Approximately Optimal Distributions via the ADT Linear Deterministic Model

Tie Liu

June-19-2014 @CUHK

Communication with side information

- S^{n} : Non-causally known at the transmitter as side information

What is the capacity of the channel?

Channel capacity

- A simple upper bound:

$$
C \leq \max _{p(x \mid s)} I(X ; Y \mid S)
$$

Channel capacity

- A simple upper bound:

$$
C \leq \max _{p(x \mid s)} I(X ; Y \mid S)
$$

- A single-letter expression (Gel'fand-Pinsker 1980):

$$
C=\max _{p(x, u \mid s)} I(U ; Y)-I(U ; S)
$$

Channel capacity

- A simple upper bound:

$$
C \leq \max _{p(x \mid s)} I(X ; Y \mid S)
$$

- A single-letter expression (Gel'fand-Pinsker 1980):

$$
C=\max _{p(x, u \mid s)} I(U ; Y)-I(U ; S)
$$

- Finite alphabet problems:
- $|\mathcal{U}| \leq \min \{|\mathcal{X}||\mathcal{S}|,|\mathcal{Y}|+|\mathcal{S}|-1\}$

Channel capacity

- A simple upper bound:

$$
C \leq \max _{p(x \mid s)} I(X ; Y \mid S)
$$

- A single-letter expression (Gel'fand-Pinsker 1980):

$$
C=\max _{p(x, u \mid s)} I(U ; Y)-I(U ; S)
$$

- Finite alphabet problems:
- $|\mathcal{U}| \leq \min \{|\mathcal{X}||\mathcal{S}|,|\mathcal{Y}|+|\mathcal{S}|-1\}$
- Continuous alphabet problems:
- Identifying an optimal choice of (U, X) is a challenge

Channel capacity

- A simple upper bound:

$$
C \leq \max _{p(x \mid s)} I(X ; Y \mid S)
$$

- A single-letter expression (Gel'fand-Pinsker 1980):

$$
C=\max _{p(x, u \mid s)} I(U ; Y)-I(U ; S)
$$

- Finite alphabet problems:
- | $\mathcal{U} \mid \leq \min \{|\mathcal{X}||\mathcal{S}|,|\mathcal{Y}|+|\mathcal{S}|-1\}$
- Continuous alphabet problems:
- Identifying an optimal choice of (U, X) is a challenge

One can get "lucky" though ...

Writing on dirty paper

- $X \sim \mathcal{N}(0,1), X \perp S$, and $U=h X+\frac{h^{2}}{h^{2}+1} g S$ (Costa 1983):

$$
I(U ; Y)-I(U ; X)=\frac{1}{2} \log \left(1+h^{2}\right)
$$

which coincides with the simple upper bound

Writing on dirty paper

- $X \sim \mathcal{N}(0,1), X \perp S$, and $U=h X+\frac{h^{2}}{h^{2}+1} g S$ (Costa 1983):

$$
I(U ; Y)-I(U ; X)=\frac{1}{2} \log \left(1+h^{2}\right)
$$

which coincides with the simple upper bound

However, "luck" may be running out sometimes ...

Running out of "luck"

- No obvious choice of input/auxiliary random variables in the single-letter capacity/achievable rate expressions to match the simple upper bound:
- Writing on fading paper
- Secret writing on dirty paper
- Multiple-user writing on dirty paper

Running out of "luck"

- No obvious choice of input/auxiliary random variables in the single-letter capacity/achievable rate expressions to match the simple upper bound:
- Writing on fading paper
- Secret writing on dirty paper
- Multiple-user writing on dirty paper

What can we do?

This talk

- Goal: A systematic approach to identify approximately optimal choice of input/auxiliary random variables

This talk

- Goal: A systematic approach to identify approximately optimal choice of input/auxiliary random variables
- Approach: To take a deterministic view (Avestimehr-Diggavi-Tse 2007)

This talk

- Goal: A systematic approach to identify approximately optimal choice of input/auxiliary random variables
- Approach: To take a deterministic view (Avestimehr-Diggavi-Tse 2007)
- Plan:
- Revisit Costa's dirty-paper channel

This talk

- Goal: A systematic approach to identify approximately optimal choice of input/auxiliary random variables
- Approach: To take a deterministic view (Avestimehr-Diggavi-Tse 2007)
- Plan:
- Revisit Costa's dirty-paper channel
- Apply the insight to the problems of: 1) secret writing on dirty paper; and 2) two-user symmetric Gaussian interference channel

Writing on dirty paper

Gaussian model

$$
Y=h X+g S+N
$$

ADT linear deterministic model

$$
Y=D_{q}^{q-n} X+D_{q}^{q-m} S
$$

Capacity of deterministic model

- Y is a deterministic function of (X, S) :
- Simplifying the upper bound:

$$
\begin{aligned}
C & \leq \max _{p(x \mid s)} I(X ; Y \mid S) \\
& =\max _{p(x \mid s)} H(Y \mid S)-H(Y \mid X, S) \\
& =\max _{p(x \mid s)} H(Y \mid S)
\end{aligned}
$$

Capacity of deterministic model

- Y is a deterministic function of (X, S) :
- Simplifying the upper bound:

$$
\begin{aligned}
C & \leq \max _{p(x \mid s)} I(X ; Y \mid S) \\
& =\max _{p(x \mid s)} H(Y \mid S)-H(Y \mid X, S) \\
& =\max _{p(x \mid s)} H(Y \mid S)
\end{aligned}
$$

- Choosing $U=Y$:

$$
\begin{aligned}
C & \geq \max _{p(x \mid s)} I(Y ; Y)-I(Y ; S) \\
& =\max _{p(x \mid s)} H(Y)-I(Y ; S) \\
& =\max _{p(x \mid s)} H(Y \mid S)
\end{aligned}
$$

Capacity of deterministic model

- Y is a deterministic function of (X, S) :
- Simplifying the upper bound:

$$
\begin{aligned}
C & \leq \max _{p(x \mid s)} I(X ; Y \mid S) \\
& =\max _{p(x \mid s)} H(Y \mid S)-H(Y \mid X, S) \\
& =\max _{p(x \mid s)} H(Y \mid S)
\end{aligned}
$$

- Choosing $U=Y$:

$$
\begin{aligned}
C & \geq \max _{p(x \mid s)} I(Y ; Y)-I(Y ; S) \\
& =\max _{p(x \mid s)} H(Y)-I(Y ; S) \\
& =\max _{p(x \mid s)} H(Y \mid S)
\end{aligned}
$$

- Conclusion:

$$
C=\max _{p(x \mid s)} H(Y \mid S)
$$

Capacity of ADT linear deterministic model

- For ADT linear deterministic model:

$$
\begin{aligned}
H(Y \mid S) & =H\left(D_{q}^{q-n} X+D_{q}^{q-m} S \mid S\right) \\
& \leq H\left(D_{q}^{q-n} X\right) \\
& \leq \operatorname{rank}\left(D_{q}^{q-n}\right) \\
& =n
\end{aligned}
$$

where equality holds when X is Bernoulli- $1 / 2$ and independent of S

Translation to Gaussian model

- ADT linear deterministic model (an optimal choice):

$$
U=Y=D_{q}^{q-n} X+D_{q}^{q-m} S
$$

where X is i.i.d. Bernoulli- $1 / 2$ and independent of S

Translation to Gaussian model

- ADT linear deterministic model (an optimal choice):

$$
U=Y=D_{q}^{q-n} X+D_{q}^{q-m} S
$$

where X is i.i.d. Bernoulli- $1 / 2$ and independent of S

- Connections between Gaussian and ADT linear deterministic models:

$$
h \Leftrightarrow D_{q}^{q-n} \quad \text { and } \quad g \Leftrightarrow D_{q}^{q-m}
$$

Translation to Gaussian model

- ADT linear deterministic model (an optimal choice):

$$
U=Y=D_{q}^{q-n} X+D_{q}^{q-m} S
$$

where X is i.i.d. Bernoulli- $1 / 2$ and independent of S

- Connections between Gaussian and ADT linear deterministic models:

$$
h \Leftrightarrow D_{q}^{q-n} \quad \text { and } \quad g \Leftrightarrow D_{q}^{q-m}
$$

- Gaussian model (suggested by the ADT linear deterministic model):

$$
U=h X+g S
$$

where X is standard Gaussian and independent of S

Translation to Gaussian model

- ADT linear deterministic model (an optimal choice):

$$
U=Y=D_{q}^{q-n} X+D_{q}^{q-m} S
$$

where X is i.i.d. Bernoulli- $1 / 2$ and independent of S

- Connections between Gaussian and ADT linear deterministic models:

$$
h \Leftrightarrow D_{q}^{q-n} \quad \text { and } \quad g \Leftrightarrow D_{q}^{q-m}
$$

- Gaussian model (suggested by the ADT linear deterministic model):

$$
U=h X+g S
$$

where X is standard Gaussian and independent of S

How good is this choice of (U, X) ?

Capacity gap

- $U=h X+g S$ (suggested by the ADT linear deterministic model):

$$
I(U ; Y)-I(U ; S) \geq \frac{1}{2} \log \left(h^{2}\right)
$$

Capacity gap

- $U=h X+g S$ (suggested by the ADT linear deterministic model):

$$
I(U ; Y)-I(U ; S) \geq \frac{1}{2} \log \left(h^{2}\right)
$$

- $U=h X+\frac{h^{2}}{h^{2}+1} g S$ (the optimal choice, Costa 1983):

$$
I(U ; Y)-I(U ; S)=\frac{1}{2} \log \left(1+h^{2}\right)
$$

Capacity gap

- $U=h X+g S$ (suggested by the ADT linear deterministic model):

$$
I(U ; Y)-I(U ; S) \geq \frac{1}{2} \log \left(h^{2}\right)
$$

- $U=h X+\frac{h^{2}}{h^{2}+1} g S$ (the optimal choice, Costa 1983):

$$
I(U ; Y)-I(U ; S)=\frac{1}{2} \log \left(1+h^{2}\right)
$$

- Capacity to within $1 / 2$ bit

Capacity gap

- $U=h X+g S$ (suggested by the ADT linear deterministic model):

$$
I(U ; Y)-I(U ; S) \geq \frac{1}{2} \log \left(h^{2}\right)
$$

- $U=h X+\frac{h^{2}}{h^{2}+1} g S$ (the optimal choice, Costa 1983):

$$
I(U ; Y)-I(U ; S)=\frac{1}{2} \log \left(1+h^{2}\right)
$$

- Capacity to within $1 / 2$ bit

How robust is this approach?

Secret writing on dirty paper

- S^{n} : Non-causally known at the transmitter as side information
- Secrecy constraint: $(1 / t) I\left(M ; Y_{2}^{t}\right) \rightarrow 0$

Secrecy capacity bounds

- A single-letter achievable secrecy rate (Chen-Vinck 2008):

$$
C_{s} \geq \max _{p(u, x \mid s)} \min \left[I\left(U ; Y_{1}\right)-I(U ; S), I\left(U ; Y_{1}\right)-I\left(U ; Y_{2}\right)\right]
$$

- Achieved by a double binning scheme

Secrecy capacity bounds

- A single-letter achievable secrecy rate (Chen-Vinck 2008):

$$
C_{s} \geq \max _{p(u, x \mid s)} \min \left[I\left(U ; Y_{1}\right)-I(U ; S), I\left(U ; Y_{1}\right)-I\left(U ; Y_{2}\right)\right]
$$

- Achieved by a double binning scheme
- A simple upper bound:

$$
C_{s} \leq \max _{p(x \mid s)} \min \left[I\left(X ; Y_{1} \mid S\right), I\left(X, S ; Y_{1} \mid Y_{2}\right)\right]
$$

Secrecy capacity bounds

- A single-letter achievable secrecy rate (Chen-Vinck 2008):

$$
C_{s} \geq \max _{p(u, x \mid s)} \min \left[I\left(U ; Y_{1}\right)-I(U ; S), I\left(U ; Y_{1}\right)-I\left(U ; Y_{2}\right)\right]
$$

- Achieved by a double binning scheme
- A simple upper bound:

$$
C_{s} \leq \max _{p(x \mid s)} \min \left[I\left(X ; Y_{1} \mid S\right), I\left(X, S ; Y_{1} \mid Y_{2}\right)\right]
$$

- No obvious choice of (U, X) to match the simple upper bound

Secrecy capacity bounds

- A single-letter achievable secrecy rate (Chen-Vinck 2008):

$$
C_{s} \geq \max _{p(u, x \mid s)} \min \left[I\left(U ; Y_{1}\right)-I(U ; S), I\left(U ; Y_{1}\right)-I\left(U ; Y_{2}\right)\right]
$$

- Achieved by a double binning scheme
- A simple upper bound:

$$
C_{s} \leq \max _{p(x \mid s)} \min \left[I\left(X ; Y_{1} \mid S\right), I\left(X, S ; Y_{1} \mid Y_{2}\right)\right]
$$

Let' try the deterministic approach ...

Secret writing on dirty paper

Gaussian model

$S \sim \mathcal{N}(0,1)$

$$
\begin{aligned}
& Y_{1}=h_{1} X+g_{1} S+N_{1} \\
& Y_{2}=h_{2} X+g_{2} S+N_{2}
\end{aligned}
$$

ADT linear deterministic model

$S \sim \operatorname{iid} \mathcal{B}(0.5)$

$$
\begin{aligned}
& Y_{1}=D_{q}^{q-n_{1}} X+D_{q}^{q-m_{1}} S \\
& Y_{2}=D_{q}^{q-n_{2}} X+D_{q}^{q-m_{2}} S
\end{aligned}
$$

Secrecy capacity of semi-deterministic model

- Y_{1} is a deterministic function of (X, S) :
- Simplifying the upper bound:

$$
\begin{aligned}
C_{s} & \leq \max _{p(x \mid s)} \min \left[I\left(X ; Y_{1} \mid S\right), I\left(X, S ; Y_{1} \mid Y_{2}\right)\right] \\
& =\max _{p(x \mid s)} \min \left[H\left(Y_{1} \mid S\right)-H\left(Y_{1} \mid X, S\right), H\left(Y_{1} \mid Y_{2}\right)-H\left(Y_{1} \mid X, S, Y_{2}\right)\right] \\
& =\max _{p(x \mid s)} \min \left[H\left(Y_{1} \mid S\right), H\left(Y_{1} \mid Y_{2}\right)\right]
\end{aligned}
$$

Secrecy capacity of semi-deterministic model

- Y_{1} is a deterministic function of (X, S) :
- Simplifying the upper bound:

$$
\begin{aligned}
C_{s} & \leq \max _{p(x \mid s)} \min \left[I\left(X ; Y_{1} \mid S\right), I\left(X, S ; Y_{1} \mid Y_{2}\right)\right] \\
& =\max _{p(x \mid s)} \min \left[H\left(Y_{1} \mid S\right)-H\left(Y_{1} \mid X, S\right), H\left(Y_{1} \mid Y_{2}\right)-H\left(Y_{1} \mid X, S, Y_{2}\right)\right] \\
& =\max _{p(x \mid s)} \min \left[H\left(Y_{1} \mid S\right), H\left(Y_{1} \mid Y_{2}\right)\right]
\end{aligned}
$$

- Choosing $U=Y_{1}$:

$$
\begin{aligned}
C_{s} & \geq \max _{p(x \mid s)} \min \left[I\left(Y_{1} ; Y_{1}\right)-I\left(Y_{1} ; S\right), I\left(Y_{1} ; Y_{1}\right)-I\left(Y_{1} ; Y_{2}\right)\right] \\
& =\max _{p(x \mid s)} \min \left[H\left(Y_{1}\right)-I\left(Y_{1} ; S\right), H\left(Y_{1}\right)-I\left(Y_{1} ; Y_{2}\right)\right] \\
& =\max _{p(x \mid s)} \min \left[H\left(Y_{1} \mid S\right), H\left(Y_{1} \mid Y_{2}\right)\right]
\end{aligned}
$$

Secrecy capacity of semi-deterministic model

- Y_{1} is a deterministic function of (X, S) :
- Simplifying the upper bound:

$$
\begin{aligned}
C_{s} & \leq \max _{p(x \mid s)} \min \left[I\left(X ; Y_{1} \mid S\right), I\left(X, S ; Y_{1} \mid Y_{2}\right)\right] \\
& =\max _{p(x \mid s)} \min \left[H\left(Y_{1} \mid S\right)-H\left(Y_{1} \mid X, S\right), H\left(Y_{1} \mid Y_{2}\right)-H\left(Y_{1} \mid X, S, Y_{2}\right)\right] \\
& =\max _{p(x \mid s)}^{\min }\left[H\left(Y_{1} \mid S\right), H\left(Y_{1} \mid Y_{2}\right)\right]
\end{aligned}
$$

- Choosing $U=Y_{1}$:

$$
\begin{aligned}
C_{s} & \geq \max _{p(x \mid s)}^{\min \left[I\left(Y_{1} ; Y_{1}\right)-I\left(Y_{1} ; S\right), I\left(Y_{1} ; Y_{1}\right)-I\left(Y_{1} ; Y_{2}\right)\right]} \\
& =\max _{p(x \mid s)}^{\min \left[H\left(Y_{1}\right)-I\left(Y_{1} ; S\right), H\left(Y_{1}\right)-I\left(Y_{1} ; Y_{2}\right)\right]} \\
& =\max _{p(x \mid s)} \min \left[H\left(Y_{1} \mid S\right), H\left(Y_{1} \mid Y_{2}\right)\right]
\end{aligned}
$$

- Conclusion:

$$
C_{s}=\max _{p(x \mid s)} \min \left[H\left(Y_{1} \mid S\right), H\left(Y_{1} \mid Y_{2}\right)\right]
$$

Secrecy capacity of ADT linear deterministic model

- For ADT linear deterministic model:
- First:

$$
\begin{aligned}
H\left(Y_{1} \mid S\right) & =H\left(D_{q}^{q-n_{1}} X+D_{q}^{q-m_{1}} S \mid S\right) \\
& \leq H\left(D_{q}^{q-n_{1}} X\right) \\
& \leq \operatorname{rank}\left(D_{q}^{q-n_{1}}\right) \\
& =n_{1}
\end{aligned}
$$

where equality holds when X is Bernoulli-1/2 and independent of S

Secrecy capacity of ADT linear deterministic model

- For ADT linear deterministic model:
- First:

$$
\begin{aligned}
H\left(Y_{1} \mid S\right) & =H\left(D_{q}^{q-n_{1}} X+D_{q}^{q-m_{1}} S \mid S\right) \\
& \leq H\left(D_{q}^{q-n_{1}} X\right) \\
& \leq \operatorname{rank}\left(D_{q}^{q-n_{1}}\right) \\
& =n_{1}
\end{aligned}
$$

where equality holds when X is Bernoulli- $1 / 2$ and independent of S

- Second:

$$
\begin{aligned}
H\left(Y_{1} \mid Y_{2}\right) & =H\left(D_{q}^{q-n_{1}} X+D_{q}^{q-m_{1}} S \mid D_{q}^{q-n_{2}} X+D_{q}^{q-m_{2}} S\right) \\
& =H\left(\left.\left[D_{q}^{q-n_{1}} D_{q}^{q-m_{1}}\right]\left[\begin{array}{c}
X \\
S
\end{array}\right] \right\rvert\,\left[D_{q}^{q-n_{2}} D_{q}^{q-m_{2}}\right]\left[\begin{array}{c}
X \\
S
\end{array}\right]\right)
\end{aligned}
$$

A technical lemma

Let A and B be two matrices in \mathbb{F}_{2} with the same number of columns. Then

$$
\max H(A Z \mid B Z)=\operatorname{rank}\left(\left[\begin{array}{l}
A \\
B
\end{array}\right]\right)-\operatorname{rank}(B)
$$

where the maximization is over all possible binary random vectors Z. The maximization is achieved when Z is i.i.d. Bernoulli- $1 / 2$

Translation to Gaussian model

- ADT linear deterministic model (an optimal choice):

$$
U=Y_{1}=D_{q}^{q-n_{1}} X+D_{q}^{q-m_{1}} S
$$

where X is i.i.d. Bernoulli- $1 / 2$ and independent of S

Translation to Gaussian model

- ADT linear deterministic model (an optimal choice):

$$
U=Y_{1}=D_{q}^{q-n_{1}} X+D_{q}^{q-m_{1}} S
$$

where X is i.i.d. Bernoulli- $1 / 2$ and independent of S

- Connections between Gaussian and ADT linear deterministic models:

$$
h_{1} \Leftrightarrow D_{q}^{q-n_{1}} \quad \text { and } \quad g_{1} \Leftrightarrow D_{q}^{q-m_{1}}
$$

Translation to Gaussian model

- ADT linear deterministic model (an optimal choice):

$$
U=Y_{1}=D_{q}^{q-n_{1}} X+D_{q}^{q-m_{1}} S
$$

where X is i.i.d. Bernoulli- $1 / 2$ and independent of S

- Connections between Gaussian and ADT linear deterministic models:

$$
h_{1} \Leftrightarrow D_{q}^{q-n_{1}} \quad \text { and } \quad g_{1} \Leftrightarrow D_{q}^{q-m_{1}}
$$

- Gaussian model (suggested by the linear deterministic model):

$$
U=h_{1} X+g_{1} S
$$

where X is standard Gaussian and independent of S

Translation to Gaussian model

- ADT linear deterministic model (an optimal choice):

$$
U=Y_{1}=D_{q}^{q-n_{1}} X+D_{q}^{q-m_{1}} S
$$

where X is i.i.d. Bernoulli- $1 / 2$ and independent of S

- Connections between Gaussian and ADT linear deterministic models:

$$
h_{1} \Leftrightarrow D_{q}^{q-n_{1}} \quad \text { and } \quad g_{1} \Leftrightarrow D_{q}^{q-m_{1}}
$$

- Gaussian model (suggested by the linear deterministic model):

$$
U=h_{1} X+g_{1} S
$$

where X is standard Gaussian and independent of S

How good is this choice of (U, X) ?

Secrecy capacity gap

- Degraded case: $h_{2}=\beta h_{1}$ and $g_{2}=\beta g_{1}$ for some $0<\beta \leq 1$

Secrecy capacity gap

- Degraded case: $h_{2}=\beta h_{1}$ and $g_{2}=\beta g_{1}$ for some $0<\beta \leq 1$
- $U=h_{1} X+g_{1} S$ (suggested by the linear deterministic model):

$$
\begin{aligned}
I\left(U ; Y_{1}\right)-I(U ; S) & \geq \frac{1}{2} \log \left(h_{1}^{2}\right) \\
I\left(U ; Y_{1}\right)-I\left(U ; Y_{2}\right) & \geq \frac{1}{2} \log \frac{h_{1}^{2}+g_{1}^{2}}{1+\beta^{2}\left(h_{1}^{2}+g_{1}^{2}\right)}
\end{aligned}
$$

Secrecy capacity gap

- Degraded case: $h_{2}=\beta h_{1}$ and $g_{2}=\beta g_{1}$ for some $0<\beta \leq 1$
- $U=h_{1} X+g_{1} S$ (suggested by the linear deterministic model):

$$
\begin{aligned}
I\left(U ; Y_{1}\right)-I(U ; S) & \geq \frac{1}{2} \log \left(h_{1}^{2}\right) \\
I\left(U ; Y_{1}\right)-I\left(U ; Y_{2}\right) & \geq \frac{1}{2} \log \frac{h_{1}^{2}+g_{1}^{2}}{1+\beta^{2}\left(h_{1}^{2}+g_{1}^{2}\right)}
\end{aligned}
$$

- The simple upper bound:

$$
\begin{aligned}
I\left(X ; Y_{1} \mid S\right) & \leq \frac{1}{2} \log \left(1+h_{1}^{2}\right) \\
I\left(X ; S ; Y_{1} \mid Y_{2}\right) & \leq \frac{1}{2} \log \frac{1+2\left(h_{1}^{2}+g_{1}^{2}\right)}{1+2 \beta^{2}\left(h_{1}^{2}+g_{1}^{2}\right)}
\end{aligned}
$$

Secrecy capacity gap

- Degraded case: $h_{2}=\beta h_{1}$ and $g_{2}=\beta g_{1}$ for some $0<\beta \leq 1$
- $U=h_{1} X+g_{1} S$ (suggested by the linear deterministic model):

$$
\begin{aligned}
I\left(U ; Y_{1}\right)-I(U ; S) & \geq \frac{1}{2} \log \left(h_{1}^{2}\right) \\
I\left(U ; Y_{1}\right)-I\left(U ; Y_{2}\right) & \geq \frac{1}{2} \log \frac{h_{1}^{2}+g_{1}^{2}}{1+\beta^{2}\left(h_{1}^{2}+g_{1}^{2}\right)}
\end{aligned}
$$

- The simple upper bound:

$$
\begin{aligned}
I\left(X ; Y_{1} \mid S\right) & \leq \frac{1}{2} \log \left(1+h_{1}^{2}\right) \\
I\left(X ; S ; Y_{1} \mid Y_{2}\right) & \leq \frac{1}{2} \log \frac{1+2\left(h_{1}^{2}+g_{1}^{2}\right)}{1+2 \beta^{2}\left(h_{1}^{2}+g_{1}^{2}\right)}
\end{aligned}
$$

- Secrecy capacity to within $1 / 2$ bit

Mustafa El-Halabi, Tie Liu, Costas N. Georghiades, and Shlomo Shamai (Shitz), "Secret writing on dirty paper: A deterministic view," IEEE Transactions on Information Theory, vol. 58, no. 6, pp. 3419-3429, June 2012

Two-user symmetric Gaussian interference channel

- Two independent messages, one between each transmitter-receiver pair

Two-user symmetric Gaussian interference channel

- Two independent messages, one between each transmitter-receiver pair

What is the sum capacity of the channel?

Sum capacity to within one bit

- No known single-letter expression for the sum capacity

Sum capacity to within one bit

- No known single-letter expression for the sum capacity
- Best lower bound achieved by the Han-Kobayashi scheme:

Sum capacity to within one bit

- No known single-letter expression for the sum capacity
- Best lower bound achieved by the Han-Kobayashi scheme:
- Split each message into a private and a common part

Sum capacity to within one bit

- No known single-letter expression for the sum capacity
- Best lower bound achieved by the Han-Kobayashi scheme:
- Split each message into a private and a common part
- Independent Gaussian signaling for all sub-messages

Sum capacity to within one bit

- No known single-letter expression for the sum capacity
- Best lower bound achieved by the Han-Kobayashi scheme:
- Split each message into a private and a common part
- Independent Gaussian signaling for all sub-messages
- Approximately optimal rate and power split parameters can be determined via the ADT linear deterministic model (Bresler-Tse 2008)

Sum capacity to within one bit

- No known single-letter expression for the sum capacity
- Best lower bound achieved by the Han-Kobayashi scheme:
- Split each message into a private and a common part
- Independent Gaussian signaling for all sub-messages
- Approximately optimal rate and power split parameters can be determined via the ADT linear deterministic model (Bresler-Tse 2008)
- Sum capacity to within one bit (Etkin-Tse-Wang 2008)

Two-user symmetric interference channel

Gaussian model

$$
N_{2} \sim \mathcal{N}(0,1)
$$

$X_{2}: E\left[X_{2}^{2}\right] \leq 1$

$$
\begin{aligned}
& Y_{1}=h X_{1}+g X_{2}+N_{1} \\
& Y_{2}=g X_{1}+h X_{2}+N_{2}
\end{aligned}
$$

ADT linear deterministic model

$$
\begin{aligned}
& Y_{1}=D_{q}^{q-n} X_{1}+D_{q}^{q-m} X_{2} \\
& Y_{2}=D_{q}^{q-m} X_{1}+D_{q}^{q-n} X_{2}
\end{aligned}
$$

Sum capacity of ADT linear deterministic model

Sum capacity of ADT linear deterministic model

Can the simple strategy of treating interference as noise be good beyond the "very-weak" interference regime?

The limit of treating interference as noise

- Treating interference as noise can be arbitrarily good:

$$
C_{\text {sum }}=\lim _{k \rightarrow \infty} \frac{C_{s u m}^{(k)}}{k}
$$

where

$$
C_{\text {sum }}^{(k)}:=\max _{p\left(x_{1}^{k}\right) p\left(x_{2}^{k}\right)}\left[I\left(X_{1}^{k} ; Y_{1}^{k}\right)+I\left(X_{2}^{k} ; Y_{2}^{k}\right)\right]
$$

The limit of treating interference as noise

- Treating interference as noise can be arbitrarily good:

$$
C_{\text {sum }}=\lim _{k \rightarrow \infty} \frac{C_{s u m}^{(k)}}{k}
$$

where

$$
C_{s u m}^{(k)}:=\max _{p\left(x_{1}^{k}\right) p\left(x_{2}^{k}\right)}\left[I\left(X_{1}^{k} ; Y_{1}^{k}\right)+I\left(X_{2}^{k} ; Y_{2}^{k}\right)\right]
$$

- Caveats: Multi-letter and/or non-Gaussian codebooks might be needed to approach the sum capacity

The limit of treating interference as noise

- Treating interference as noise can be arbitrarily good:

$$
C_{\text {sum }}=\lim _{k \rightarrow \infty} \frac{C_{s u m}^{(k)}}{k}
$$

where

$$
C_{\text {sum }}^{(k)}:=\max _{p\left(x_{1}^{k}\right) p\left(x_{2}^{k}\right)}\left[I\left(X_{1}^{k} ; Y_{1}^{k}\right)+I\left(X_{2}^{k} ; Y_{2}^{k}\right)\right]
$$

- Caveats: Multi-letter and/or non-Gaussian codebooks might be needed to approach the sum capacity

Again let' try the deterministic approach ...

ADT linear deterministic channel

- Fix k :

$$
\begin{aligned}
& I\left(X_{1}^{k} ; Y_{1}^{k}\right)=H\left(A X_{1}^{k}+B X_{2}^{k}\right)-H\left(B X_{2}^{k}\right) \\
& I\left(X_{2}^{k} ; Y_{2}^{k}\right)=H\left(B X_{1}^{k}+A X_{2}^{k}\right)-H\left(B X_{1}^{k}\right)
\end{aligned}
$$

where A and B are k th Kronecker power of D_{q}^{q-n} and D_{q}^{q-m}, respectively

ADT linear deterministic channel

- Fix k :

$$
\begin{aligned}
& I\left(X_{1}^{k} ; Y_{1}^{k}\right)=H\left(A X_{1}^{k}+B X_{2}^{k}\right)-H\left(B X_{2}^{k}\right) \\
& I\left(X_{2}^{k} ; Y_{2}^{k}\right)=H\left(B X_{1}^{k}+A X_{2}^{k}\right)-H\left(B X_{1}^{k}\right)
\end{aligned}
$$

where A and B are k th Kronecker power of D_{q}^{q-n} and D_{q}^{q-m}, respectively

- Choose $X_{1}^{k}=E Z_{1}$ and $X_{2}^{k}=E Z_{2}$ where Z_{1} and Z_{2} are i.i.d. Bernoulli-1/2 vectors for some E of $k q$ rows:

$$
C_{s u m}^{(k)} \geq 2[\operatorname{rank}([A E B E])-\operatorname{rank}(B E)]
$$

ADT linear deterministic channel

- Fix k :

$$
\begin{aligned}
& I\left(X_{1}^{k} ; Y_{1}^{k}\right)=H\left(A X_{1}^{k}+B X_{2}^{k}\right)-H\left(B X_{2}^{k}\right) \\
& I\left(X_{2}^{k} ; Y_{2}^{k}\right)=H\left(B X_{1}^{k}+A X_{2}^{k}\right)-H\left(B X_{1}^{k}\right)
\end{aligned}
$$

where A and B are k th Kronecker power of D_{q}^{q-n} and D_{q}^{q-m}, respectively

- Choose $X_{1}^{k}=E Z_{1}$ and $X_{2}^{k}=E Z_{2}$ where Z_{1} and Z_{2} are i.i.d. Bernoulli-1/2 vectors for some E of $k q$ rows:

$$
C_{s u m}^{(k)} \geq 2[\operatorname{rank}([A E B E])-\operatorname{rank}(B E)]
$$

- Can we find a (k, E) such that

$$
\operatorname{rank}([A E B E])-\operatorname{rank}(B E)=\frac{k C_{\text {sum }}}{2} ?
$$

ADT linear deterministic channel

- Fix k :

$$
\begin{aligned}
& I\left(X_{1}^{k} ; Y_{1}^{k}\right)=H\left(A X_{1}^{k}+B X_{2}^{k}\right)-H\left(B X_{2}^{k}\right) \\
& I\left(X_{2}^{k} ; Y_{2}^{k}\right)=H\left(B X_{1}^{k}+A X_{2}^{k}\right)-H\left(B X_{1}^{k}\right)
\end{aligned}
$$

where A and B are k th Kronecker power of D_{q}^{q-n} and D_{q}^{q-m}, respectively

- Choose $X_{1}^{k}=E Z_{1}$ and $X_{2}^{k}=E Z_{2}$ where Z_{1} and Z_{2} are i.i.d. Bernoulli-1/2 vectors for some E of $k q$ rows:

$$
C_{s u m}^{(k)} \geq 2[\operatorname{rank}([A E B E])-\operatorname{rank}(B E)]
$$

- Can we find a (k, E) such that

$$
\operatorname{rank}([A E B E])-\operatorname{rank}(B E)=\frac{k C_{\text {sum }}}{2} ?
$$

- $\left(1, I_{q}\right)$ is sufficient for the "very-weak" interference regime

ADT linear deterministic channel

- Fix k :

$$
\begin{aligned}
& I\left(X_{1}^{k} ; Y_{1}^{k}\right)=H\left(A X_{1}^{k}+B X_{2}^{k}\right)-H\left(B X_{2}^{k}\right) \\
& I\left(X_{2}^{k} ; Y_{2}^{k}\right)=H\left(B X_{1}^{k}+A X_{2}^{k}\right)-H\left(B X_{1}^{k}\right)
\end{aligned}
$$

where A and B are k th Kronecker power of D_{q}^{q-n} and D_{q}^{q-m}, respectively

- Choose $X_{1}^{k}=E Z_{1}$ and $X_{2}^{k}=E Z_{2}$ where Z_{1} and Z_{2} are i.i.d. Bernoulli-1/2 vectors for some E of $k q$ rows:

$$
C_{s u m}^{(k)} \geq 2[\operatorname{rank}([A E B E])-\operatorname{rank}(B E)]
$$

- Can we find a (k, E) such that

$$
\operatorname{rank}([A E B E])-\operatorname{rank}(B E)=\frac{k C_{\text {sum }}}{2} ?
$$

- $\left(1, I_{q}\right)$ is sufficient for the "very-weak" interference regime
- What about the other regimes?

The "very-strong" interference regime

- $\alpha=m / n \geq 2$ so $m \geq n$ and $q=\max (m, n)=m$

The "very-strong" interference regime

- $\alpha=m / n \geq 2$ so $m \geq n$ and $q=\max (m, n)=m$
- Consider $k=1$ and

$$
E=\left[\begin{array}{c}
I_{n} \\
0_{(m-n) \times n}
\end{array}\right]
$$

The "very-strong" interference regime

- $\alpha=m / n \geq 2$ so $m \geq n$ and $q=\max (m, n)=m$
- Consider $k=1$ and

$$
E=\left[\begin{array}{c}
I_{n} \\
0_{(m-n) \times n}
\end{array}\right]
$$

- We have $B E=E$ and

$$
\left[\begin{array}{lll}
A E & B E
\end{array}\right]=\left[\begin{array}{cc}
0_{n \times n} & I_{n} \\
0_{(m-2 n) \times n} & 0_{(m-2 n) \times n} \\
I_{n} & 0_{n \times n}
\end{array}\right]
$$

The "very-strong" interference regime

- $\alpha=m / n \geq 2$ so $m \geq n$ and $q=\max (m, n)=m$
- Consider $k=1$ and

$$
E=\left[\begin{array}{c}
I_{n} \\
0_{(m-n) \times n}
\end{array}\right]
$$

- We have $B E=E$ and

$$
\left[\begin{array}{lll}
A E & B E
\end{array}\right]=\left[\begin{array}{cc}
0_{n \times n} & I_{n} \\
0_{(m-2 n) \times n} & 0_{(m-2 n) \times n} \\
I_{n} & 0_{n \times n}
\end{array}\right]
$$

- Clearly,

$$
\operatorname{rank}([A E B E])-\operatorname{rank}(B E)=2 n-n=n=\frac{C_{\text {sum }}}{2}
$$

The other regimes

- Block designs for E are sufficient!

The other regimes

- Block designs for E are sufficient!
- May require k up to 2

Translations to Gaussian model

- The "very-weak" interference regime:

$$
E=I_{n} \quad \Longrightarrow \quad \text { Gaussian }
$$

Translations to Gaussian model

- The "very-weak" interference regime:

$$
E=I_{n} \quad \Longrightarrow \quad \text { Gaussian }
$$

- The "very-strong" interference regime:

$$
E=\left[\begin{array}{c}
I_{n} \\
0_{(m-n) \times n}
\end{array}\right] \quad \Longrightarrow \quad \text { Discrete }
$$

Translations to Gaussian model

- The "very-weak" interference regime:

$$
E=I_{n} \quad \Longrightarrow \quad \text { Gaussian }
$$

- The "very-strong" interference regime:

$$
E=\left[\begin{array}{c}
I_{n} \\
0_{(m-n) \times n}
\end{array}\right] \quad \Longrightarrow \quad \text { Discrete }
$$

- The other regimes: Mixture Gaussian (convolution between Gaussian and discrete)

Translations to Gaussian model

- The "very-weak" interference regime:

$$
E=I_{n} \quad \Longrightarrow \quad \text { Gaussian }
$$

- The "very-strong" interference regime:

$$
E=\left[\begin{array}{c}
I_{n} \\
0_{(m-n) \times n}
\end{array}\right] \quad \Longrightarrow \quad \text { Discrete }
$$

- The other regimes: Mixture Gaussian (convolution between Gaussian and discrete)
- Sum capacity within $\log \log \max \left(|h|^{2},|g|^{2}\right)$ bits (preliminary analysis)

Summary

- Identifying an optimal choice of input/auxiliary random variables in a single/multi-letter capacity/achievable rate expression for Gaussian networks can be extremely challenging
- We look for a more systematic search guided by the ADT linear deterministic model:
- May settle for approximate optimality
- A more refined deterministic model (than the ADT linear deterministic model) might be needed to achieve universal approximation

