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Motivation: information flow in networks

Coding (mix the input) outperforms routing (receive-forward) in many
circumstances

Efficient information flow in networks: admissible source rate v.s
channel capacities
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Motivation: information storage in data centers

Coding (mix sources) saves resources, compared with simple
replication

Efficient information storage in data centers: admissible source file
size v.s hard disk capacities
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Generalized model

A multisource multisink hyperedge network (hyperedge MSNC)
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Notation: (K , |EU |) means K
sources, |EU | intermediate
hyperedges

We made three major contributions
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Contribution 1: Revolution, use computer for rate region
calculation

Conventional: 1 (special) network, info. ineq., manually, 1 paper

Computational: 103, 106, 1012 (arbitrary) networks, computer, # of
papers?
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Contribution 2: enumeration of all networks

Conventional: almost impossible to list all networks due to the large
number of instances

Computational: enumerate ≥ 109, 1012 general networks
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Contribution 3: build hierarchy between networks

Conventional: what to do with so many rate regions?

Computational: define embedding and combination operators, build a
hierarchy, analyze the rate regions and use them to solve even more
networks in scale

Conventional way Computational way
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Outline
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Network Coding: Sources

We assume UOut(s) = Ys
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Network Coding: Edges
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Network Coding: Nodes
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Network Coding: Sinks

Paths
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Special Case: Independent Distributed Source Coding
(IDSC)
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Special Case: Index Coding
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Only one intermediate edge that transmits all information of sources

Sources may be directly available at sinks as side information

(K , 1) hyperedge MSNC
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Source minimality example

Source minimality example: Redundant source s3 is not demanded by any
sink.
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Node minimality example

Node minimality example: g1, g2 can be merged due to same input
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Edge minimality example

Edge minimality example: U2,U3 are parallel and can be merged
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Sink minimality example

Sink minimality example: decoding ability of Y2 at t2 implied by t1,
equivalent to let t2 demand Y1 only
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Equivalent Networks
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Representing a Network

Ordered pair (Q,W), sources 1 . . .K , edges K + 1, . . . ,K + |EU |;
Edge definitions Q ⊆
{(i ,A)|i ∈ {K + 1, . . . ,K + |EU |}, A ⊆ {1, . . . ,K + |EU |} \ {i}};
Sink definitions
W ⊆ {(i ,A)|i ∈ {1, . . . ,K}, A ⊆ {1, . . . ,K + |EU |} \ {i}};
Same i allowed to appear in W but not in Q

1
2

3
4

12 2

(3, {1, 2}) (4, {1, 3})

(1, {3, 4})(2, {3}) (2, {4})

Q

W
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Equivalence Under Group Action

Symmetry group G := S{1,2,...,K} × S{K+1,...,K+|EU |};

π ∈ G, then π(Q) 7→ {π((i ,A))|(i ,A) ∈ Q};
π((Q,W)) = (π(Q), π(W));

Isomorphic or Equivalent: ∃π ∈ G such that
π((Q1,W1)) = (Q2,W2).
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12 2

(3, {1, 2}) (4, {1, 3})
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W 0

⇡ : permute 1, 2
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Canonical Network: minimal representative in each orbit

Orbit: O(Q,W) := {(π(Q), π(W))|π ∈ G}
Networks in an orbit are isomorphic or equivalent to each other

Transversal: one representative for each orbit, the canonical one

Lexicographically order the pairs (i ,A) according to (i ,A) > (j ,A′) if
j < i or i = j ,A′ < A under the lexicographic ordering

Canonical: apply order to (Q,W) and get the minimal one

# 1 2 3 4
` 2 1 2 1

# 1 2 3 4
` 3 3 4 4

# 1 2 3 4
` 2 1 2 1

# 1 2 3 4
` 2 1 2 1

# 1 2 3 4
` 1 2 1 2

# 1 2 3 4
` 4 4 3 3

# 1 2 3 4
` 1 2 1 2

# Q W
1 {(3, {1, 2}), (4, {1, 3})} {(1, {3, 4}), (2, {3}), (2, {4})}
2 {(3, {1, 2}), (4, {2, 3})} {(1, {3}), (1, {4}), (2, {3, 4})}
3 {(3, {1, 4}), (4, {1, 2})} {(1, {3, 4}), (2, {3}), (2, {4})}
4 {(3, {2, 4}), (4, {1, 2})} {(1, {3}), (1, {4}), (2, {3, 4})}

# 1 is the canonical representative
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Why this representation

Some minimality constraints easily to take care, e.g., repeated edges,
redundant nodes, etc

Smaller orbits, compared with node representation

Orbit-stabilizer theorem: |O(Q,W)| = |G |
|Stab((Q,W))|

# 1 2
` 2 1

# 1 2
` 2 1

# 1 2
` 2 1

# 1 2
` 1 2

# 1 2
` 4 4

# 1 2
` 1 2

# Q W
1 {(3, {1, 2}), (4, {1, 2})} {(1, {3, 4}), (2, {3}), (2, {4})}
2 {(3, {1, 2}), (4, {1, 2})} {(1, {3}), (1, {4}), (2, {3, 4})}

c

d e f

a b

a ab

Subgroup of S{1,2} ⇥ S{3,4} stabilizing (G, T ) = S{3,4}

Subgroup of S{a,b} ⇥ S{c,d,e,f}
stabilizing (V, E) = S{d,f}

# a b c d e f
1 2 1 3 4 5 6
2 1 2 3 4 5 6
3 2 1 4 5 6 3
...
...

24 1 2 3 4 6 5

Isomorphs in Edge and Sink 
Definition Representation (2)

Isomorphs in Node Representation (24)

# 1 2
` 3 3
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Leiterspiel Algorithm [BettenBraunFripertinger, 2006]

Computes transversal of orbits on size j subsets Pj(X ) of set X ,
incrementally in j ; also gives symmetry group (stabilizer)
Lists directly the canonical representatives satisfying some test
function f , as long as this test has the inherited property, i.e., if a
superset satisfies, its subsets also satisfy
Input: set X , group G , inherited test function f
Output: transversal of subsets of different sizes until stop, either fixed
j or other stop conditions, symmetry group (stabilizer)

Orbits on Pj�1(X )

Orbits on Pj(X )

Extension
obeying f

Transversal: canonical representatives
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Enumeration based on Leiterspiel Algorithm

Target: (K , |EU |) non-isomorphic networks

Recall representation of networks: (Q,W), list pool for Q first

Leiterspiel defines edges incrementally from 1 to |EU |

X := {(i, A) |i 2 {K + 1, . . . , K + |EU |}, A ✓ {1, . . . , K + |EU |} \ {i}}

Acting group G := S{1,...,K} ⇥ S{K+1,...,K+|EU |}

Call Leiterspiel T|EU | = Leiterspiel(G, Pf
|EU |(X ))

With some minimality constraints inherited

Stop condition: reach number of edges

C. Li (INC,CUHK) On Multi-source Networks Jun 15, 2016 29 / 72



Enumeration based on Leiterspiel Algorithm

Now for each Q ∈ T|EU |, list possible W
Leiterspiel incrementally adds sinks from 1 to no possible new sink

Acting group G := S{1,...,K} ⇥ S{K+1,...,K+|EU |}

With some minimality constraints inherited

Y := {(i, A) |9 a directed path in Q from i to at least one edge in A}

Call Leiterspiel T|T | = Leiterspiel(G, Pf
|T |(Y))

Stop condition: cannot increase j obeying f 

For each W ∈ {T1, . . . ,T|T |}, test all the other minimality conditions on
(Q,W), if it passes, we obtain a non-isomorphic network instance
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Enumeration Results

|M|: number of non-isomorphic networks, listed;
|M̂|: number of networks with edge isomorphism, counted;
|M̂n|: number of networks with node isomorphism, counted;

(K , |EU |) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2)

|M| 4 132 1 333 485 890 9 239 187

|M̂| 7 749 1 1 270 5 787 074 31 2 829 932

|M̂n| 39 18,401 6 ≥ 105 ≥ 1012 582 ≥ ×1011

C. Li (INC,CUHK) On Multi-source Networks Jun 15, 2016 31 / 72



All (2, 2) networks: no direct access btw sources & sinks
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Rate region

Rate region: all possible rate and source entropy vectors satisfying all
network constraints.

Collect the N network random variables and their joint entropies.

Define Γ∗N : 2N − 1-dim., region of valid entropy vectors. (revisit later)

Constraints from network A:
L1 = {h ∈ Γ∗N : hYS = Σs∈ShYs} (1)

L2 = {h ∈ Γ∗N : hXOut(k)|Ys
= 0} (2)

L3 = {h ∈ Γ∗N : hXOut(i)|XIn(i)
= 0} (3)

L4 = {(hT ,RT )T ∈ R2N−1+|E|
+ : Re ≥ hUe , e ∈ E} (4)

L5 = {h ∈ Γ∗N : hY β(t)|UIn(t)
= 0}. (5)

Rate region (cone) in terms of edge rates and source entropies
(derived from [Yan, Yeung, Zhang TranIT 2012]):

R∗(A) = projRE ,H(YS)(con(Γ∗N ∩ L123) ∩ L45) (6)
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Rate Region Example

A (3, 3) network and its rate region R∗(A)

Rate region: a cone with dimensions of all variables in the network

s1

s2

g1
U1

U2

U3

Y1

Y2

t3

t2

t1

s3

Y3
Y2Y3

Y1Y3

g3

R1 � H(Y2)

R1 + R3 � H(Y2) + H(Y3)

R2 + R3 � H(Y2) + H(Y3)

R1 + R2 � H(Y1) + H(Y2) + H(Y3)

R1 + R2 + 2R3 � H(Y1) + 2H(Y2) + 2H(Y3)

Y2Y3g2
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Rate region

Rate region: a cone in terms of edge rates and source entropies:

R∗(A) = projRE ,H(YS)(con(Γ∗N ∩ L123) ∩ L45) (7)

Involves Γ∗N : 2N − 1-dim., region of valid entropy vectors.
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Region of Entropic Vectors

Γ∗N :

Open in general

Γ̄∗N not fully characterized for N ≥ 4: convex but contains
non-polyhedral part

�̄⇤
N

Inner bounds

Outer bounds
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Sandwich Bounds

Γ̄∗N → ΓOut
N : Rout(A) = projRE ,H(YS)(ΓOut

N ∩ L12345)

Γ̄∗N → ΓIn
N : Rin(A) = projRE ,H(YS)(ΓIn

N ∩ L12345)

R∗(A) = Rout(A) = Rin(A), if Rout(A) = Rin(A)

It becomes: Initial polyhedra → ∩ constraints → projections

Our work following this idea: Li, et. al, Allerton 2012, NetCod 2013,
submission TransIT 2014.

Constraints Projection

�N

�In
N

�⇤
N

Constraints �N

�In
N

�⇤
N

Constraints
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Notion of sufficiency

Outer bound typically used is Shannon outer bound→ Ro(A); inner
bounds from representable matroids: scalar and vector bounds.

Scalar sufficiency: R∗(A) = Rs,q(A)

Vector sufficiency: R∗(A) = RN′
q (A)

Sufficient

Insufficient

Scalar Rs,q(A) Vector RN 0
q (A)
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Rate Region Computation Results

|M|: number of all network instances;
The other numbers represent the numbers of instances we can close the
gap using various bounds, and hence exact rate region can be obtained

(K , |E|) |M| Rs,2(A) RN+1
2 (A) RN+2

2 (A) RN+4
2 (A)

(1, 2) 4 4 4 4 4

(1, 3) 132 122 132 132 132

(2, 1) 1 1 1 1 1

(2, 2) 333 301 319 323 333

(2, 3) 485890 341406 403883 432872 –

(3, 1) 9 4 4 9 9

(3, 2) 239187 118133 168761 202130 –
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Motivated from graph and matroid theory

Inheritance property regarding sufficiency of class of codes

Minor-closed graphs: finite number of forbidden minors
[RobertsonSeymour1983-2004]

Rota’s conjecture in matroid theory: finite number of forbidden
minors for Fq representability [Oxley2011]

N � 2

N � 1

N

. . .

. . .

. . . . . .

. . .

. . .

ForbiddenNot Fobidden Size

New Minimal 
Forbidden Minors
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Similar characterization for networks?

If networks have similar characterization? Possible list of forbidden
embedded networks for sufficiency of linear codes over a field.

Network operations to obtain such embedded networks preserving
insufficiency, & region relationships

Three operations

Sources Network Destinations
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Source deletion

A′ = A \ k
Source Yk deleted, source k stops sending information to the
network, H(Yk) = 0

Sinks requiring Yk will no longer demand it.

k
Ykk

...

...

k

...

...

t Y�(t)\k

1

K

...

...
k

...

...

t

1

K

Y�(t)
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Edge deletion

A′ = A \ e
Edge e deleted, nothing on Ue , Re = H(Ue) = 0.

e
e
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Edge contraction

A′ = A/e

Edge e contracted, input to tail of e available for head of e, Re =∞,
H(Ue) free.

e
e
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Source deletion: A′ = A \ k

For each i ∈ {∗, q, (s, q), o},

Ri (A′) = ProjY\k ,RE′ ({R ∈ Ri (A) |H(Yk) = 0}) (8)

Sufficiency preserved from large to small network as the equation shows.
Equivalently, insufficiency preserved from small to large network.

R(A)

R(A0)

H(Yk) = 0
Projection
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Example: Forbidden embedded networks

Goal: minimal forbidden networks for sufficiency

Scalar binary codes considered

k = 1, 2, 3; |E| = 2, 3, 4, 7360 non-isomorphic MDCS

1922 sufficient, 5438 insufficient

12 minimal forbidden minors (Li, et. al submission TransIT 2014)

5438 / 7360 insu�cient

1922 / 7360
su�cient

12 forbidden
embedded networks
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Summary for embedding operators

Three embedding operators: source deletion, edge deletion, edge
contraction

Rate region of smaller network derivable from the associated larger
network

Sufficiency of linear codes preserved from larger to smaller networks
under embedding operations

Equivalently, insufficiency of linear codes preserved from smaller
networks to larger one
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Source merge

After merge: Merged
sources serve as common
sources to the two
networks

...

...

...
...
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Sink merge

After merge: Union the
input and requests of
sinks being merged,
respectively

...

...

...

...
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Intermediate node merge

After merge: union input
and output of the two
nodes

...

...

...

...
...

...
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Edge merge

Edge merge: create one extra
node and four associated edges
to replace the two original edges

First two edges are ordinary
edges connecting with the extra
node, the other two edges
connect the extra node with all
the head nodes of the original
two edges, respectively.

Equivalent: create a relay node
on the two edges, respectively,
and then merge the two relay
nodes.

...

...

...
...
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Source merge

A is obtained by merging A1.Ŝ = A2.π(Ŝ), then for each
i ∈ {∗, q, (s, q), o}
Ri (A) = Proj\π(Ŝ)((Ri (A1)×Ri (A2)) ∩ L0),

L0 =
{
H(Ys) = H(Yπ(s)),∀s ∈ Ŝ

}

Remark: essentially replace variables Yπ(s) with the Ys for each s ∈ Ŝ.

R(A1) R(A2)
8s 2 Ŝ, H(Ys) = H(Y⇡(s))

+
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Obtain Rate Region for Larger Networks
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Summary for combination operators

Four combination operators: source, sink, node, and edge merge

Rate region of combined network derivable from regions of smaller
networks in the combination
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Combination operations suffice?

Answer is NO.

Need cap to limit the network size in the combinations.

Network
Cap: no
beyond

Combinations reach 
a portion of 

large networks

Embeddings 
enlarge the
reachable 

portionSmall size

Tiny size

Moderate size

Large size
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Partial closure of networks

Worst case partial closure of
networks: cap the predicted size
of networks involved in the
process

Let the pool produce new
networks until no new network
can be generated

Seed list of networks

Combinations of 
pairs

Minors from 
embedding

New 
network?

Add to seed list

If within network cap

Yes

Stop
NO
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New networks found from a tiny seed list

Start with the single (1, 1), single (2, 1), and the four (1, 2) networks;

!"#"$ !"#%$ !%#%$ !"#"$ !"#%$ !%#%$
!&#"$ % % % % % %
!&#%$ ' &' &' ' &' &'
!(#($ " " " ) &* &+
!(#"$ &" &+ &+ "' &"& &**
!(#%$ ' ,- &'& ' *&+ +%)
!"#($ ( " ( % &' &&
!"#"$ (% (% (% %( "*" )""
!"#%$ ' &"* &"* ' ("+& *%)&
!%#($ ' ' " ' ' "
!%#"$ ' ' &- ' ' %%
!%#%$ ' ' (*" ' ' %%"'
.// %+ (,( *+) )) "%'' &&+"*

012345.64157189:.61:;715/< 9239==45>7.5=7012345.6415;
;4?9@0.8
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New networks found from a tiny seed list

6 tiny networks can generate new 11635 networks with small cap!

!"#"$ !"#%$ !%#%$ !"#"$ !"#%$ !%#%$
!&#"$ % % % % % %
!&#%$ ' &' &' ' &' &'
!(#($ " " " ) &* &+
!(#"$ &" &+ &+ "' &"& &**
!(#%$ ' ,- &'& ' *&+ +%)
!"#($ ( " ( % &' &&
!"#"$ (% (% (% %( "*" )""
!"#%$ ' &"* &"* ' ("+& *%)&
!%#($ ' ' " ' ' "
!%#"$ ' ' &- ' ' %%
!%#%$ ' ' (*" ' ' %%"'
.// %+ (,( *+) )) "%'' &&+"*

012345.64157189:.61:;715/< 9239==45>7.5=7012345.6415;
;4?9@0.8
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New networks found from a tiny seed list

With the increase of cap size, number of new networks increases!

!"#"$ !"#%$ !%#%$ !"#"$ !"#%$ !%#%$
!&#"$ % % % % % %
!&#%$ ' &' &' ' &' &'
!(#($ " " " ) &* &+
!(#"$ &" &+ &+ "' &"& &**
!(#%$ ' ,- &'& ' *&+ +%)
!"#($ ( " ( % &' &&
!"#"$ (% (% (% %( "*" )""
!"#%$ ' &"* &"* ' ("+& *%)&
!%#($ ' ' " ' ' "
!%#"$ ' ' &- ' ' %%
!%#%$ ' ' (*" ' ' %%"'
.// %+ (,( *+) )) "%'' &&+"*

012345.64157189:.61:;715/< 9239==45>7.5=7012345.6415;
;4?9@0.8
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New networks found from a tiny seed list

Embedding operations are important in the process!

!"#"$ !"#%$ !%#%$ !"#"$ !"#%$ !%#%$
!&#"$ % % % % % %
!&#%$ ' &' &' ' &' &'
!(#($ " " " ) &* &+
!(#"$ &" &+ &+ "' &"& &**
!(#%$ ' ,- &'& ' *&+ +%)
!"#($ ( " ( % &' &&
!"#"$ (% (% (% %( "*" )""
!"#%$ ' &"* &"* ' ("+& *%)&
!%#($ ' ' " ' ' "
!%#"$ ' ' &- ' ' %%
!%#%$ ' ' (*" ' ' %%"'
.// %+ (,( *+) )) "%'' &&+"*

012345.64157189:.61:;715/< 9239==45>7.5=7012345.6415;
;4?9@0.8
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Example to see why integrating embedding is important

Start with the single (1, 1), single (2, 1), and the four (1, 2) networks
Only combination with cap (3, 4), get only 3 networks with size (2, 2)

1

2

3 4

1 12

1

1 1

3 4

1

2

3

1

1

2

3

1
1

2

3

1
1

1 2

2 1

3

(2,1)

(1,2)

1

1

3

2

2

4

1

2

1

1

2

1

node
merge

=

2 2

2

1 1

1

3 4

=

1 2

2 1

3

1 2

2 1

3

sources merge

+

1

2

1

1 2

2 1

3

sources merge

+

=

1

2

1

(1,1)

ALL (1,1), (2,1), (1,2)
MINIMAL NETWORK
CODING PROBLEMS

(there are 6)

ALL
POSSIBLE
COMBINATION
OPERATORS

All (2,2) Minimal Network Coding Problems That 
are direct Combinations of (1,1),(2,1),and (1,2) Problems.

(There are only 3 out of 333 total (2,2) problems)

(2,2)
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Example to see why integrating embedding is important

Start with the single (1, 1), single (2, 1), and the four (1, 2) networks

Consider both combination and embedding with same cap, found
(2, 2) networks unreachable by combination only

2

2

1

1

3
4

2

2

1

1

3 4

Contracting
 edge 3

5

12

2

1

1

3
4

5

1

Contracting 
edge 46

2

2

2

1

1

3
4

2

2

1

1

3
4

Source merge [1,2] with [2,1]

2

1,2

1

3
4

5

1

2

1,2

1

3
4

5

1,2

6

Contracting
 edge 3

Contracting edge 4

1

2

1

1

3

1

2

1

1

3

2

2
1

3
4

5

1

Contracting
 edge 3

2

1

1

3
4 5

2

6

Deleting edge 3

Merge two sinks

1

1
Edge merge

 2 & 2
2+ +

+

1

2

1

1

3
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Summary of work thus far

Enumeration, Rate Region Computation, Forbidden Minors, New Networks

Enumerate > 7 ⇥ 105 non-isomorphic networks

Combination operations Embedding operations

Forbidden Minors for su�ciencyNew solvable networks in scale

Calculate their exact rate regions or bounds
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Dream

Though we have online
repository

Want a user-friendly interface to
easily get answer

Draw or input a network

In 
Database?

Minimality & canonical 
conversion

Directly 
Computable?

Reachable by 
construction?

Get the 
answer

Not solvable right now

Yes

No

Yes

No

Yes

No
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Future work

When Shannon outer bound is tight? Any common structure?

Is Shannon outer bound tight for all MDCS, or IDSC?

Is the number of forbidden minors regarding the sufficiency of a class
of linear codes finite?

Coverage of the operators in all problems

More operations: node & edge merge, source & sink merge

A notion of forbidden minor which can harness both combination and
embedding operators
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Q & A

Thank you!
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