph without cycles)

P̂ (U2 = 0|Y = y)

P̂ (U2 = 1|Y = y)

fXOR(1)

fXOR(2)

x2 = u2

x3

x4 = u3

x5

y1

y2

y3

y4

y5

x1 = u1

pY2|X2

pY3|X3

pY4|X4

pY5|X5

pY1|X1

P̂ (U1 = 0|Y = y)

P̂ (U1 = 1|Y = y)

step to get marginals

P̂ (U3 = 0|Y = y)

P̂ (U3 = 1|Y = y)

Symbol-Wise MAP Decoding

Remember, symbol-wise MAP decoding for symbol i can be written as

û
symbol

i
(y) = argmax

ui∈U
︸ ︷︷ ︸

Decision taking

∑

u∈Uk , x∈Xn

ui fixed

PUXY(u, x, y),
︸ ︷︷ ︸

Joint pmf/pdf

︸ ︷︷ ︸

Marginal function
︸ ︷︷ ︸

Decision about symbol ui based on symbol-wise decoding

Sum-Product Algorithm Decoding

Sum-product algorithm (SPA) decoding:

û
symbol

i
(y) ≈ argmax

ui∈U
︸ ︷︷ ︸

Decision taking

∑

u∈Uk , x∈Xn

ui fixed

PUXY(u, x, y),
︸ ︷︷ ︸

Joint pmf/pdf

︸ ︷︷ ︸

Marginal function is approximated
by Sum-Product Algorithm

︸ ︷︷ ︸

Decision about symbol ui based on symbol-wise decoding

Sum-Product Algorithm Decoding

Sum-product algorithm (SPA) decoding:

û
symbol

i
(y) ≈ argmax

ui∈U
︸ ︷︷ ︸

Decision taking

∑

u∈Uk , x∈Xn

ui fixed

PUXY(u, x, y),
︸ ︷︷ ︸

Joint pmf/pdf

︸ ︷︷ ︸

Marginal function is approximated
by Sum-Product Algorithm

︸ ︷︷ ︸

Decision about symbol ui based on symbol-wise decoding

On factor graphs without cycles, the approximation is exact.

SPA Decoding (Factor graph with cycles)

fXOR(2)

X2 = U2

X3

fXOR(3)

pY3|X3

pY2|X2

Y4

Y5

Y2

Y5

Y3

Y4

X1 = U1

pY2|X2

pY3|X3

X1 = U1

pY5|X5

pY4|X4

X3Y3

pY1|X1

pY5|X5

i-th iteration i.5-th iteration

Y2

Y1

fXOR(1)

fXOR(3)

fXOR(2)

X2 = U2

X4

X5

Y1

pY4|X4

X5

X4

pY1|X1

fXOR(1)

SPA Decoding (Factor graph with cycles)

fXOR(2)

X2 = U2

X3

fXOR(3)

pY3|X3

pY2|X2

Y4

Y5

Y2

Y5

Y3

Y4

X1 = U1

pY2|X2

pY3|X3

X1 = U1

pY5|X5

pY4|X4

X3Y3

pY1|X1

pY5|X5

i-th iteration i.5-th iteration

Y2

Y1

fXOR(1)

fXOR(3)

fXOR(2)

X2 = U2

X4

X5

Y1

pY4|X4

X5

X4

pY1|X1

fXOR(1)

Amessage-passing algorithm

sends messages along the edges,

does processing of the messages at the vertices.

SPA Decoding (Factor graph with cycles)

fXOR(2)

X2 = U2

X3

fXOR(3)

pY3|X3

pY2|X2

Y4

Y5

Y2

Y5

Y3

Y4

X1 = U1

pY2|X2

pY3|X3

X1 = U1

pY5|X5

pY4|X4

X3Y3

pY1|X1

pY5|X5

i-th iteration i.5-th iteration

Y2

Y1

fXOR(1)

fXOR(3)

fXOR(2)

X2 = U2

X4

X5

Y1

pY4|X4

X5

X4

pY1|X1

fXOR(1)

Amessage-passing algorithm

sends messages along the edges,

does processing of the messages at the vertices.

Note: all operations are performed locally!

Factor Graph of a Cycle Code

Factor Graph of a Cycle Code

Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to

simple cycles (or to the symmetric difference set of simple cycles) in the

Tanner/factor graph.

Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to

simple cycles (or to the symmetric difference set of simple cycles) in the

Tanner/factor graph.

Factor Graph of a Cycle Code

Cycle codes are called cycle codes because codewords correspond to

simple cycles (or to the symmetric difference set of simple cycles) in the

Tanner/factor graph.

+ +

+ +

++

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

Computation trees

... ...

=

=

=

=

=

=

+

+

+

+

Computation trees

... ...

=

=

=

=

=

=

+

+

+

+

=
+

+ +

=

++

==

+

+

+

+

+

=

=

=

=

+

+

+

+

+

=

=

+

+

+

+

=

=

=

= =
=

=

=

=

==
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

+

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

+

=
+

+ +

=

++

==

+

+

+

+

+

=

=

=

=

+

+

+

+

+

=

=

+

+

+

+

=

=

=

= =
=

=

=

=

==
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

+

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

=

=

+

=
+

+ +

=

++

=

++

+

+

=

=

=

+

+

+

+

+

=

=

+

+

+

+

=

=

=

= =
=

=

=

=

==
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

+

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

=

=

+

=

+

=

=

=

Computation trees

... ...

=

=

=

=

=

=

+

+

+

+

=
+

+ +

=

++

==

+

+

+

+

+

=

=

=

=

+

+

+

+

+

=

=

+

+

+

+

=

=

=

= =
=

=

=

=

==
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

+

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

=

=

+

=
+

+ +

=

++

==

+

+

+

+

+

=

=

=

=

+

+

+

+

+

=

=

+

+

+

+

=

=

=

= =
=

=

=

=

==
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

+

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

=

=

+

=
+

+ +

=

++

=

++

+

+

=

=

=

=

+

+

+

+

+

=

=

+

+

+

+

=

=

=

= =
=

=

=

=

==
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

+

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=

=

=

=

+

=

+

+ +

+ +

++

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

Finite Graph Covers

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Finite Graph Covers

original graph
2-fold cover of

original graph

Definition: A double cover of a graph is . . .

Note: the above graph has 2! · 2! · 2! · 2! · 2! = (2!)5 double covers.

Graph Covers

original graph double cover of triple cover of
(a possible)

the original graph the original graph

(a possible)

· · ·

Besides double covers, a graph also has many triple covers, quadruple

covers, quintuple covers, etc.

Graph Covers

original graph
(possible)

m-fold cover of
original graph

· · ·

· · · · · ·

· · ·

m

π2 π3

π1

π5

π4

An m-fold cover is also called a cover of degree m.

Do not confuse this degree with the degree of a vertex!

Graph Covers
and the Sum-Product Algorithm

Consider this factor graph:

Graph Covers
and the Sum-Product Algorithm

Consider this factor graph:

Here is a so-called triple cover of

the above factor graph:

Graph Covers
and the Sum-Product Algorithm

Consider this factor graph:

Here is a so-called triple cover of

the above factor graph:

Why do factor graph covers matter?

Graph Covers
and the Sum-Product Algorithm

i-th iteration i.5-th iteration

Graph Covers
and the Sum-Product Algorithm

i-th iteration i.5-th iteration

Graph Covers
and the Sum-Product Algorithm

i-th iteration i.5-th iteration

. . . where root is bit node 2

computation tree (without channel function nodes) . . .

Graph Covers
and the Sum-Product Algorithm

i-th iteration i.5-th iteration

. . . where root is bit node 2

computation tree (without channel function nodes) . . .

. . . where root is a copy of bit node 2

Graph Cover Hierarchy

Graph Cover Hierarchy

Graph Cover Hierarchy

Graph Cover Hierarchy

Graph Cover Hierarchy

+ +

+ +

++

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

Pinball

Pinball

Pinball

3

1 2

[picture adapted from chaosbook.org]

Pinball

start
3212

3

1 2

[picture adapted from chaosbook.org]

Pinball

start

32123231
3

1 2

[picture adapted from chaosbook.org]

Pinball

start

32123231

3212

3

1 2

[picture adapted from chaosbook.org]

Pinball

start

32123231

3212

3

1 2

[picture adapted from chaosbook.org]

The trajectories are difficult to predict.

Pinball

start

32123231

3212

3

1 2

[picture adapted from chaosbook.org]

The trajectories are difficult to predict.

“chaotic system”

Pinball

start

32123231

3212

3

1 2

[picture adapted from chaosbook.org]

The trajectory is difficult to predict.

Pinball

start

32123231

3212

3

1 2

[picture adapted from chaosbook.org]

The trajectory is difficult to predict.

However, quantities like the escape rate can be quantified.

Pinball
+1

−1

s

0−2.5 2.5

0

si
n
(φ
)

313

312

+1

−1

s

0−2.5 2.5

0

si
n
(φ
)

3132 3131

3121 3123

M3 : initial conditions for which the ball bounces at 3.

M31 : initial conditions for which the ball bounces at 3, 1.

M312 : initial conditions for which the ball bounces at 3, 1, 2.

M3121 : initial conditions for which the ball bounces at 3, 1, 2, 1.

· · · : · · ·

[picture adapted from chaosbook.org]

Pinball

31 32

312 313 321 323

3121

3

3123 3131 3212 32313132 3213 3232

[picture adapted from chaosbook.org]

Pinball

θ̂1 =
|M1|

|M|
+
|M2|

|M|
+
|M3|

|M|

Pinball

θ̂1 =
|M1|

|M|
+
|M2|

|M|
+
|M3|

|M|

θ̂2 =
|M12|

|M|
+
|M13|

|M|
+
|M21|

|M|
+
|M22|

|M|
+
|M31|

|M|
+
|M32|

|M|

Pinball

θ̂1 =
|M1|

|M|
+
|M2|

|M|
+
|M3|

|M|

θ̂2 =
|M12|

|M|
+
|M13|

|M|
+
|M21|

|M|
+
|M22|

|M|
+
|M31|

|M|
+
|M32|

|M|

...
...

Pinball

θ̂1 =
|M1|

|M|
+
|M2|

|M|
+
|M3|

|M|

θ̂2 =
|M12|

|M|
+
|M13|

|M|
+
|M21|

|M|
+
|M22|

|M|
+
|M31|

|M|
+
|M32|

|M|

...
...

θ̂n =
∑

sequence s of length n

|Ms|

|M|

Pinball

θ̂1 =
|M1|

|M|
+
|M2|

|M|
+
|M3|

|M|

θ̂2 =
|M12|

|M|
+
|M13|

|M|
+
|M21|

|M|
+
|M22|

|M|
+
|M31|

|M|
+
|M32|

|M|

...
...

θ̂n =
∑

sequence s of length n

|Ms|

|M|

...
...

Pinball

θ̂1 =
|M1|

|M|
+
|M2|

|M|
+
|M3|

|M|

θ̂2 =
|M12|

|M|
+
|M13|

|M|
+
|M21|

|M|
+
|M22|

|M|
+
|M31|

|M|
+
|M32|

|M|

...
...

θ̂n =
∑

sequence s of length n

|Ms|

|M|

...
...

θ̂n+1

θ̂n
= exp(−γn)

Pinball

θ̂1 =
|M1|

|M|
+
|M2|

|M|
+
|M3|

|M|

θ̂2 =
|M12|

|M|
+
|M13|

|M|
+
|M21|

|M|
+
|M22|

|M|
+
|M31|

|M|
+
|M32|

|M|

...
...

θ̂n =
∑

sequence s of length n

|Ms|

|M|

...
...

θ̂n+1

θ̂n
= exp(−γn) → exp(−γ)

Pinball

θ̂1 =
|M1|

|M|
+
|M2|

|M|
+
|M3|

|M|

θ̂2 =
|M12|

|M|
+
|M13|

|M|
+
|M21|

|M|
+
|M22|

|M|
+
|M31|

|M|
+
|M32|

|M|

...
...

θ̂n =
∑

sequence s of length n

|Ms|

|M|

...
...

θ̂n+1

θ̂n
= exp(−γn) → exp(−γ)

γ : escape rate

Pinball
Ideally, we compute θ̂1, θ̂2, θ̂3, . . . , and determine from this γ.

Pinball
Ideally, we compute θ̂1, θ̂2, θ̂3, . . . , and determine from this γ.

However, usually this is too complicated.

Pinball
Ideally, we compute θ̂1, θ̂2, θ̂3, . . . , and determine from this γ.

However, usually this is too complicated.

Note that the power series

θ̂(z) =

∞∑

n=1

θ̂nzn

has convergence radius exp(γ).

Pinball
Ideally, we compute θ̂1, θ̂2, θ̂3, . . . , and determine from this γ.

However, usually this is too complicated.

Note that the power series

θ̂(z) =

∞∑

n=1

θ̂nzn

has convergence radius exp(γ).

Alternative approach: set up a new power series

θ(z) =

∞∑

n=1

θnzn

so that its convergence radius equals exp(γ).

Pinball

Main idea: look at periodic trajectories.

21321

3

1 2

232313131

3

1 2

[picture adapted from chaosbook.org]

Pinball

Pinball

Let the string s label the periodic trajectories.

Pinball

Let the string s label the periodic trajectories.

Let the periodic trajectory s go through xs.

Pinball

Let the string s label the periodic trajectories.

Let the periodic trajectory s go through xs.

Let the periodic trajectory s have period Tp,s.

Pinball

Let the string s label the periodic trajectories.

Let the periodic trajectory s go through xs.

Let the periodic trajectory s have period Tp,s.

Then define

θ(z) ,

∞∑

n=1

zn
∑

sequence s of length n

1

|Λs|

=
z1

|Λ1|
+

z1

|Λ2|
+

z1

|Λ3|
+

z2

|Λ12|
+

z2

|Λ13|
+ · · ·

whereΛs is the unstable eigenvalue of the Jacobian matrix Jt(xi)

evaluated for t = Tp,s. (Due to the low dimensionality, the Jacobian can have at most one

unstable eigenvalue for the present setup.)

Pinball

θ(z) can be rewritten as follows:

θ(z) =
∑

prime cycle p

np

∞∑

r=1

(

znp

|Λp|

)r

Pinball

θ(z) can be rewritten as follows:

θ(z) =
∑

prime cycle p

np

∞∑

r=1

(

znp

|Λp|

)r

=

∑

p

prime cycle

nptp

1 − tp

, tp =
znp

|Λp|

Pinball

θ(z) can be rewritten as follows:

θ(z) =
∑

prime cycle p

np

∞∑

r=1

(

znp

|Λp|

)r

=

∑

p

prime cycle

nptp

1 − tp

, tp =
znp

|Λp|

Definition of dynamical zeta function:

ζ(z) ,
∏

prime cycle p

1

1 − tp

, tp =
znp

|Λp|

Pinball

θ(z) can be rewritten as follows:

θ(z) =
∑

prime cycle p

np

∞∑

r=1

(

znp

|Λp|

)r

=

∑

p

prime cycle

nptp

1 − tp

, tp =
znp

|Λp|

Definition of dynamical zeta function:

ζ(z) ,
∏

prime cycle p

1

1 − tp

, tp =
znp

|Λp|

Note:

θ(z) = z
d

dz
log

(

ζ(z)
)

Analogy Pinball vs. MPI Decoding

start

32123231

3212

3

1 2

+ +

+ +

++

pinball
message-passing iterative decoding

of cycle codes

trajectory minimial deviation in computation trees

periodic trajectory
codeword in finite graph cover /

graph-cover pseudo-codeword

dynamical edge zeta function graph zeta function

+ +

+ +

++

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

e1

e2

e3

e4

e7

e5

e6

Here: Γ = (e1, e2, e3)

Let Γ be a path in a graph X with

edge-set E; write

Γ = (ei1 , . . . , eik)

to indicate that Γ begins with the

edge ei1 and ends with the edge eik .

The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

e1

e2

e3

e4

e7

e5

e6

Here: Γ = (e1, e2, e3)

Let Γ be a path in a graph X with

edge-set E; write

Γ = (ei1 , . . . , eik)

to indicate that Γ begins with the

edge ei1 and ends with the edge eik .

V1

V2

V3

V4

V7

V5

V6

Here: g(Γ,V) = V1V2V3

The monomial of Γ is given by

g(Γ,V) , Vi1 · · ·Vik ,

where the Vi’s are indeterminates.

The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

The edge zeta function of X is defined to be the power series

ζX(V) = ζX(V1, . . . ,Vn) ∈ Z[[V1, . . . ,Vn]]

given by

ζX(V) = ζX(V1, . . . ,Vn)=
∏

[Γ]∈A(X)

1

1 − g(Γ,V)
,

where A(X) is the collection of equivalence classes of

backtrackless, tailless, primitive cycles in X.

The Edge Zeta Function of a Graph

Definition (Hashimoto, see also Stark/Terras):

The edge zeta function of X is defined to be the power series

ζX(V) = ζX(V1, . . . ,Vn) ∈ Z[[V1, . . . ,Vn]]

given by

ζX(V) = ζX(V1, . . . ,Vn)=
∏

[Γ]∈A(X)

1

1 − g(Γ,V)
,

where A(X) is the collection of equivalence classes of

backtrackless, tailless, primitive cycles in X.

Note: unless X contains only one cycle,

the set A(X) will be countably infinite.

The Edge Zeta Function of a Graph

Theorem (Bass):

The edge zeta function ζX(V1, . . . ,Vn) is a rational function.

More precisely, for any directed graph ~X of X, we have

ζX(V1, . . . ,Vn) =
1

det
(

I − VM(~X)
) =

1

det
(

I −M(~X)V
)

where

I is the identity matrix of size 2n,

V = diag(V1, . . . ,Vn,V1, . . . ,Vn) is a diagonal matrix of

indeterminants.

M(~X) is a 2n × 2n matrix derived from some directed graph

version ~X of X.

Example of Edge Zeta Function

V1

V2

V3

V4

V7

V5

V6

This normal graph N has the following edge zeta function:

ζN(V1, . . . ,V7) =
1

det(I14 − VM)

=
1

1 − 2V1V2V3 + V
2
1
V

2
2
V

2
3
− 2V5V6V7 + 4V1V2V3V5V6V7 − 2V

2
1
V

2
2
V

2
3
V5V6V7

−4V1V2V3V
2
4
V5V6V7 + 4V

2
1
V

2
2
V

2
3
V

2
4
V5V6V7 + V

2
5
V

2
6
V

2
7
− 2V1V2V3V

2
5
V

2
6
V

2
7

+V
2
1
V

2
2
V

2
3
V

2
5
V

2
6
V

2
7
+ 4V1V2V3V

2
4
V

2
5
V

2
6
V

2
7
− 4V

2
1
V

2
2
V

2
3
V

2
4
V

2
5
V

2
6
V

2
7

Example of Edge Zeta Function

u1

u2

u3

u4

u7

u5

u6

The Taylor series exansion is

ζN(V1, . . . ,V7)

= 1 + 2V1V2V3 + 3V
2
1V

2
2V

2
3 + 2V5V6V7

+ 4V1V2V3V5V6V7 + 6V
2
1V

2
2V

2
3V5V6V7

+ 4V1V2V3V
2
4V5V6V7 + 12V

2
1V

2
2V

2
3V

2
4V5V6V7

+ · · ·

We get the following exponent vectors:

(0, 0, 0, 0, 0, 0, 0) codeword

(1, 1, 1, 0, 0, 0, 0) codeword

(2, 2, 2, 0, 0, 0, 0) pseudo-codeword (in Z-span)

(0, 0, 0, 0, 1, 1, 1) codeword

(1, 1, 1, 0, 1, 1, 1) codeword

(2, 2, 2, 0, 1, 1, 1) pseudo-codeword (in Z-span)

(1, 1, 1, 2, 1, 1, 1) pseudo-codeword (not in Z-span)

(2, 2, 2, 2, 1, 1, 1) pseudo-codeword (in Z-span)

+ +

+ +

++

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

New Theorem for Cycle Codes

Rough statement:





region of convergence

of sum-product algorithm

to the all-zero codeword





=





region of convergence

of the edge zeta function





New Theorem for Cycle Codes

Rough statement:





region of convergence

of sum-product algorithm

to the all-zero codeword





=





region of convergence

of the edge zeta function





More precisely:





The sum-product algorithm

converges to the all-zero codeword

for the log-likelihood vector λ





⇔





V is in the region of convergence

of the edge zeta function,

where Ve = exp(−λe) ∀e





New Theorem for Cycle Codes

Rough statement:





region of convergence

of sum-product algorithm

to the all-zero codeword





=





region of convergence

of the edge zeta function





More precisely:





The sum-product algorithm

converges to the all-zero codeword

for the log-likelihood vector λ





⇔





V is in the region of convergence

of the edge zeta function,

where Ve = exp(−λe) ∀e





Note: global convergence result!

New Theorem for Cycle Codes

Rough statement:





region of convergence

of sum-product algorithm

to the all-zero codeword





=





region of convergence

of the edge zeta function





Corollary:

The region of all log-likelihood vectors λ

for which the sum-product algorithm converges

to the all-zero codeword

is given by a determinantal expression.

Some intuition behind this statement

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +
+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ ζN(V1, . . . ,Vn) ,
∏

[Γ]∈A(N)

1

1 − g(Γ,V)

=
1

det
(

I −M(~N)V
)

It turns out that key objects for

analyzing computation trees of

the normal factor graph N are

(

M(~N)V
)k
, k ≥ 0.

Community detection in networks

Community Detection in Networks

Community Detection in Networks

Community Detection in Networks

=

=

=

= =

=

=

=

=

=

=

Community Detection in Networks

=

=

=

= =

=

=

=

=

=

=

+

+

+

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

Community Detection in Networks

=

=

=

= =

=

=

=

=

=

=

+

+

+

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

Community Detection in Networks

=

=

=

= =

=

=

=

=

=

=

+

+

+

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

Community detection with the help of MPI algorithms:

[Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang, 2013]

Cycle Code NFG
vs. Community Detection NFG

It turns out that the cycle code normal factor graph and the

community detection normal factor graph are dual to each other in the

sense that the sets of valid configurations are given by dual normal

factor graphs, cf. NFG duality in [Forney, 2001].

+

+

+ +

+

+

cycle code

normal factor graph

Cycle Code NFG
vs. Community Detection NFG

It turns out that the cycle code normal factor graph and the

community detection normal factor graph are dual to each other in the

sense that the sets of valid configurations are given by dual normal

factor graphs, cf. NFG duality in [Forney, 2001].

+

+

+

+

+

=

=

=

=

=

=

=

+

cycle code

normal factor graph

Cycle Code NFG
vs. Community Detection NFG

It turns out that the cycle code normal factor graph and the

community detection normal factor graph are dual to each other in the

sense that the sets of valid configurations are given by dual normal

factor graphs, cf. NFG duality in [Forney, 2001].

+

+

+

+

+

=

=

=

=

=

=

=

+

=

=

= =

=

=

+

+

+

+

+

+

+

cycle code

normal factor graph
�

community detection

normal factor graph

+ +

+ +

++

+
+

+ +

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+ +

+ +

ζ(V1, . . . ,Vn) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

What Can a Power Series Do For You?

Consider the power series ζ(V):

ζ(V) =
∑

k

ζkV
k
=

∏

[Γ]

1

1 − g(Γ,V)

We can obtain useful information from

. . . the expon. vecs. of ζ(V) [Koetter, Li, V., Walker, 2004/2007]

. . . the coefficients of ζ(V) [V., 2009/2010] [today]

. . . the evaluation of ζ(V) for some V [Watanabe, 2009/2010]

. . . the convergence region of ζ(V) [today]

. . .

Use of zeta functions for analyzing graphical models.

Analogy Pinball vs. MPI Decoding

start

32123231

3212

3

1 2

+ +

+ +

++

pinball
message-passing iterative decoding

of cycle codes

trajectory minimial deviation in computation trees

periodic trajectory
codeword in finite graph cover /

graph-cover pseudo-codeword

dynamical edge zeta function graph zeta function

Pinball
Ideally, we compute θ̂1, θ̂2, θ̂3, . . . , and determine from this γ.

However, usually this is too complicated.

Note that the power series

θ̂(z) =

∞∑

n=1

θ̂nzn

has convergence radius exp(γ).

Alternative approach: set up a new power series

θ(z) =

∞∑

n=1

θnzn

so that its convergence radius equals exp(γ).

Bethe Free Energy Function

Some of the properties of the Bethe free energy function of the

cycle code normal factor graph:

The induced Bethe free energy function is a convex.

The sum-product algorithm finds its minimum.

on fixed points of the SPA

Theorem by Yedidia et al.

EXIT charts

area theorem
linear programming

relaxation

density

evolution

pseudo-codewords

graph covers
graph

zeta

function

Bethe free energy

and its pseudo-dual

Comments

We have some generalizations of the above results to

general LDPC codes under attenuated SPA decoding.

Note that [Watanabe, 2010] connects zeta function values to the

Hessian of the Bethe free energy function for general factor

graphs.

Use of other concepts from chaos theory for understanding

graphical models:

Agrawal and Vardy, “The turbo decoding algorithm and its

phase trajectories,” IEEE Trans. Inf. Theory, 2001.

Kocarev, Lehmann, Maggio, Scanavino, Tasev, and Vardy,

“Nonlinear dynamics of iterative decoding systems: analysis

and applications,” IEEE Trans. Inf. Theory, 2006.

. . .

References

H. D. Pfister and P. O. Vontobel, “On the relevance of graph covers and

zeta functions for the analysis of SPA decoding of cycle codes,”

Proc. ISIT 2013. (A longer version of this paper is in preparation.)

This work uses and extends results from:

P. O. Vontobel, “Counting in graph covers: a combinatorial

characterization of the Bethe entropy function,”

IEEE Trans. Inf. Theory, vol. 59, no 9, pp. 6018–6048, Sep. 2013.

P. O. Vontobel, “The Bethe permanent of a non-negative matrix,”

IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1866–1901, Mar. 2013.

Thank you!

	
	
	
	
	Pinball
	mbox {Cycle Code NFG --vs-- Community Det. NFG}
	
	mbox {What Can a Power Series Do For You?}
	mbox {What Can a Power Series Do For You?}
	mbox {What Can a Power Series Do For You?}
	
	Communication Model
	Symbol-Wise MAP Decoding 	itlecont {Part 1}
	Symbol-Wise MAP Decoding 	itlecont {Part 2}
	Binary Linear Codes
	Binary Linear Codes
	mbox {Graphical Representation of a Code}
	mbox {FG of a Data Communication System} \ based on a parity-check code
	Symbol-Wise MAP Decoding
	SPA Decoding 	itlecont {Factor graph without cycles}
	Symbol-Wise MAP Decoding
	Sum-Product Algorithm Decoding
	SPA Decoding 	itlecont {Factor graph with cycles}
	Factor Graph of a Cycle Code
	
	Computation trees
	
	Finite Graph Covers
	Graph Covers
	Graph Covers
	Graph Covers \ and the Sum-Product Algorithm
	Graph Covers \ and the Sum-Product Algorithm
	Graph Covers \ and the Sum-Product Algorithm
	Graph Cover Hierarchy
	
	
	Pinball
	Pinball
	Pinball
	Pinball
	Pinball
	Pinball
	Pinball
	Pinball
	Pinball
	Pinball
	Analogy Pinball vs. MPI Decoding
	
	The Edge Zeta Function of a Graph
	The Edge Zeta Function of a Graph
	The Edge Zeta Function of a Graph
	Example of Edge Zeta Function
	Example of Edge Zeta Function
	
	New Theorem for Cycle Codes
	mbox {Some intuition behind this statement}
	
	Community Detection in Networks
	Cycle Code NFG \ vs. Community Detection NFG
	
	mbox {What Can a Power Series Do For You?}
	Analogy Pinball vs. MPI Decoding
	Pinball
	Bethe Free Energy Function
	Comments
	References
	

