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Compressed / Sparse Sensing 
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Compressible Signals 

Compressible signals: approximated by K -sparse signals 
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Compressed Sensing (CS) Problem 



CS Reconstruction 

 
 



Sensor networks: Sparse & temporal correlated samples 

§  Consecutive time samples demonstrate high temporal correlation 
§  Desirable to exploit temporal information for improvements in 

performance and computational complexity 

Time Time 



Observations and question 

§  Observations 
§  Traditionally, Kalman filtering handles dynamic signal recovery well 
§  Kalman filtering does not deal with sparse signals well 
§  Established compressed sensing (CS) techniques do not handle 

dynamic, temporally correlated signals, as efficiently as Kalman 
§  Bayesian CS handles signal statistics, but not well on temporal 

characteristics 

§  Question 
§  Can we do better than performing sparse signal reconstruction 

independently for each frame? 
§  Answer: Yes 



Sparsity from a Bayesian Standpoint 

Sparse Bayesian learning allows 
estimations of signal statistics. 
Sparsity of each component xi 
is controlled by its variance: 
 

p(xi |αi ) = N (0, αi ). 

When αi  = 0, it is a-posteriori 
certain that xi  = 0. 



Tracking Dynamic Sparse Signals 

Signals xt  are sparse in the 
same domain: 

xt  = xt−1 + qt  

yt  = Φt xt  + nt 

xt  is sparse → qt  is sparse: 

qt  ∼ N (0, At ) 
At  = diag(α1, · · · , αN ) 



NASA ozone measurements and reconstruction 

 
§  Global ozone distribution 
§  Blue strips represent missing data 
§  Signal is sparse in DCT domain 
§  Hybrid-Bayesian Kalman approach 

yields lower reconstruction errors 
than Bayesian CS 



Reconstruction error of ozone measurements 



From Centralized Compressed Sensing  
to Distributed Signal (Data) Processing 
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Distributed Signal Processing (In-Network Data Processing) 

§  Dynamic, Distributed Signal Processing 
•  Multiple, distributed signal/data sources 
•  Huge data volume! 
•  Complex temporal-spatial correlations 
•  Limited communication or computing resources 
•  Dynamic info requirements (e.g. user location) 
•  Applications e.g., situation awareness 

 
§  Solution Techniques 

•  Process signal/data while being transferred hop-by-hop 
toward the user destination (In-Network Data Processing, 
INDP) 

•  Lossy vs. lossless processing 
•  Optimize use of bandwidth and computing resources while 

providing satisfactory quality of information (QoI) 
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Current Network Model 
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Problem Formulation: Distributed Signal Processing 
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Local Constrained Optimization (LCO) Formulation 
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Distributed solution to the LCO problem 
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Each node optimizes on its own. 
Fully distributed solution! 



Numerical results 
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§  Cases with balanced 
binary aggregation trees & 
computable optimal 
solutions 

Cases Parameter settings	  

Case1 

Case2 
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LCO closely approximates GO when  
-  Communication costs higher than computation 
-  Number of nodes increases 



Numerical results (continued)  
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Balanced aggregation tree with 127 node: 
•  Homogeneous Nodes (HN) 
•  Powerful Leaves (PL) 
•  Powerful Intermediate Nodes (PI) 
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Cases Parameter settings	  

HN 

PL 

PI 
LCO closely approximates GO when 
intermediate nodes have powerful 
computation capability  



Concluding remarks and future work 
§  Concluding remarks 

•  Signals are often sparse in some domain, thus compress sensing (CS) 
techniques are applicable 

•  CS techniques have been developed to treat sparse signals with time 
dynamics 

•  Distributed signal processing (DSP) is useful, but open issues exist 
•  DSP (e.g., sensor networks) has to be considered with communication 

constraints for optimal performance 
•  Globally optimal DSP is hard to achieve, but suboptimal distributed 

solutions may be possible 
•  Future work 

•  Generalize the conditions under which the local-constrained optimization 
problem can lead to fully distributed solutions 

•  How can we perform the CS in distributed ways? 
•  Incorporate other aspects of signal processing (e.g., image, detection) 

into the DSP framework 
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