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Background

I Within information theory, wave and particle channels seem to be
different

I Within physics, electromagnetic waves are granular at low signal
levels

I Quantum theory unifies waves and particles



Background

I Information theory is a subject that exists separate from physics

I Within information theory, the Poisson transform unifies wave
channels and particle channels

I Within physics, this unification would be called a semiclassical
analysis



Observation

I Shannon bandlimited capacity

C = B log(1+ S/N)

for maximum-entropy, worst-case noise.
I Energy per bit

Eb/N0 ≥ −1.6dB

I These statements are mathematically complete.

I Or are they?



Observation

I Shannon bandlimited capacity

C = B log(1+ S/N)

I Energy per bit

Eb/N0 ≥ −1.6dB

I These statements are mathematically complete.

I These statements are not physically complete.

I These statements fail to account for granularity.



Granularity

I At 2× 1010 Hertz (20 Gigahertz)
One Watt equals 7.5× 1022 photons per second

I At 2× 1014 Hertz (1.5 microns)
One nanowatt equals 7.5 photons per nanosecond



Information-Theoretic Channel Models

I Waveform Channel
I Shannon (1948)

I Particle Channel
I Many authors

I Wave/Particle Channel
I Gordon-(Forney) Conjecture (1964)
I Gordon formula (1962)
I Blahut-Papen (2018)

I Quantum Channel
I Von Nuemann (1932)
I Holevo Bound (1972)
I Phase Sensitive Channel — many authors (2014)



The Physics of Photons and Waves

I “Particle” and “complex baseband signal” have physical meaning
using instead the terms “photon” and “wave. ”

I Photons are each associated with a constant E called the energy.
I Waves are associated with a constant f called the carrier frequency.

I These constants are related by E = hf where the scaling term h is
called Planck’s constant.



Objective

I Relate the channel capacity of a discrete “particle” channel to the
channel capacity of a continuous “complex-baseband” channel.

I Provide a common framework to give the capacity of Poisson
channel in a small-signal regime and the Shannon capacity in a large
signal regime.

I Shannon capacity should be a large-signal emergent fluid model
from the capacity of a particle stream.



Approach - Relate Continuous and Discrete
Maximum-Entropy Distributions
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Maximum Entropy Distribution for Particles

I The probability constraints are that
∑∞

m=0 pm(m) = 1, and the pm
are nonnegative.

I The maximization is constrained by a finite mean E [m] = M.

Theorem
The maximum-entropy probability mass function is

pm(m) =
1

1+M

(
M

1+M

)m
m = 0, 1, . . ..

Proof.
This is a standard maximization using Lagrange multipliers.
Note: This is not a Poisson distribution.



The Gordon Distribution

I This probability mass function is a geometric probability mass
function called the Gordon distribution

I The entropy of the Gordon distribution is

H = loge (1+M) +M loge (1+ 1/M)

I The two terms suggest the wave and particle nature of a signal.

I When M is large H ≈ loge (1+M). This is the entropy of a
continuous exponential probability density function with mean M.

I When M is is small H ≈ M −M loge M. This is the small-signal
expansion of the entropy of a Poisson probability mass function with
mean M.

I Two limiting forms of the Gordon distribution reveal the particle and
wave properties.



Special Distributions

I Probability density function
I Maximum entropy — Real or complex gaussian
I Convolution invariance — Real or complex gaussian

I Probability mass function
I Maximum entropy — Gordon distribution
I Convolution invariance — Poisson distribution



The Poisson Transform

I Let fE(E) be any continuous probability density function on the
nonnegative reals. Then

pm(m) =

∫ ∞
0

Em

m!
e−EfE(E)dE,

is a probability mass function on the nonnegative integers.
I The inverse Poisson transform maps probability mass functions to

real probability density functions.



Properties of the Poisson Transform

I The Poisson transform (and its inverse) reveal the parallel roles for
the wave model and the particle model of a signal.

I By analogy with the symbolic expression for the Fourier transform

s(t) ←→ S(f )

the Poisson transform is expressed symbolically as

f (x) <∼∼∼> p(m).



Examples

I The Poisson distribution is the Poisson transform of a Dirac delta
function.

δ(E −M) <∼∼∼> Mm

m!
e−M.

I The Gordon distribution is the Poisson transform of a
maximum-entropy exponential probability density function.

e−E/M <∼∼∼> 1
1+M

(
M

1+M

)m



Composite Distribution formed by the Poisson Transform

I When viewed as a Poisson transform, the Gordon distribution is the
composite of:

I The uncertainty caused by the random arrival times of particles,
I Maximum statistical uncertainty expressed by an exponential
distribution.

I The composite effect determined by
I Considering the effect of the channel (always present).
I Overlying maximum-entropy statistical uncertainty using the Poisson
transform to give the Gordon distribution.



Lifting the Energy to the Complex Amplitude

I The square of a constant complex amplitude over a finite-time
interval T is the energy E .

I The square-root of the maximum-entropy exponential distribution is
not a maximum-entropy distribution

I This failure is remedied by the assertion that the square-root of the
energy is complex.

I Equivalently, the energy is the sum of two squared terms, not one.



Position and Momentum

I A particle is described by both a position and a momentum and has
both potential energy and kinetic energy.

I An approach that does not explicitly account for these two degrees
of freedom of the particle fails to generate a maximum-entropy
distribution.



Inverting the Exponential Distribution

I x + iy is gaussian −→ x2 + y2 is exponential
I What is square root of exponential?

I
√

E is not maximum entropy
I
√

E does not convolve
I Energy must be expressed as the complex factorization

E = (x + iy)(x − iy)

or
E = x2 + y2.

I This expression, hinted at by the form of the composite Gordon
distribution, is an unavoidable consequence of respect for the
maximum entropy principle.

I The maximum-entropy distribution of the complex amplitude
A = AI + iAQ = |A|eiφ is a circularly-symmetric gaussian.



Summary
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I A unified information-theoretic framework for both wave channels
and particle channels

I Consistent with quantum theory.
I Semiclassical abridgement of quantum theory.



The Additive Noise Particle Channel

I A discrete memoryless channel is composed of contiguous equal time
intervals each with a complex sinusoid

I Average signal power constrained.
I Independent, additive complex gaussian noise in each interval.

I The random variable r denotes the total number of received particles
in an interval.

I Poisson transform of wave intensity
I Considering only the discrete-particle aspect of the signal, the

random received signal r is the sum of particle counts for the signal s
and the independent additive noise n

r = s+ n.



Two Channel Models

x y

s = |x+ n|2

(a)

(b)

Q(y|x) = 1

2πσ2
e−(y−x)2/2σ2

rQ(r|s) = sr

r!
e−s



Mutual Information and Capacity

I Using r = s+ n, the mutual information I(s; r) is

I(s; r) = H(r)−H(r|s) = H(s+ n)−H(n),

where H(r|s) is equal to H(n) because the signal s and the noise n
are independent.

I The conditional probability p(r|s) that determines the entropy H(r)
is a conditional Poisson distribution

C = max I(s; r),



Maximizing the Mutual Information for the Particle
Channel

I Distribution p(r) maximizing entropy H(r) is the Gordon distribution
given by

p(r) = 1
1+ Z

(
Z

1+ Z

)r
,

with entropy H(r) = (1+ Z) log (1+ Z)− Z logZ where Z is the
expected number of received particles E+N0.

I Capacity would be achieved for a prior p(s) such that p(s+ n) is a
maximum-entropy Gordon distribution with Z = E+N0.



The Channel Capacity

I When r and n are each Poisson, and r = s+ n, then s must be
Poisson as well.

I When the encoder generates an input distribution for the continuous
signal energy that is the maximum-entropy exponential distribution,
the corresponding discrete distribution for the number of transmitted
particles is a Gordon distribution.

I Mean signal E is the difference between the mean number of
received particles Z and the mean number of noise particles N0
added by the channel.

I Using Z = E+N0, the maximum entropy H(r) at the output of the
channel is

H(r) = g(Z) = g(E+N0).



The Channel Capacity

I Using the precceding expression and H(n), the capacity of the
channel is

C = H(r)−H(n) = g(E+N0)− g(N0),

I This is the single-letter capacity C of the noisy time-discrete particle
channel in units of bits/symbol.

C = log2

(
1+ E

1+N0

)
+ (E+N0) log2

(
1+ 1

E+N0

)
−N0 log2

(
1+ 1

N0

)
I E is the mean number of signal counts

I E = Ehf is the mean signal energy
I N0 is the mean number of noise counts

I N0 = N0hf is the mean noise energy



Gordon Noiseless Capacity Formula

The bandlimited capacity C, in bits per second, of a noiseless particle
channel with time-averaged particle arrival rate R, in bits per second,

C = B log2

(
1+ R

B

)
+ R log2

(
1+ B

R

)
with B in Hertz.



The Shannon Capacity

I The Shannon capacity based on waves can be derived directly from
the particle capacity.

I When both E and N0 are much larger than one, the entropy of a
Gordon distribution g(x) approaches the entropy of an exponential
distribution.

I Replace mean particle counts E and N0 by mean continuous energy
E and N0

I Replacing g(m) in by 1+ log x gives

C = H(r)−H(n)
= 1+ log(E + N0)−

(
1+ log N0

)
= log2

(
1+ E

N0

)
bits per symbol

which is the single-letter capacity based on waves.



Comments and Conclusion

I The Poisson transform (lifted) provides a unified framework for wave
channels and particle channels

I The duality of channel capacity of particle and wave channels is one
example



Information Theory Hierarchy

1. Classical information theory
(Shannon, et al)

2. Semiclassical information theory
(Gordon, Mandel, Wolf, Forney, et al)

3. Quantum information theory
(von Neumann, Holevo, Shapiro, et al)


