Network-Coded Multiple Access

Lu Lu 17th January 2014

Joint work with Mr. Lizhao You and Prof. Soung-Chang Liew

Number of **WiFi** Devices Hits 2 Billions

Wi-Fi		ON O
Choose a Netwo	ork	
CrossCountr	уWiFi	? ()
Other		>
Ask to Join Net	works	ON O
Known netwo automatically. If n available, you will l a n	orks will be joi o known netw have to manua etwork.	ned vorks are ally select

OK

etwork-Coded Multiple Access

Number of WiFi Channels is Limited

- Collisions increase with the number of stations
- Each collision takes as much channel time as successful transmissions -> Throughput, Drop

Make Use of Collisions!

Physical-Layer Network Coding

1/17/2014

Network-Coded Multiple Access

Outlines

- 1. Physical-layer Network Coding (PNC)
 - Review of PNC
 - PNC Prototype
- 2. Network-Coded Multiple Access (NCMA)
 - PHY-layer Bridging
 - MAC-layer Bridging
- 3. NCMA Performance Evaluation
 - Experimental Setup
 - Results
- 4. Conclusions and Remarks

What is PNC?

- Traditional view in wireless networking: interference is bad.
- PNC turns things around by exploiting network coding (NC) performed by nature.
- When electromagnetic waves superimpose, they add, a form of NC.
- Benefits of PNC:
 - boost throughput

Simplest Set-up: Two-Hop Relay Network

- System Model: Two-way Relay Network (TWRN)
 - No direct channel between nodes A and B.
 - Half duplex: nodes cannot transmit and receive at the same time.
 - What is the minimum number of time slots needed for nodes A and B to exchange one packet via relay node R?

B

Traditional Scheduling (TS)

• Transmissions non-overlapping in time

Straightforward Network Coding (SNC)

$$P_{B} = P_{R} \oplus P_{A}$$

$$P_{A} \oplus P_{A}$$

$$P_{A} \oplus P_{B}$$

$$P_{R} = P_{A} \oplus P_{B}$$

- Transmissions by nodes A and B still non-overlapping
- Relay R uses one time slot to broadcast

7/2014

Physical-layer Network Coding (PNC)

• Transmissions by nodes A and B are simultaneous!

Real-time PNC Prototype: Specifics

Frequency-domain PNC (FPNC) for TWRC

-Build on OFDM technology as used in Wi-Fi

-First PNC implementation in 2012

-First real-time PNC implementation in 2013

 Support "real" application in real-time through API

Real-time PNC Prototype: Platform

• Frequency-Domain PNC (FPNC) in GNU Radio testbed

coded Multiple Access

Normalized throughput of PNC and TS

Outlines

- 1. Physical-layer Network Coding (PNC)
 - Review of PNC
 - PNC Prototype
- 2. Network-Coded Multiple Access (NCMA)
 - PHY-layer Bridging
 - MAC-layer Bridging
- 3. NCMA Performance Evaluation
 - Experimental Setup
 - Results
- 4. Conclusions and Remarks

PNC in Non-Relay Setting?

- Access point wants to get both Message A and Message B, not just their XOR.
- Does PNC have a role to play?

Network-Coded Multiple Access (NCMA)

- Nodes A and B send to AP simultaneously
- AP uses three decoders to separately decode packet A, packet B, and packet A \bigcirc Packet Index $Eq^A | Eq^{A \oplus B} |$

Network

- Eight possible events:
 - Packets A, B, and A B de
 - Packets A and B decoded
 - Packet A \oplus B decoded
 - None decoded

Packet Index	Eq^A	$Eq^{A\oplus B}$	Eq^B
1	C_1^A	$C_1^{A \oplus B}$	C_1^B
2	C_2^A	Ø	C_2^B
3	C_3^A	$C_3^{A\oplus B}$	Ø
4	Ø	$C_4^{A\oplus B}$	C_4^B
5	C_5^A	Ø	Ø
6	Ø	Ø	C_6^B
7	Ø	$C_7^{A\oplus B}$	Ø
-Coded Multiple & ccess	Ø	Ø	Ø ¹⁶

В

Simple Example: Phase Aligned

Received signal

17

Output Distribution

INC

1/17/2014

Network-Coded Multiple Access

Simple Example: Phase difference $\frac{\pi}{4}$

Received signal

$$Y = X_A + X_B e^{-j\frac{\pi}{4}}$$

Output Distribution

Simple Example: Phase difference $\frac{\pi}{2}$ INC

Received signal

$$Y = X_A + X_B e^{-j\frac{\pi}{2}}$$

Output Distribution

 π

Implications

 In practice, different relative phases are possible. It is desirable to use a combination of the PNC decoder (good for phase aligned case) and MUD decoder (good for phase orthogonal case).

 For our <u>OFDM system</u>, things are more complicated. The combined use of the PNC and MUD decoders allows the system to adapt to the channel phases dynamically.

IN

PHY-Layer Decoders of NCMA

Alternatives for MUD Decoding

NCMA: PHY-layer Bridging

Packet Index	Eq^A	$Eq^{A\oplus B}$	Eq^B
1	C_1^A	$C_1^{A \oplus B}$	C_1^B
2	C^A_{z}	Ø	C_2^B
3	C_3^A	$C_3^{A \oplus B}$	C_3^B
4	Ø	$C_4^{A\oplus B}$	$C_4^{\scriptscriptstyle D}$
5	C_5^A	Ø	Ø
6	Ø	Ø	C_6^B
7	Ø	$C_7^{A\oplus B}$	Ø
8	Ø	Ø	Ø

Problem:

There is no mutual information between lone XOR packet and individual user packets.

Critical Idea: MAC-Layer Era Message $M^A \rightarrow$ Packets $\{C_1^A, C_2^A, \dots\}$ Message $M^B \rightarrow$ Packets $\{C_1^B, C_2^B, ...\}$ If RS code is used, as soon as AP decodes any L packets $\{C_1^A, C_2^A, ..., C_N^A\}$, it can obtain M^A . Similarly for M^{B} .

Can we make use of XOR packets, $\{C_1^A \oplus C_1^B, C_2^A \oplus C_2^B, ..., C_N^A \oplus C_N^B\}$?

Solution:

Mutual information can be established if we have another layer of channel coding.Network-Coded Multiple Access
25

NCMA: MAC-Layer Bridging

INC

Example: Decoding M^B , based on M^A and $M^A \oplus M^B$, with L = 3

Packet Index	Eq^{A}	$Eq^{A\oplus B}$	Eq^{B}		Packet Index Eq ²	$Eq^{A\oplus B}$	Eq^{B}	
1	C_1^A		10	RS	$1 C_1^A$			PNC
2		$C_2^{A\oplus B}$			$2 \qquad \qquad$	$C_2^{A\oplus B}$		
3			C_3^B		$3 \qquad C_3^A$		C_3^B	
4	C_4^A	$C_4^{A\oplus B}$	C_4^B		4 C_4^A	$C_4^{A\oplus B}$	C_4^B	
5	C_5^A				$5 \qquad C_5^A$			

Packet Index	Eq^{A}	$Eq^{A\oplus B}$	Eq^{B}		Packet Index	Eq^{A}	$Eq^{A\oplus B}$	Eq^{B}
1	C_1^A		(C_1^B)	RS	1	C_1^A		
2	C_2^A	$C_2^{A\oplus B}$	C_2^B		2	C_2^A	$C_2^{A\oplus B}$	(C_2^B)
3	C_3^A		C_3^B	V	3	C_3^A		C_3^B
4	C_4^A	$C_4^{A\oplus B}$	C_4^B		4	C_4^A	$C_4^{A\oplus B}$	C_4^B
5	C_{20145}^{A}		(C_5^B)	etwork-Coded Multipl	5 e Access	C_5^A		

Outlines

- 1. Physical-layer Network Coding (PNC)
 - Review of PNC
 - PNC Prototype
- 2. Network-Coded Multiple Access (NCMA)
 - PHY-layer Bridging
 - MAC-layer Bridging
- 3. NCMA Performance Evaluation
 - Experimental Setup
 - Results
- 4. Conclusions and Remarks

NCMA Performance Evaluation

- 9 USRP N210 Nodes
- Build on OFDM technology as used in Wi-Fi
- Beacon triggered MAC protocol

Decoder Latency Measurements

1/P/rocessing time of different RHY-layer decoders

Layout of Indoor Experiments

Institute of Network Coding (INC)

INC

1/17/2014

PHY-Layer Packet Decoding Statistics (Balanced Power Case)

Overall Throughputs (Balanced Power): Aggregated Throughput

- RS code parameter $L_A = 4$, 8, 16, 32, and fixed SNR = 9.5 dB
- The <u>Upper Bound</u> and <u>RMUD</u> curves are benchmarks with constant values that downot vary with <u>B</u>

Overall Throughputs (Balanced Power): Individual Throughputs of A and B

• RS code parameter $L_A = 4$, 8, 16, 32, and fixed SNR = 9.5 dB

Overall Throughputs (Balanced Power Case): INC Different SNRs

 $L_A = 1.5 \times L_B = 24$ Network-Coded Multiple Access

Throughputs of Four User Pairs

INC

35

Network-Coded Multiple Access

Pairing Strategies

NCMA with (RMUD+SIC)

Scenario: Four users at locations 2, 3, 4, 5. How to form pairs?

Strategy 1: P2 and P4 Strategy 2: P3 and P5

Table 1: User pairing in random topology

U	User Pair		User A	User B	
	P1	_	Location 1 $(20dB)$	Location 2 $(12.3 dB)$	
	P2	J	Location 2 $(12.3 dB)$	Location 3 (9dB)	
	P3		Location $3 (9 dB)$	Location $4 (7 dB)$	
	P4		Location 4 $(7dB)$	Location 5 $(7.4 dB)$	
	P5		Location 2 $(12.3 dB)$	Location 5 $(7.4 dB)$	

Pair "<u>strong with weak</u>" 1/17 Father than "strong with strong and weak with weak"

NCMA: Overall Summary

- First venture into non-relay setting for PNC
- PNC may have a role to play in the multiple access scenario
 - for simplification of decoder design
 - for jumbo messages

INC

В

Outlines

- 1. Physical-layer Network Coding (PNC)
 - Review of PNC
 - PNC Prototype
- 2. Network-Coded Multiple Access (NCMA)
 - PHY-layer Bridging
 - MAC-layer Bridging
- 3. NCMA Performance Evaluation
 - Experimental Setup
 - Results
- 4. Conclusions and Remarks

To Probe Further

Network-Coded Multiple Access:

- L. Lu, L. You, and S. C. Liew, "Network-Coded Multiple Access," IEEE Transactions on Mobile Computing (under second-round review), 2014. available at <u>http://arxiv.org/abs/1307.1514</u>.
- US Patent Application 61/865,391 "Network-Coded Multiple Access," S. C. Liew, L. Lu, and L. You, filed August 2013.

Implementation of Physical-Layer Network Coding:

- L. Lu, L. You, Q. Yang, T. Wang, M. Zhang, S. Zhang, and S. C. Liew, "Realtime Implementation of Physical-Layer Network Coding," in ACM SIGCOMM SRIF Workshop, August 2013.
- L. Lu, T. Wang, S. C. Liew, and S. Zhang, "Implementation of Physical-Layer Network Coding," Elsevier Physical Communication, vol. 6, no. 1, pp. 74-87, March 2013.
- 5. L. Lu, T. Wang, S. C. Liew, and S. Zhang, ``Implementation of Physical-Layer Network Coding,'' in *Proc. IEEE ICC*, June 2012.

Conclusions

IN

- There has been a lot of theoretical work on PNC
- Relatively few experimental investigations
- PNC: The first real-time PNC prototype
- NCMA: PNC can be applied in a non-relay setting to boost system throughput
- Future:
 - Apply PNC and NCMA to commercial wireless networks: cellular (e.g., LTE-A) and WLAN
 - Use advanced rateless channel codes (e.g., Raptor
 Codes) to replace the RS codes for NCMA

INC

Network-Coded Multiple Access