Vector versus Scalar Linear Codes for Multicast Network Coding

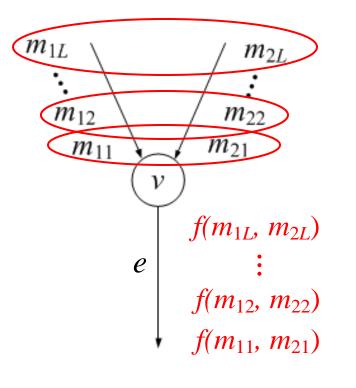
Qifu (Tyler) Sun

(Joint work with Xiaolong Yang, Keping Long and Zongpeng Li)

Feb, 2015 @ INC, CUHK

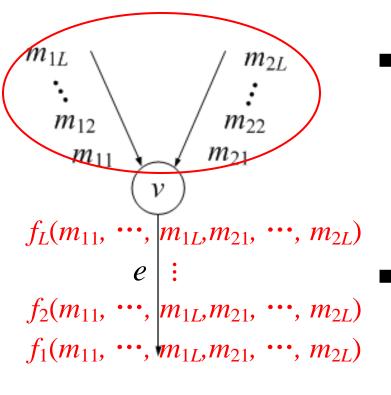
Scalar versus Vector Linear NC (LNC): a Recap

• Every edge transmits a sequence of L data symbols over GF(q).



• For scalar coding: the *L* data symbols transmitted on $e \in Out(v)$ are sequentially determined by a *single* linear function *f* over GF(*q*).

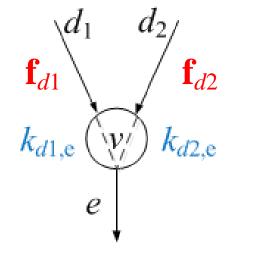
• Every edge transmits a sequence of L data symbols over GF(q).



- For scalar coding: the *L* data symbols transmitted on $e \in Out(v)$ are sequentially determined by a *single* linear function *f* over GF(*q*).
 - For vector (block) coding: the *L* data symbols transmitted on $e \in Out(v)$ are determined by *L* different linear functions f_l over GF(q).

- Scalar coding:
 - Local encoding kernel: $k_{d,e} \in GF(q)$
 - Global encoding kernel: $\mathbf{f}_e \in GF(q)^{\omega}$

$$\mathbf{f}_e = \sum_{d \in In(v)} k_{d,e} \mathbf{f}_d$$
$$m_e = \mathbf{m}_S \mathbf{f}_e \in \mathrm{GF}(q)$$



 $\mathbf{f}_e = k_{d1,e} \mathbf{f}_{d1} + k_{d2,e} \mathbf{f}_{d2}$

- Scalar coding:
 - Local encoding kernel: $k_{d,e} \in GF(q)$
 - Global encoding kernel: $\mathbf{f}_e \in \mathrm{GF}(q)^{\omega}$

$$\mathbf{f}_e = \sum_{d \in In(v)} k_{d,e} \mathbf{f}_d$$
$$m_e = \mathbf{m}_S \mathbf{f}_e \in \mathrm{GF}(q)$$

- Vector coding:
 - Local encoding kernel: $\mathbf{K}_{d,e} \in \mathrm{GF}(q)^{L \times L}$
 - Global encoding kernel: $\mathbf{F}_e \in GF(q)^{\omega L \times L}$

$$\mathbf{F}_{e} = \sum_{d \in In(v)} \mathbf{F}_{d} \mathbf{K}_{d,e} \qquad \mathbf{F}_{e} = \mathbf{F}_{d1} \mathbf{K}_{d1,e} + \mathbf{F}_{d2}$$
$$\mathbf{m}_{e} = \mathbf{m}_{S} \mathbf{F}_{e} // L \text{-dim row vector over } \mathbf{GF}(q)$$

 \mathbf{F}_{d1}

 $\mathbf{K}_{d1,e}$

e

K_{d2.e}

• Assume the alphabet size of data units = q^L :

	Scalar LNC	Vector LNC
Data unit alphabet	Base field $GF(q^L)$	Vector space $GF(q)^L$
Local encoding kernel	Element in $GF(q^L)$	$L \times L$ matrix over $GF(q)$
# of candidates for local encoding kernels	q^L	q^{L^2}

Vector LNC *exponentially* enriches the choices of coding operations at intermediate nodes!

- Scalar LNC can be regarded as a special case of vector LNC from two facets:
 - Straightforwardly,

a scalar linear code over $GF(q^L)$

- \rightarrow a vector linear code of dimension 1 over $GF(q^L)$
- In a stronger sense,

a scalar linear code over $GF(q^L)$

 \rightarrow a vector linear code of dimension *L* over GF(*q*)

(a vector linear code over $GF(q)^L$ for short)

// By the standard matrix representation of finite field $GF(q^L)$

Matrix Representation of $GF(q^L)$

• Let **C** be the $L \times L$ companion matrix of a primitive polynomial p(x) of degree L over GF(q).

e.g.
$$p(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$$
 $\mathbf{C} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

ГЛ

1 ٦

The characteristic polynomial of C

$$\det(\mathbf{I}x - \mathbf{C}) = p(x).$$

Thus, according to the Caylay-Hamilton theorem,

 $p(\mathbf{C}) = \mathbf{0}.$

GF(q^L) can be represented by {0, C, C², ..., C^{q^{L-1}} (= I) } with the arithmetic among matrices.

Every scalar code over $GF(q^L)$ can be transformed into a vector code over $GF(q)^L$

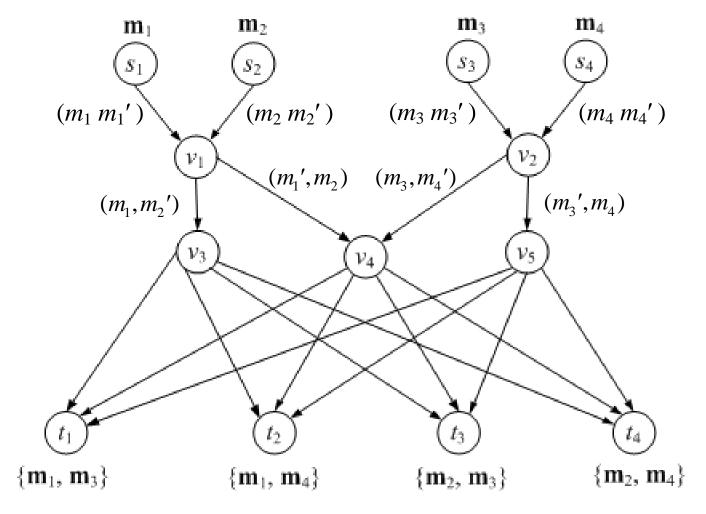
• Let **C** be the $L \times L$ companion matrix of a primitive polynomial p(x) of degree L over GF(q).

GF(q^L) can be represented by {0, C, C², ..., C^{q^{L-1}} (= I) } with the arithmetic among matrices.

Given a (not necessarily multicast) network, a scalar linear code $(k_{d,e})$ over $GF(q^L)$ is a solution *iff* the corresponding vector linear code $(\Phi(k_{d,e}))$ over $GF(q)^L$ is a solution.

Benefits of vector LNC

A classical example without a scalar linear solution over any GF(q) has a simple vector linear solution over $GF(2)^2$ [M édard et.al. 2003].



On a (single-source) multicast network, scalar LNC is sufficient to yield a solution when GF(q) is large enough.

Vector LNC still has the following benefits:

- Vector LNC can set base field = GF(2) in advance, and then merely increase *L* to yield a solution.
- Low-complexity vector LNC schemes only involving permutation and addition are proposed [JaggiCassutoEffros'06].
- Under the same alphabet size, random vector LNC potentially has better performance in terms of higher probability to yield a solution [Ho et.al'06].

More benefits of vector LNC [EbrahimiFragouli'11],

- Vector LNC is more flexible to update upon network variations $GF(q)^L \rightarrow GF(q)^{L+1}$ is easy, $GF(q^L) \rightarrow GF(q^{L+1})$ not.
- Vector linear solutions over $GF(q)^{L_1}$ and over $GF(q)^{L_2}$ can naturally induce a vector linear solution over $GF(q)^{L_1+L_2}$.

(**Conjecture**) Scalar linear solvability over both $GF(q^{L_1})$ and $GF(q^{L_2})$ does *not* necessarily imply scalar linear solvability over $GF(q^{L_1+L_2})$.

• (Conjecture) There is a multicast network that has a vector linear solution over $GF(q)^L$ but no scalar linear solution over GF(q') for any $q' \leq q^L$.

Since vector coding *exponentially* enriches the choices of NC operations, it would be a folklore for these two conjectured benefits to be correct.

• Vector linear solutions over $GF(q)^{L_1}$ and over $GF(q)^{L_2}$ can naturally induce a vector linear solution over $GF(q)^{L_1+L_2}$.

(**Conjecture**) Scalar linear solvability over both $GF(q^{L_1})$ and $GF(q^{L_2})$ does *not* necessarily imply scalar linear solvability over $GF(q^{L_1+L_2})$.

• (Conjecture) There is a multicast network that has a vector linear solution over $GF(q)^L$ but no scalar linear solution over GF(q') for any $q' \le q^L$.

- [EbrahimiFragouli'11] partially proved them under their algebraic framework in terms of multivariate determinant polynomials of transfer functions.
- No multicast network has ever been found yet!
- Vector linear solutions over $GF(q)^{L_1}$ and over $GF(q)^{L_2}$ can naturally induce a vector linear solution over $GF(q)^{L_1+L_2}$.

(**Conjecture**) Scalar linear solvability over both $GF(q^{L_1})$ and $GF(q^{L_2})$ does *not* necessarily imply scalar linear solvability over $GF(q^{L_1+L_2})$.

• (Conjecture) There is a multicast network that has a vector linear solution over $GF(q)^L$ but no scalar linear solution over GF(q') for any $q' \le q^L$.

Highlight of the remaining talk

- We demonstrate explicit networks to verify Conjecture 1.
- Propose a general method to construct multicast networks that verify Conjecture 2.
- We also show examples where scalar code outperforms vector one in terms of alphabet size to yield a solution.
- Vector linear solutions over $GF(q)^{L_1}$ and over $GF(q)^{L_2}$ can naturally induce a vector linear solution over $GF(q)^{L_1+L_2}$.
 - (Conjecture 1) Scalar linear solvability over both $GF(q^{L_1})$ and $GF(q^{L_2})$ does *not* necessarily imply scalar linear solvability over $GF(q^{L_1+L_2})$.
- (Conjecture 2) There is a multicast network that has a vector linear solution over $GF(q)^L$ but no scalar linear solution over GF(q') for any $q' \leq q^L$.

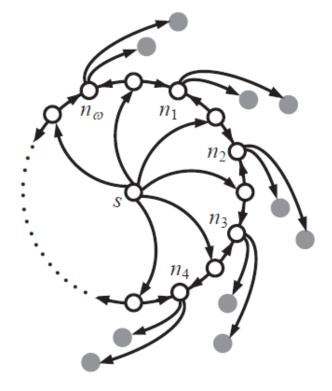
Verification of Conjecture 1

Theorem. There exists a multicast network scalar linearly solvable over $GF(q^{L_1})$, $GF(q^{L_2})$, ..., $GF(q^{L_m})$ but *not* over $GF(q^{L_1+L_2+...+L_m})$.

Motivation. The first few multicast networks scalar linearly solvable over GF(q) but not over GF(q') with some q' > q.

The Swirl network with $\omega \ge 3$ [Sun et.al'2014]

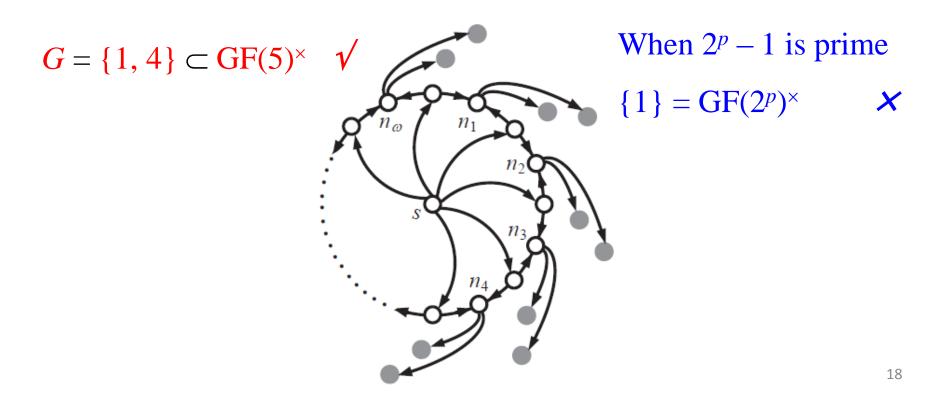
- It can have an arbitrary source dimension $\omega \ge 3$.
- For every ω grey nodes with full maxflow ω from *s*, there is a receiver connected from them.



The Swirl network with (large enough) ω

Proposition. $q_{min} = 5$. The Swirl network is scalar linearly solvable over all GF(2^{*p*}) except for the case that $2^{p} - 1$ is prime.

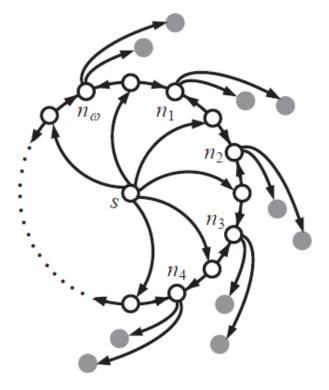
Key reason: It is linearly solvable over GF(q) iff \exists a proper subgroup $G \subset GF(q)^{\times}$ s.t. $|G| \ge 2$.



Verification of Conjecture 1

Proposition. $q_{min} = 5$. The Swirl network is scalar linearly solvable over all GF(2^{*p*}) except for the case that $2^{p} - 1$ is prime.

Idea: To test whether there exist L_1 , L_2 such that $2^{L_1}-1$ and $2^{L_2}-1$ are *composite* while $2^{L_1+L_2}-1$ is *prime*.



Mersenne numbers

- Mersenne numbers: $2^n 1$
- Mersenne primes: $2^p 1$

#	p	2 ^{<i>p</i>} – 1	
1	2	3	
2	3	7	
3	5	31	
4	7	127	Done!
5	13	8191	$> = (2^4 \cdot 2^9 - 1)$
6	17	131071	

Goal: find *p* s.t. p = m + n, $2^m - 1$ and $2^n - 1$ are composite numbers.

Mersenne numbers

- Mersenne numbers: $2^n 1$
- Mersenne primes: $2^p 1$

#	p	2 ^{<i>p</i>} – 1	
1	2	3	
2	3	7	
3	5	31	
4	7	127	Done!
5	13	8191	$> = (2^4 \cdot 2^9 - 1)$
6	17	131071	

• The Swirl network (with ω large enough) is scalar linearly solvable over GF(2⁴) and GF(2⁹) but not over GF(2¹³).

Mersenne numbers

- Mersenne numbers: $2^n 1$
- Mersenne primes: $2^p 1$

#	p	2 ^{<i>p</i>} – 1	
1	2	3	
2	3	7	
3	5	31	
4	7	127	Done!
5	13	8191	$> = (2^4 \cdot 2^9 - 1)$
6	17	131071	$=(2^4 \cdot 2^4 \cdot 2^9 - 1)$
			$=(2^{8}\cdot 2^{9}-1)$

For the $n^{\text{th}} (\geq 5)$ Mersenne prime $2^p - 1$, we can write $p = L_1 + ... + L_m (2 \leq m \leq n-3)$ s.t. $2^{L_j} - 1$ is a composite.

Verification of Conjecture 1

- **Proposition**. The Swirl network (with ω large enough) is scalar linearly solvable over $GF(2^{L_1})$, $GF(2^{L_2})$, ..., $GF(2^{L_m})$ for some L_1, \ldots, L_m , but *not* over $GF(2^{L_1+L_2+\ldots+L_m})$.
- Corollary. There exists a multicast network scalar linearly solvable over GF(q^{L1}), GF(q^{L2}), ..., GF(q^{Lm}) but *not* over GF(q^{L1+L2+...+Lm}). When there are infinitely many Mersenne primes, *m* can tend to infinity.
- Remark. Our approach only verifies the Conjecture for the *even* characteristic case. The case that q is odd is still open.

Vector linear solvability of Swirl network

• **Proposition**. The Swirl network (with ω large enough) is scalar linearly solvable over $GF(2^{L_1})$, $GF(2^{L_2})$, ..., $GF(2^{L_m})$ for some $L_1, ..., L_m$, but *not* over $GF(2^{L_1+L_2+...+L_m})$.

A scalar linear solution $(k_{d, e, j})$ over $GF(2^{L_j})$

$$\mathbf{K}_{d, e, j} = \Phi(k_{d, e, j})$$

A vector linear solution ($\mathbf{K}_{d,e,j}$) over $GF(2)^{L_j}$

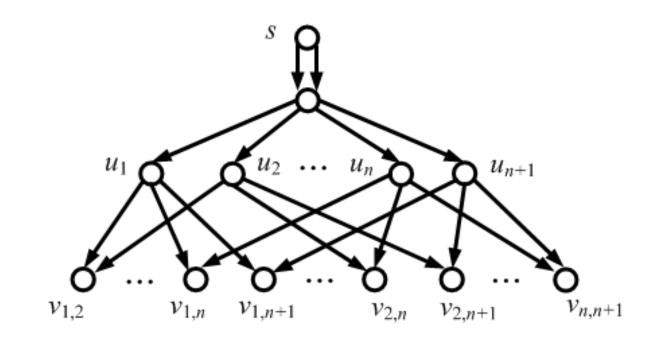
$$\mathbf{\int} \mathbf{K}_{d,e} = \begin{bmatrix} \Phi(k_{d,e,1}) & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \Phi(k_{d,e,2}) & \cdots & \cdots \\ \cdots & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \Phi(k_{d,e,m}) \end{bmatrix}$$

A vector linear solution ($\mathbf{K}_{d,e,j}$) over GF(2)^{$L_1+L_2+...+L_m$}

Vector linear solvability of Swirl network

- **Proposition**. When $L \ge 5$ and $2^L 1$ is a prime, the Swirl network (with ω large enough) is vector linearly solvable over $GF(2)^L$, but not scalar linearly solvable over $GF(2^L)$.
- However, the Swirl network is scalar linearly solvable over GF(5). Still one step away to verify Conjecture 2.
- Provide a general method to construct a multicast network with a vector linear solution over $GF(q)^L$ but without a scalar linear solution over any GF(q') with $q' \le q^L$.

(n+1, 2)-Combination Network

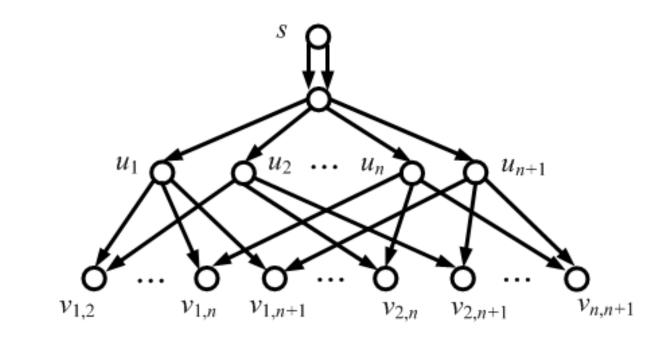


■ \exists a *scalar* linear solution over $GF(q^L)$

$$\inf \begin{bmatrix} 1 & 0 & 1 & \dots & 1 \\ 0 & 1 & a_1 & \dots & a_{n-1} \end{bmatrix} \quad \begin{array}{l} a_i \in \mathrm{GF}(q^L) \setminus \{0\} \\ a_i \neq a_j \end{array}$$

$$\inf \ q^L \geq n.$$

(n+1, 2)-Combination Network



■ ∃ a *vector* linear solution over $GF(q)^L$

iff
$$\begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{I} & \dots & \mathbf{I} \\ \mathbf{0} & \mathbf{I} & \mathbf{A}_1 & \dots & \mathbf{A}_{n-1} \end{bmatrix}$$
 $\begin{bmatrix} \mathbf{A}_i : L \times L \text{ invertible matrix} \\ \text{over GF}(q) \\ rank(\mathbf{A}_i - \mathbf{A}_j) = L \end{bmatrix}$

Rank-metric codes

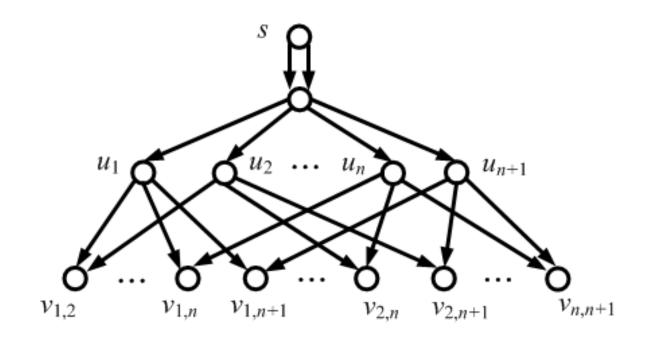
- {0, A_1 , ..., A_{n-1} } forms an $L \times L$ rank-metric code of distance Lover GF(q). // $d(A_i, A_j) = rank(A_i - A_j)$
- Singleton-bound for an L×L rank-metric code C over GF(q) with minimum distance d:

 $\mid \mathcal{C} \mid \leq q^{L(L-d+1)}$

- $|\{\mathbf{0}, \mathbf{A}_1, \dots, \mathbf{A}_{n-1}\}| \le q^L \qquad // \text{ Maximum Rank Distance code}$
- \exists a *vector* linear solution over $GF(q)^L$

iff
$$\begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{I} & \dots & \mathbf{I} \\ \mathbf{0} & \mathbf{I} & \mathbf{A}_1 & \dots & \mathbf{A}_{n-1} \end{bmatrix}$$
 $\begin{bmatrix} \mathbf{A}_i : L \times L \text{ invertible matrix} \\ \text{over GF}(q) \\ rank(\mathbf{A}_i - \mathbf{A}_j) = L \end{bmatrix}$

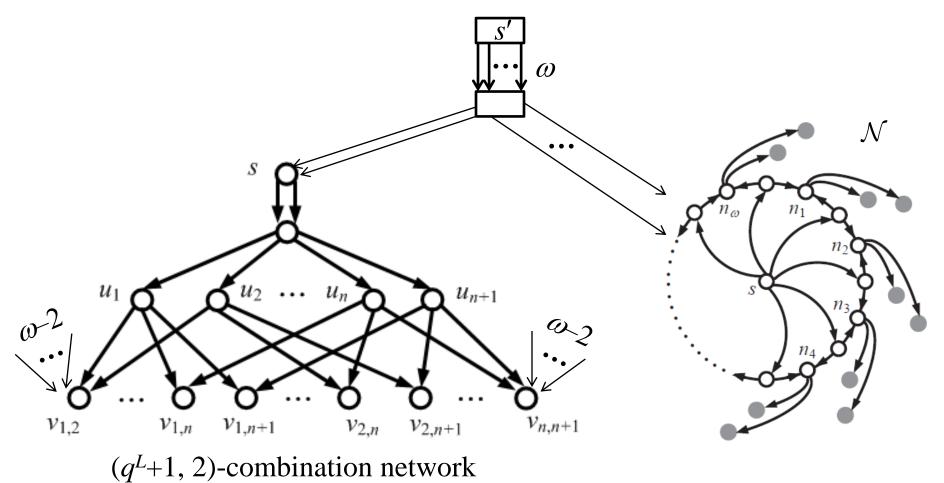
(n+1, 2)-Combination Network



- ∃ a *vector* linear solution over $GF(q)^L$ iff $q^L \ge n$.
- ∃ a *scalar* linear solution over $GF(q)^L$ iff $q^L \ge n$.

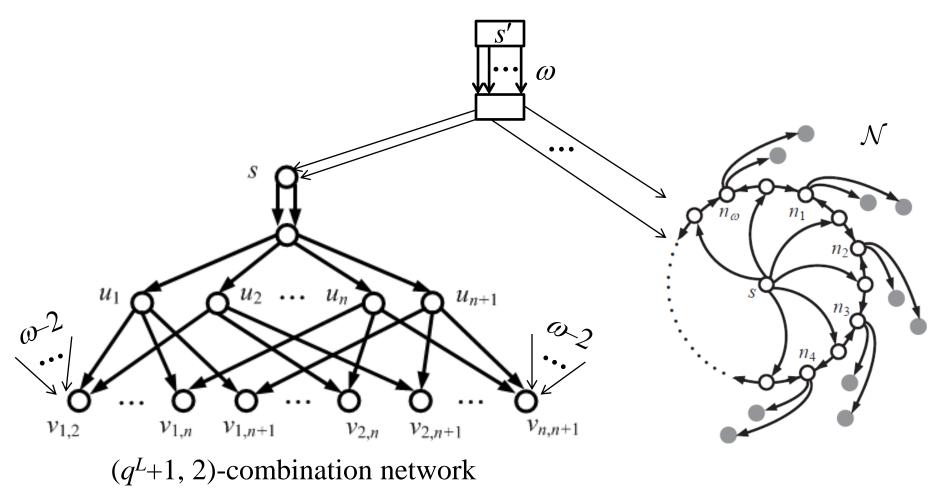
Verification of Conjecture 2

• Let \mathcal{N} be an *arbitrary* multicast network that has a vector linear solution over $GF(q)^L$ but no scalar linear solution over $GF(q^L)$.



Verification of Conjecture 2

Theorem. The multicast network has a vector linear solution over $GF(q)^L$ but no scalar linear solution over GF(q') for any $q' \leq q^L$.



Vector vs. scalar LNC on multicast networks

Vector LNC outperforms scalar LNC in terms of alphabet size to yield a solution:

■ Scalar linearly solvable over $GF(q^{L_1}), ..., GF(q^{L_m})$ may not be so over $GF(q^{L_1+...+L_m})$.

Vector linearly solvable over GF(q) of dimensions $L_1, ..., L_m$ must be so over GF(q) of dimensions $L_1 + ... + L_m$

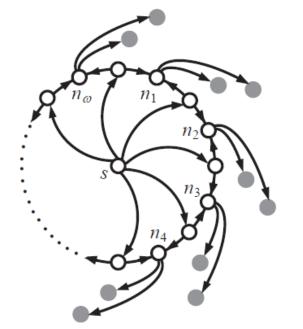
• There is a multicast network that has a vector linear solution over $GF(q)^L$ but no scalar linear solution over GF(q') for any $q' \le q^L$.

Scalar LNC may also outperform vector LNC in terms of alphabet size to yield a solution too.

Vector vs. scalar LNC on multicast networks

Scalar LNC may also outperform vector LNC in terms of alphabet size to yield a solution too.

- Vector LNC can set base field = GF(2) in advance, and then merely increase *L* to yield a solution.
- ∃ multicast networks scalar linearly solvable over GF(q) but *not* vector linearly solvable over $GF(2)^L$ with $2^L > q$.



Scalar linearly solvable over GF(5), but not over $GF(2^p)$

Whether vector linearly solvable over GF(2)^{*p*}?

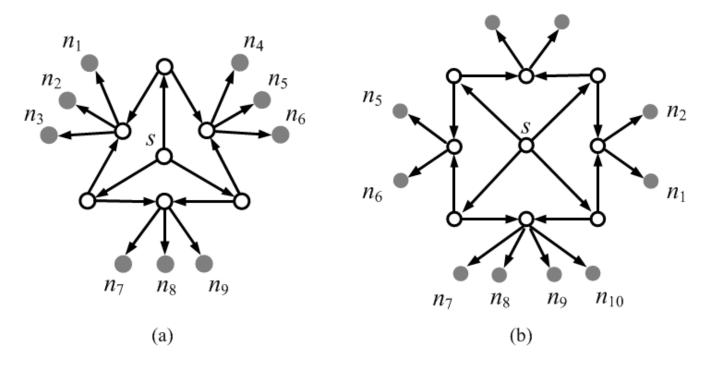
Vector linear solvability of Swirl network

- The Swirl network is *scalar* linearly solvable over GF(q) *iff* ∃ $a_1, ..., a_{\omega} \in GF(q) \setminus \{0, 1\}, b \in GF(q) \setminus \{0\}$ s.t. $b + m_1 \cdot m_2 \dots m_{\omega} \neq 0, \forall m_j \in \{1, a_j\}$ $G \subset GF(q)^{\times} \cong \mathbb{Z}_{q'-1}$ Assign $a_1, ..., a_{\omega} \in G \setminus \{1\}, b \in GF(q)^{\times} \setminus G$ *iff* ∃ a proper subgroup G of GF(q)[×] with |G| ≥ 2.
- The Swirl network is *vector* linearly solvable over $GF(q)^{L}$ *iff* ∃ invertible matrices $\mathbf{A}_{1}, ..., \mathbf{A}_{\omega}$, \mathbf{B} over GF(q) of size $L \times L$ s.t. *General Linear Group of degree* L $rank(\mathbf{I} - \mathbf{A}_{j}) = L \quad \forall j$ $rank(\mathbf{B} + \mathbf{M}_{1} \cdot \mathbf{M}_{2} \dots \mathbf{M}_{\omega}) = L, \forall \mathbf{M}_{i} \in {\mathbf{I}, \mathbf{A}_{i}}$

⊗ Haven't found a good way to further analyze the equivalent conditions.

Vector vs. scalar LNC on multicast networks

• When $\omega \ge 6$, the Swirl network is *scalar* linearly solvable over **GF(5)**, but *not vector* linearly solvable over **GF(2)**³.



Scalar linearly solvable over GF(7) but not over GF(8). *Not vector* linearly solvable over GF(2)³ either.

Vector vs. scalar LNC on multicast networks

Vector LNC outperforms scalar LNC in terms of alphabet size to yield a solution:

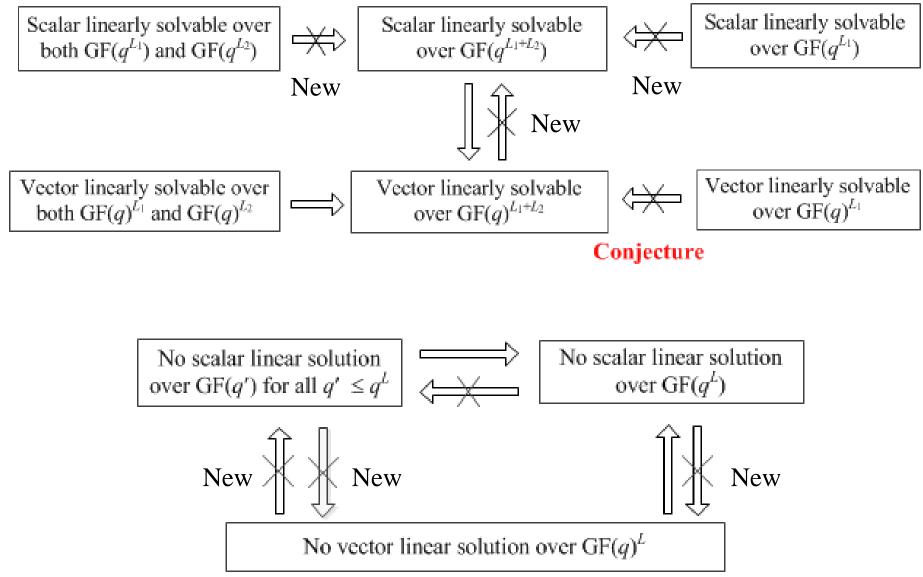
■ Scalar linearly solvable over $GF(q^{L_1}), ..., GF(q^{L_m})$ may not be so over $GF(q^{L_1+...+L_m})$.

Vector linearly solvable over GF(q) of dimensions $L_1, ..., L_m$ must be so over GF(q) of dimensions $L_1 + ... + L_m$

There is a multicast network that has a vector linear solution over $GF(q)^L$ but no scalar linear solution over GF(q') for any $q' \leq q^L$.

Scalar LNC may also outperform vector LNC in terms of alphabet size to yield a solution too.

Summary (on multicast networks)



Thanks!

Have a Prosperous Year of Sheep!

