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Scalar versus Vector Linear NC (LNC): a Recap 

2 

 Every edge transmits a sequence of L data symbols over GF(q).  

 f(m11, m21)

 f(m12, m22)

…
 

 f(m1L, m2L)

 For scalar coding: the L data 

symbols transmitted on e  Out(v) 

are sequentially determined by a 

single linear function f over GF(q).  

e 



Scalar versus Vector LNC: a Recap 
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 Every edge transmits a sequence of L data symbols over GF(q).  

 For vector (block) coding: the L data 

symbols transmitted on e  Out(v) 

are determined by L different linear 

functions fl over GF(q).  

 fL(m11, …, m1L,m21, …, m2L)

 f1(m11, …, m1L,m21, …, m2L)

 f2(m11, …, m1L,m21, …, m2L)

…
 

 For scalar coding: the L data 

symbols transmitted on e  Out(v) 

are sequentially determined by a 

single linear function f over GF(q).  

e 



Scalar versus Vector LNC: a Recap 

 Scalar coding: 

 Local encoding kernel: kd,e  GF(q) 

 Global encoding kernel: fe  GF(q) 

   

    me = mSfe GF(q)  
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fd1 fd2

fe = kd1,efd1+kd2,efd2 



Scalar versus Vector LNC: a Recap 

 Scalar coding: 

 Local encoding kernel: kd,e  GF(q) 

 Global encoding kernel: fe  GF(q) 

   

    me = mSfe GF(q)  

 Vector coding: 

 Local encoding kernel: Kd,e GF(q)LL
 

 Global encoding kernel: Fe  GF(q)LL 

   

      me = mSFe  // L-dim row vector over GF(q) 
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Fd1 Fd2

Fe=Fd1Kd1,e+Fd2 Kd2,e



Scalar versus Vector LNC: a Recap 

 Assume the alphabet size of data units = qL: 

6 

Vector LNC exponentially enriches the choices 

of coding operations at intermediate nodes! 



Scalar versus Vector LNC: a Recap 

 Scalar LNC can be regarded as a special case of vector LNC 

from two facets: 

 Straightforwardly,  

  a scalar linear code over GF(qL)  

     a vector linear code of dimension 1 over GF(qL) 

 In a stronger sense,  

         a scalar linear code over GF(qL)  

     a vector linear code of dimension L over GF(q) 

 (a vector linear code over GF(q)L for short) 
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// By the standard matrix representation of finite field GF(qL) 



Matrix Representation of GF(qL) 
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 Let C be the LL companion matrix of a primitive polynomial 

p(x) of degree L over GF(q).  

 e.g.  p(x) = x3 + x + 1  F2[x] 

 

The characteristic polynomial of C 

det(Ix – C) = p(x).  

Thus, according to the Caylay-Hamilton theorem,  

      p(C) = 0.   

GF(qL) can be represented by  {0, C, C2, …, CqL–1 (= I) } with 

the arithmetic among matrices.  

C =  
0 0 1
1 0 1
0 1 0

 



Every scalar code over GF(qL) can be transformed  

into a vector code over GF(q)L 
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 Given a (not necessarily multicast) network, a scalar linear code 

(kd,e) over GF(qL) is a solution iff the corresponding vector linear 

code ((kd,e)) over GF(q)L is a solution.   

 Let C be the LL companion matrix of a primitive polynomial 

p(x) of degree L over GF(q).  

GF(qL) can be represented by  {0, C, C2, …, CqL–1 (= I) } with 

the arithmetic among matrices.  



Benefits of vector LNC 

A classical example without a scalar linear solution over any GF(q) 

has a simple vector linear solution over GF(2)2 [Médard et.al. 2003]. 
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(m1 m1¢ ) (m2 m2¢ ) (m3 m3¢ ) (m4 m4¢ )

1 2( , )m m ¢
1 2( , )m m¢ 3 4( , )m m ¢

3 4( , )m m¢



Benefits of vector LNC on multicast networks 

On a (single-source) multicast network, scalar LNC is sufficient to 

yield a solution when GF(q) is large enough. 

Vector LNC still has the following benefits: 

 Vector LNC can set base field = GF(2) in advance, and then 

merely increase L to yield a solution. 

 Low-complexity vector LNC schemes only involving 

permutation and addition are proposed [JaggiCassutoEffros’06]. 

 Under the same alphabet size, random vector LNC potentially 

has better performance in terms of higher probability to yield a 

solution [Ho et.al’06]. 
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Benefits of vector LNC on multicast networks 

More benefits of vector LNC [EbrahimiFragouli’11], 

 Vector LNC is more flexible to update upon network variations  

 GF(q)L  GF(q)L+1 is easy, GF(qL)   GF(qL+1) not. 
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 Vector linear solutions over GF(q)L1 and over GF(q)L2 can naturally 

induce a vector linear solution over GF(q)L1+L2 . 

(Conjecture) Scalar linear solvability over both GF(qL1) and GF(qL2) 

does not necessarily imply scalar linear solvability over GF(qL1+L2).  

 (Conjecture) There is a multicast network that has a vector linear 

solution over GF(q)L but no scalar linear solution over GF(q¢) for  

any q¢  qL.  



Benefits of vector LNC on multicast networks 

Since vector coding exponentially enriches the choices 

of NC operations, it would be a folklore for these two 

conjectured benefits to be correct.  
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 Vector linear solutions over GF(q)L1 and over GF(q)L2 can naturally 

induce a vector linear solution over GF(q)L1+L2 . 

(Conjecture) Scalar linear solvability over both GF(qL1) and GF(qL2) 

does not necessarily imply scalar linear solvability over GF(qL1+L2).  

 (Conjecture) There is a multicast network that has a vector linear 

solution over GF(q)L but no scalar linear solution over GF(q¢) for  

any q¢  qL.  



Benefits of vector LNC on multicast networks 

 [EbrahimiFragouli’11] partially proved them under their algebraic 

framework in terms of multivariate determinant polynomials of 

transfer functions. 

 No multicast network has ever been found yet! 
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 Vector linear solutions over GF(q)L1 and over GF(q)L2 can naturally 

induce a vector linear solution over GF(q)L1+L2 . 

(Conjecture) Scalar linear solvability over both GF(qL1) and GF(qL2) 

does not necessarily imply scalar linear solvability over GF(qL1+L2).  

 (Conjecture) There is a multicast network that has a vector linear 

solution over GF(q)L but no scalar linear solution over GF(q¢) for  

any q¢  qL.  



Highlight of the remaining talk 

 We demonstrate explicit networks to verify Conjecture 1.  

 Propose a general method to construct multicast networks that verify 

Conjecture 2.  

 We also show examples where scalar code outperforms vector one  

in terms of alphabet size to yield a solution.  
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 Vector linear solutions over GF(q)L1 and over GF(q)L2 can naturally 

induce a vector linear solution over GF(q)L1+L2 . 

  (Conjecture 1) Scalar linear solvability over both GF(qL1) and GF(qL2) 

does not necessarily imply scalar linear solvability over GF(qL1+L2).  

 (Conjecture 2) There is a multicast network that has a vector linear 

solution over GF(q)L but no scalar linear solution over GF(q¢) for  

any q¢  qL.  



Verification of Conjecture 1 

Theorem. There exists a multicast network scalar linearly solvable 

over GF(qL1), GF(qL2), …, GF(qLm) but not over GF(qL1+L2+…+Lm). 

 

Motivation. The first few multicast networks scalar linearly solvable 

over GF(q) but not over GF(q¢) with some q¢ > q.   
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The Swirl network with   3 [Sun et.al’2014]  
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 It can have an arbitrary source dimension   3. 

 For every  grey nodes with full maxflow  from s, there is a 

receiver connected from them. 



The Swirl network with (large enough)   
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Proposition. qmin = 5. The Swirl network is scalar linearly solvable 

over all GF(2p) except for the case that 2p – 1 is prime.  

Key reason: It is linearly solvable over GF(q) iff  

            a proper subgroup G  GF(q) s.t. |G|  2. 

G = {1, 4}  GF(5)     When 2p – 1 is prime 

{1} = GF(2p)           



Verification of Conjecture 1 
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Idea: To test whether there exist L1, L2 such that 2L1 – 1 and 2L2 – 1 

are composite while 2L1+L2 – 1 is prime.  

Proposition. qmin = 5. The Swirl network is scalar linearly solvable 

over all GF(2p) except for the case that 2p – 1 is prime.  



Mersenne numbers 

 Mersenne numbers: 2n – 1 

 Mersenne primes: 2p – 1   
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# p 2p – 1  

1 2 3 

2 3 7 

3 5 31 

4 7 127 

5 13 8191 

6 17 131071 

= (2429–1)  

Done! 

Goal: find p s.t. p = m + n, 2m – 1 and 2n – 1 are composite numbers. 

  



Mersenne numbers 

 Mersenne numbers: 2n – 1 

 Mersenne primes: 2p – 1   
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# p 2p – 1  

1 2 3 

2 3 7 

3 5 31 

4 7 127 

5 13 8191 

6 17 131071 

= (2429–1)  

Done! 

 The Swirl network (with  large enough) is scalar linearly 

solvable over GF(24) and GF(29) but not over GF(213). 



Mersenne numbers 

 Mersenne numbers: 2n – 1 

 Mersenne primes: 2p – 1   
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# p 2p – 1  

1 2 3 

2 3 7 

3 5 31 

4 7 127 

5 13 8191 

6 17 131071 

For the nth ( 5) Mersenne prime 2p – 1, we can write p = L1 + … + 

Lm (2  m  n–3) s.t. 2Lj – 1 is a composite.  

Done! 

= (2429–1)  

= (242429–1) 

= (2829–1) 



Verification of Conjecture 1 
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 Proposition. The Swirl network (with  large enough) is scalar 

linearly solvable over GF(2L1), GF(2L2), …, GF(2Lm) for some 

L1, …, Lm, but not over GF(2L1+L2+…+Lm).  

 Corollary. There exists a multicast network scalar linearly 

solvable over GF(qL1), GF(qL2), …, GF(qLm) but not over 

GF(qL1+L2+…+Lm). When there are infinitely many Mersenne 

primes, m can tend to infinity. 

 Remark. Our approach only verifies the Conjecture for the even 

characteristic case. The case that q is odd is still open.  



Vector linear solvability of Swirl network 
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 Proposition. The Swirl network (with  large enough) is scalar 

linearly solvable over GF(2L1), GF(2L2), …, GF(2Lm) for some 

L1, …, Lm, but not over GF(2L1+L2+…+Lm).  

A scalar linear solution (kd, e, j) over GF(2Lj) 

A vector linear solution (Kd,e,j) over GF(2)Lj 

Kd, e, j = (kd, e, j)  

A vector linear solution (Kd,e,j) over GF(2)L1+L2+…+Lm 



Vector linear solvability of Swirl network 
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 Proposition. When L  5 and 2L – 1 is a prime, the Swirl network 

(with  large enough) is vector linearly solvable over GF(2)L, but 

not scalar linearly solvable over GF(2L). 

 However, the Swirl network is scalar linearly solvable over 

GF(5). Still one step away to verify Conjecture 2. 

 Provide a general method to construct a multicast network with 

a vector linear solution over GF(q)L but without a scalar linear 

solution over any GF(q¢) with q¢  qL . 



(n+1, 2)-Combination Network  
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  a scalar linear solution over GF(qL)  

  
1 0 1 … 1
0 1 𝑎1 … 𝑎𝑛−1

 

iff  qL  n. 

ai  GF(qL)\{0} 

ai  aj  
iff 



(n+1, 2)-Combination Network  
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  a vector linear solution over GF(q)L  

      iff 
𝐈 𝟎 𝐈 … 𝐈
𝟎 𝐈 𝐀1 … 𝐀𝑛−1

 
Ai : LL invertible matrix 

       over GF(q)  

rank(Ai – Aj) = L 

 



Rank-metric codes 
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  a vector linear solution over GF(q)L  

      iff 
𝐈 𝟎 𝐈 … 𝐈
𝟎 𝐈 𝐀1 … 𝐀𝑛−1

 

 {0, A1, …, An–1} forms an LL rank-metric code of distance L 

over GF(q). 

 Singleton-bound for an LL rank-metric code C over GF(q) 

with minimum distance d:  

| C |  qL(L – d + 1)  

 |{0, A1, …, An–1}|  qL // Maximum Rank Distance code 

// d(Ai, Aj) = rank(Ai – Aj)   

Ai : LL invertible matrix 

       over GF(q)  

rank(Ai – Aj) = L 

 



(n+1, 2)-Combination Network  
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  a vector linear solution over GF(q)L
 iff  q

L  n.  

  a scalar linear solution over GF(q)L
 iff  q

L  n.  



Verification of Conjecture 2 
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 Let N be an arbitrary multicast network that has a vector linear 

solution over GF(q)L but no scalar linear solution over GF(qL). 

 N  

s¢ 
… 

… 

(qL+1, 2)-combination network 

 



Verification of Conjecture 2 
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 N  

s¢ 
… 

… 

(qL+1, 2)-combination network 

 

Theorem. The multicast network has a vector linear solution over 

GF(q)L but no scalar linear solution over GF(q¢) for any q¢  qL. 



Vector vs. scalar LNC on multicast networks 

Vector LNC outperforms scalar LNC in terms of alphabet size to 

yield a solution: 

 Scalar linearly solvable over GF(qL1), …, GF(qLm) may not be 

so over GF(qL1+…+Lm).  

Vector linearly solvable over GF(q) of dimensions L1, …, Lm 

must be so over GF(q) of dimensions L1+ …+Lm 

 There is a multicast network that has a vector linear solution 

over GF(q)L but no scalar linear solution over GF(q¢) for any  

q¢  qL. 

Scalar LNC may also outperform vector LNC in terms of alphabet 

size to yield a solution too.  
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Vector vs. scalar LNC on multicast networks 

Scalar LNC may also outperform vector LNC in terms of alphabet 

size to yield a solution too.  

 Vector LNC can set base field = GF(2) in advance, and then 

merely increase L to yield a solution. 

  multicast networks scalar linearly solvable over GF(q) but not 

vector linearly solvable over GF(2)L with 2L > q. 
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Scalar linearly solvable over 

GF(5), but not over GF(2p) 

Whether vector linearly 

solvable over GF(2)p? 



Vector linear solvability of Swirl network 
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 The Swirl network is scalar linearly solvable over GF(q)  

     iff   a1, …, a  GF(q)\{0, 1}, b  GF(q)\{0} s.t.  

b + m1m2 … m  0,  mj  {1, aj} 

 The Swirl network is vector linearly solvable over GF(q)Liff  

 invertible matrices A1, …, A , B over GF(q) of size L  L s.t.  

rank(I – Aj) = L    j  

rank(B + M1M2 … M) = L,  Mj  {I, Aj} 

GF(q)  Zq¢–1  Assign a1, …, a  G\{1}, b  GF(q)\G 

     iff   a proper subgroup G of GF(q) with |G|  2.  

General Linear Group of degree L 

G  

 Haven’t found a good way to further analyze the equivalent conditions.  



Vector vs. scalar LNC on multicast networks 
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 When   6, the Swirl network is scalar linearly solvable over 

GF(5), but not vector linearly solvable over GF(2)3.   

Scalar linearly solvable over GF(7) but not over GF(8). 

Not vector linearly solvable over GF(2)3 either.  



Vector vs. scalar LNC on multicast networks 

Vector LNC outperforms scalar LNC in terms of alphabet size to 

yield a solution: 

 Scalar linearly solvable over GF(qL1), …, GF(qLm) may not be 

so over GF(qL1+…+Lm).  

Vector linearly solvable over GF(q) of dimensions L1, …, Lm 

must be so over GF(q) of dimensions L1+ …+Lm 

 There is a multicast network that has a vector linear solution 

over GF(q)L but no scalar linear solution over GF(q¢) for any q¢ 

 qL. 

Scalar LNC may also outperform vector LNC in terms of alphabet 

size to yield a solution too.  
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Summary (on multicast networks) 
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New New 

New 

New New New 



Thanks! 

Have a Prosperous Year of Sheep! 


