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Motivation (I)

• Error correcting codes are nowadays a fundamental component of
modern communication networks.

• Coding at the upper-layers of the communication protocol is a simple
technique to cope with packet losses.

• Applications of packet-level coding (erasure coding) within SATCOM:

I Multicasting/broadcasting in land mobile satellite services: cope with long
fading events (DVB-SH, DVB-RCS2).

I Telemetry services in deep-space communication: reduce the average
delay.

I Free-space optical communication: compensate turbulence.
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Principle of Packet-Level Coding

• k source packets (L bits),
n encoded packets (L bits).

• (n, k) code on Fq .

• CRC and error correcting code
at physical layer.

• Erasures: packets whose CRC
has failed after physical layer
decoding.

• PEC: a packet is either
correctly received or lost
(erased).

Packet-Level Decoder 

ChannelPHY TX PHY RX

Packet Erasure Channel (PEC)

Packet-Level Encoder 

k source packets

n encoded packets
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Motivation (II)

• Typical erasure codes: binary low-density parity-check (LDPC) codes,
Reed-Solomon codes, fountain codes (rate-less).

• Binary LDPC codes:
I Poor performances for short codeword lengths.
I Low decoding complexity O(n).

• RS codes:
I Good performances for short codeword lengths.
I Decoding complexity higher than O(n).

• Non-binary LDPC codes: good performances for short codeword lengths
(AWGN).

• Non-binary LDPC erasure codes can be a flexible solution to bridge:
I Good performances for short codeword lengths.
I Low decoding complexity.
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Non-Binary Low-Density Parity-Check Codes

• Parity-check matrix:

H =

 1 α 0 α2 α 0 0
α2 0 α2 α 0 1 0
0 1 1 α 0 0 1


• Tanner graph:

degree-4 CN

degree-2 VN
α2

α2

α

α α 1 1

1

1
α2

α 1

• Degree distribution pair:
λ(x) =

∑dv,max
i=1 λix i−1, ρ(x) =

∑dc
i=1 ρix i−1

λi , ρi : fractions of edges connected to degree-i VNs, CNs.
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Non-Binary Unstructured LDPC Code Ensembles

Π

• Usually, we consider sets, or ensembles, of LDPC codes, fulfilling
(λ(x), ρ(x)).

• The design rate of the ensemble is R = 1−
∫ 1

0 ρ(x)dx∫ 1
0 λ(x)dx

.

• Non-binary unstructured ensemble: all possible edge labelings from
Fq \ {0} (uniform probability) and all possible edge permutations Π.
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Structured LDPC Code Ensembles

• If not all edge permutations are allowed: structured ensemble.

• We focus on a structured LDPC code ensemble.

• A similar ensemble was heuristically introduced by MacKay (binary) [1].

• An ensemble similar to the one of MacKay was analyzed by C. Di
(binary) [2].

• We extend the ensemble of MacKay, we provide an analytical analysis of
the extended ensemble on non-binary Galois fields.

• This is the ensemble from which the progressive edge-growth (PEG)
algorithm picks the codes.
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Ensemble with Separated Variable Nodes: Definition
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• The degree-2 VNs are all separated (type-e2 edges).
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Ensemble with Separated Variable Nodes: Definition
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Ensemble with Separated Variable Nodes: Definition
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Ensemble with Separated Variable Nodes: Definition
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Ensemble with Separated Variable Nodes: Definition
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• All possible type-e1 (brown) edge permutations Π and all possible edge
labelings from Fq \ {0} (uniform probability).
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Ensemble with Separated Variable Nodes: Notation
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• n: number of VNs (codeword length in symbols from Fq).
• m: number of CNs.
• V2: number of degree-2 VNs (type γ2).
• V S

3 : number of separated degree-3 VNs (type γ3).
• Ṽj : number of degree-j VNs of type γ1 (brown).
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Codeword Weight Distribution

• The weight of a codeword is the number of its non-zero symbols.

Theorem 1 - E[A(C, l)]

The expected number of codewords of weight l for a code C picked from an
ensemble with separated VNs (SVN ensemble) and distribution pair
(λ(x), ρ(x) = xdc−1) is

E[A(C, l)] =
∑

l:lγ2+lγ3+
∑

j l̃j=l

(
V2

lγ2

)(
V S

3

lγ3

)∏
j

(
Ṽj

l̃j

)

×
Coeff

((
N−(z)

)2lγ2+3lγ3
(
N+(z)

)m−2lγ2−3lγ3 , z
∑

j l̃j j
)

(q − 1)−(lγ2+lγ3+
∑

j l̃j )
(m(dc−1)∑

j l̃j j

)
(q − 1)

∑
j l̃j j+2lγ2+3lγ3

with l = (̃l3, . . . , l̃dv,max , lγ2 , lγ3) and 0 ≤ lγ2 ≤ V2, 0 ≤ lγ3 ≤ V S
3 , 0 ≤ l̃j ≤ Ṽj .

Further, N+(z) and N−(z) are univariate polynomials.
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Expected Block Error Probability of a q-ary LDPC Code [3]

• E.g.: (81, 27) structured vs. unstructured 4-ary LDPC codes, 4-ary EC.
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Growth Rate of the Weight Distribution (n → ∞)

• Normalized codeword weight: ω = l/n. Thus, 0 ≤ ω ≤ 1.

• Growth rate: G(ω)= limn→∞
1
n lnE[A(C, bωnc)]

Theorem 2 - G(ω)

For an SVN ensemble with distribution pair (λ(x), ρ(x) = xdc−1) the growth
rate is

G(ω) =

dv,max∑
j=3

δ̃j ln(B(j)(x0, y0,1)) +
3∑

i=2

δi ln(B(i)(x0, y0,s))

− ω ln(x0) + (1− R) ln(N+(z0)) +
ln(1− β1t)

t

with δ̃j = Ṽj/n, δ2 = V2/n, δ3 = V S
3 /n, B(j)(x , y) = 1 + (q − 1)xy j and

t = 1
(1−R)(dc−1) . Further, x0, y0,1, y0,s, z0, β1 are the unique solutions to a 5× 5

system of polynomial equations.
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Example of Growth Rate Curve on F4

• λ(x) = 1
5 x + 4

5 x3,
ρ(x) = x4.

• Typical minimum
distance:

ω∗ = inf{ω > 0 : G(ω) ≥ 0}.

• Good growth rate
behaviour:

I Large typical minimum
distance.

I Negative G(ω) for small
ω.

• As n→∞,

E(A(C, bωnc))→ exp{nG(ω)}.
0 0.05 0.1 0.15 0.2 0.25
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Growth Rate for Small (Normalized) Weight ω

Theorem 3 - G(ω) as ω → 0

The weight spectral shape of an SVN ensemble with distribution pair
(λ(x), ρ(x) = xdc−1) fulfills

G(ω) = −3ξ1ω

2
− ω ln

(
2(1− ξ1)(dc − 2)
ν2(dc − 1) (5ξ1 − 2)

)
+ o(ω)

with ξ1 = 2
5 + o(1) and 0 < ν2 ≤ 1.

• For small values of ω, G(ω) is always negative.

• The SVN ensemble is always characterized by a strictly positive typical
minimum distance.
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Typical Minimum Distances

• SVN ensemble vs. its unstructured counterpart:

ρ2(x) = x7

λ2(x) = 0.1250x + 0.4951x2 + 0.0254x12 + 0.2489x16 + 0.1056x17.

• Typical minimum distances of the two ensembles:

Ensembles F2 F4 F16 F64 F128 F256

SVN 0.0082 0.0178 0.0346 0.0408 0.0400 0.0373
Unstructured 0.0009 0.0017 0.0019 0.0009 0.0005 0.0003

• The SVN ensemble has much higher typical minimum distances.
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Maximum A-Posteriori Decoding

• Codeword v is transmitted, e erasures are introduced by the q-EC.

• MAP decoding: solve a linear system of m equations in e unknowns

HI vT
I = HI vT

I

• vI and vI : vector of e erased and (n − e) received codeword symbols.

• HI and HI : sub-matrix composed of the corresponding columns of H.

• The system can be solved with Gaussian elimination, complexity O(n3).

• The sparseness of the parity-check matrix can be exploited in order to
solve the system with reduced complexity [4].
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Efficient MAP Decoding for LDPC Codes (I)

• The matrix HI is re-organized in an approximate lower triangular form.
• The codeword symbols associated with the right-most p columns: pivots.
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Efficient MAP Decoding for LDPC Codes (II)

• Zeroing-out algorithm is applied (complexity O(n2)):

I

0

P′
T

pe− p

e
−

p
m

−
(e

−
p)

m

P′
B

• Gaussian elimination to recover the p pivots (complexity O(p3)).
• BP decoding to recover the remaining unknowns (complexity O(n)).
• The number of pivots can be controlled with a careful code design.
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BP and MAP Decoding Thresholds [5] ε∗ (n → ∞)

• pE(ε)→ 0, ∀ε ≤ ε∗.
• pE(ε): average extrinsic symbol erasure probability at the output of a

decoder.
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Design Guidelines, under MAP Decoding

• Design a code from an ensemble with separated variable nodes (SVNs).

• The code design in two phases (asymptotic and finite-length):

1 Ensemble search with asymptotic tools.

2 Construct finite-length parity-check matrix with girth optimization techniques.

• In practice:

1 Search for SVN ensembles (degree distribution) with:

F MAP thresholds approaching the Shannon limit.
F BP thresholds close to the MAP threshold [6].

2 Construct the finite-length parity-check matrix with PEG algorithm.
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Code Performance, 4-EC (MAP decoding)

• Rate-1/2 SVN ensemble with ε∗MAP = 0.4971, ε∗BP = 0.4708.
• Short 4-ary (256, 128) LDPC code. n = 256 symbols of F4.
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Decoding Complexity (MAP decoding)

• Average number of pivots, (256, 128) code, n = 256:

Ensembles ε = 0.48 ε = 0.46 ε = 0.44 ε = 0.42 ε = 0.40
SVN 6.96 5.01 3.35 1.74 0.75

Regular 22.95 18.99 15.59 11.62 7.62

• A (256, 128) regular (dv = 4, dc = 8) code has been designed.

• The asymptotic thresholds of the regular ensemble are:
I ε∗MAP = 0.4977.
I ε∗BP = 0.3834.

• The code from (irregular) SVN ensemble has much less pivots than the
one from regular ensemble: less complexity.
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Decoding Speed on the Packet Erasure Channel

• (256, 128) code on F4 over the PEC. n = 256 packets of 1024 bytes.
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Conclusion

• The design of non-binary LDPC erasure codes has been investigated.

• A promising ensemble of LDPC codes has been identified and analyzed
in terms of:

I Asymptotic thresholds.
I Weight distribution.
I Growth rate of the weight distribution.

• Codes from the ensemble designed and analyzed in terms of:
I Performance (codeword error rate).
I Decoding complexity.

• Codes from the ensemble provide excellent trade-offs between:
I Waterfall performance, error-floor and decoding complexity.

• Thanks to their flexibility they can be used in many practical applications.
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