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Compressed / Sparse Sensing
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Compressible signals: approximated by K -sparse signals
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Problem 1: Recover original signal X, given measurement y and sensing matrix @.
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Problem 2: Dictionary learning — ldentify the sensing matrix @ and recover original
signal X, given measurement y. (Much tougher!)
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Problem: Recover original signal X, given measurement’y and sensing matrix @

lo — Mininization for CS reconstruction
min, ||x||, subjectto ||y —0x||, <¢
where ||x||, counts the number of nonzero elements of x

= Solution represents the sparest signal (i.e., with the minimum number of
nonzero entries

= Huge complexity: Exhaustive search with complexity C¥

Greedy algorithm
min, ||y — @x||, subjectto ||x||o <K

» Under the K-restricted isometry property (RIP)

» Noiseless case: exact reconstruction
» Noisy case: bounded reconstruction distortion
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sSensor networks: Sparse & temporal correlated samples

» Sensed signal is sparse in some domain
» Exact reconstructionis possible at sub-Nyquist rates
» Reduced data volume, while retaining information content

Time t-1 Time ¢

= Consecutive time samples demonstrate high temporal correlation

= Desirable to exploit temporal information for improvements in
performance and computational complexity
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= QObservations
» Traditionally, Kalman filtering handles dynamic signal recovery well
» Kalman filtering does not deal with sparse signals well

» Established compressed sensing (CS) techniques do not handle
dynamic, temporally correlated signals, as efficiently as Kalman

» Bayesian CS handles signal statistics, but not well on temporal
characteristics

=  Question

= Can we do better than performing sparse signal reconstruction
independently for each frame?

= Answer: Yes
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sSparsity from a Bayesian Standpoint

Sparse Bayesian learning allows
estimations of signal statistics.

Sparsity of each component x;
Is controlled by its variance:

p(xilai) = N (0, a). 4 — \

When a; = 0, it is a-posteriori P -y

certain that x; = 0. Hierarchical Bayesian Model



Imperial College

Tracking Dynamic Sparse Signals

Signals x; are sparse in the
same domain:

Xt = Xt-1t q; :
i = Oix; + 0y ;

X: IS Sparse — (; IS sparse:
q: ~N (0, A;) o ')

— A ... g 1. Classic Kalman : Proposed
At - dlag ((71, ; N ) i i filter model model
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= Global ozone distribution

= Blue strips represent missing data
= Signal is sparse in DCT domain

» Hybrid-Bayesian Kalman approach

yields lower reconstruction errors
than Bayesian CS

HB-Kalman Reconstruction
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From Centralized Compressed Sensing
to Distributed Signal (Data) Processing



Solution Techniques
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Distributed Signal Processing (In-Network Data Processing)

Dynamic, Distributed Signal Processing e
Multiple, distributed signal/data sources -
N
Huge data volume! \
. . A
Complex temporal-spatial correlations —

. . . . . SonIumesofL’/ Nl \‘::;,’:/\’/‘L T~ > I .
Limited communication or computing resources esnscorcern | O U
Dynamic info requirements (e.g. user location) 032"
Applications e.g., situation awareness e e

from various coalition members

resources resources

° o
from coalition h from coalition
member A member B

Process signal/data while being transferred hop-by-hop
toward the user destination (In-Network Data Processing,
INDP)

Lossy vs. lossless processing

Optimize use of bandwidth and computing resources while

providing satisfactory quality of information (Qol)
13



Imperial College

Current Network Model

= Qperating scenario
« A user sends a query to request for information

* An aggregation tree is formed to transfer and process requested
information

= Parameters of concern

* Energy consumption at each node: receiving, computation and
transmission

» Data (fusion, compression, aggregation) reductionrate: 0 < §; < 1
for each node i

= Distributed approach for data aggregation

* To achieve the optimal trade-off between energy consumption and
Qol (e.g., amount of data received at the end user)

14
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Problem Formulation: Distributed Signal Processing

= The global optimization (GO) problem
T

) @ (): Sensor nodes %
mings, Z P; (6i' yl) Vel } :The user Vel
=1

s.t. y.0,=>2vy

where P;(..) = energy consumption
y;= amount of data input
d;= reduction rate at node i

» Constraint represents Qol requirements
= Possible to extend formulation for other settings/applications
» Unfortunately, it is an NP-hard problem!

15
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Local Constrained Optimization (LCO) Formulation

* The local constrained optimization (LCO) problem

r
' @ (): Sensor nodes
mm{gi} Z Pi (61'; yl) y,.I,E ‘The user
=1

0

S.t. y;6; =y forVvi

where P;(..) = power consumption
y;= amount of data input
d;= reduction rate at node i

» Additional constraints impose Qol requirement at each node

16
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Distributed solution to the LCO problem

= Assumptions
- Energy consumption as separable functions:P;(8;,y,) = f,(6)9,,)

« Communication energy consumptions for receiving and transmitting
are proportional to the amount of data involved

« Theorem: Under the assumptions, the LCO problem is equivalent to a
distributed one as follows:

r r

mings Z P; (63, 1) Z mingsy P;i(0;,¥;)
=1 =1

s.t. y;6; =y forVi S.t. y;6; =y forVvi

Each node optimizes on its own.
Fully distributed solution!

17
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Numerical results

Cases with balanced 16000

binary aggregation trees & | 14000
computable optimal

empmm| CO Casel

N
(=4
(=4
o

solutions GO Caset
40000
e=jpm | CO Case2
8000 @ GO Case2
Cases Parameter settings

6000
Casel e =¢ep = e, = 0.00024

Total energy consumptian X 10£3(J)

o 4000
Case2 ¢, = ¢, = 0.00024 2000
y=5 ’

3 7 15 31 63 127 255 511
Number of nodes

LCO closely approximates GO when
- Communication costs higher than computation
- Number of nodes increases
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Numerical results (continued)

Balanced aggregation tree with 127 node:

Homogeneous Nodes (HN)
Powerful Leaves (PL)
Powerful Intermediate Nodes (PI)

Cases Parameter settings

er, = eg, = 0.00024 for all i

HN ec,=0.00012 for all i
y=5
er, = eg, = 0.00024 for all i

PL ec,=0.00012 for i € {intermediate nodes}
ec,=0.00006 for i € {leaf nodes}
y =5
er, = eg, = 0.00024 for all i

Pl ec,=0.00006 for i € {intermediate nodes}

ec,=0.00012 for i € {leaf nodes}
Yy =5

Total energy consumption

1400 127 Nodes ®LCO
EGO

Homogeneous Powerful Powerful
Nodes Leaves Intermediate Nodes

LCO closely approximates GO when
intermediate nodes have powerful
computation capability

19
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Concluding remarks and future work

= Concluding remarks

 Signals are often sparse in some domain, thus compress sensing (CS)
techniques are applicable

« CS techniques have been developed to treat sparse signals with time
dynamics

« Distributed signal processing (DSP) is useful, but open issues exist

« DSP (e.g., sensor networks) has to be considered with communication
constraints for optimal performance

» Globally optimal DSP is hard to achieve, but suboptimal distributed
solutions may be possible

e Future work

» Generalize the conditions under which the local-constrained optimization
problem can lead to fully distributed solutions

* How can we perform the CS in distributed ways?

* Incorporate other aspects of signal processing (e.g., image, detection)
into the DSP framework

20
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