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Construction of Long Codes from Short Codes

Short Convolutional Codes
Convolutional codes with short constraint lengths: e.g.,

D D

+ +

u
(t)

c1
(t)

+ c2
(t)

Figure: A (2, 1, 2) convolutional code encoder.

Short Block Codes
Block codes with short length: repetition codes, single parity-check codes,
Hamming codes, etc. We are actually interested in Cartesian product of short
block codes. For example [2, 1, 2]5000, [6, 5, 2]2000, [7, 4, 3]2500;
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Construction of Long Codes from Short Codes

Long Codes from Short Codes

Product codes;

Concatenated codes;

Turbo codes: parallel concatenated convolutional codes (PCCC) and serial
concatenated convolutional codes (SCCC);

(Irregular) Repeat accumulate (RA) codes;
Accumulate-repeat-accumulate (ARA) codes;

Concatenated zigzag codes; Precoded concatenated zigzag codes;
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Accumulate-repeat-accumulate (ARA) codes;

Concatenated zigzag codes; Precoded concatenated zigzag codes;

Low-density parity-check (LDPC) codes (either random construction or
algebraic construction): From decoding aspect, they can be viewed as serially
concatenated repeat codes with single parity-check codes;

Convolutional LDPC codes;

Polar codes: concatenation of a series of simple transformation;

· · ·
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Superposition Block Markov Encoding (SBME) in the

Relay Channel

S D

R

Figure: The Relay Channel.
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The data are equally grouped into B blocks;

Initially, the source (S) broadcasts a codeword that corresponds to the first data
block to the relay (R) and the destination (D). Since the code rate is greater than
the capacity of the link S→ D (otherwise, no relay is required), D is not able to
recover reliably this data block;
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Initially, the source (S) broadcasts a codeword that corresponds to the first data
block to the relay (R) and the destination (D). Since the code rate is greater than
the capacity of the link S→ D (otherwise, no relay is required), D is not able to
recover reliably this data block;

Then the source and the relay cooperatively transmit more information about the
first data block;

In the meanwhile, the source “superimposes” a codeword that corresponds to the
second data block;

Finally, the destination recovers the first data block from the two successive
received blocks;

After removing the effect of the first data block, the system returns to the initial
state;

This process iterates B + 1 times until all B blocks of data are sent successfully.
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It is possible. Actually, we have ever shown how to design bandwidth-efficient
coded modulation by the use of“multiple-access signalling”together with the
successive decoding [See, for example, Xiao Ma and Li Ping 2004: Coded
Modulation Using Superimposed Binary Codes];

We apply a similar strategy (SBME) to the single-user communication
system, resulting in the block Markov superposition transmission (BMST)
scheme.
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Block Markov Superposition Transmission
Let C be the short code (called basic code) in the transmission scheme.
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codeword (possibly in its interleaved version) one more time.

In the meanwhile, a fresh codeword from C that corresponds to the second
data block is superimposed on the second block transmission.

Finally, the receiver recovers the first data block from the two successive
received blocks.

After removing the effect of the first data block, the system returns to the
initial state;

This process iterates B + 1 times until all B blocks of data are sent
successfully.
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Block Markov Superposition Transmission

Encoding
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Figure: Encoding structure of BMST with memory m.

Recursive Encoding of BMST

1 Initialization: For t < 0, set v(t)
= 0 ∈ Fn

2
.

2 Recursion: For t = 0, 1, · · · , L − 1,

Encode u
(t ) into v

(t ) ∈ Fn
2
by the encoding algorithm of the basic code C ;

For 1 ≤ i ≤ m, interleave v
(t−i) by the i-th interleaver Πi into w

(i);
Compute c

(t )
= v

(t )
+
∑

1≤i≤m w
(i), which is taken as the t-th block of

transmission.

3 Termination: For t = L,L + 1, · · · ,L +m − 1, set u(t)
= 0 ∈ Fk

2
and compute

c
(t) recursively.
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Block Markov Superposition Transmission

Relation to Existing Codes

For a rate R = k/n general convolutional code, information sequence
u =
(

u (0),u (1), · · ·
)

is encoded into code sequence c =
(

c(0), c(1), · · ·
)

by

c(t )
= u (t )G0 + u

(t−1)G1 + · · · + u
(t−m)Gm , t ≥ 0,

where u (t)
= 0 for t < 0 and Gi (0 ≤ i ≤ m) is a binary k × n matrix and m

is called the encoder memory.
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The BMST defines a special class of convolutional codes. Specialities:
possibly extremely large constraint length; GΠi instead of Gi .
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Block Markov Superposition Transmission

Normal Graph
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Figure: The normal graph of a BMST system with L = 4 and m = 2.

Decoding

An iterative forward-backward decoding schedule is used for basic codes with small
L;

An iterative sliding-window decoding schedule is used for basic codes with large L;

Four types of nodes: C , =, +, and
∏

;

Messages are processed and passed through different decoding layers forward and
backward over the normal graph.
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Coding Gain Analysis of the BMST

Genie-Aided Lower Bound on BER

Imagine that u′ = {u(i), t −m ≤ i ≤ t +m, i , t } are known at the receiver.

This is equivalent to transmitting u (t) for m + 1 times.

The coding gain of the BMST can not be larger than

10 log10(m + 1) − 10 log10(1 +m/L) dB.

Noticing that Pr{u ′|y } ≈ 1 in the low error rate region, we can expect that
the maximal coding gain 10 log10(m + 1) − 10 log10(1 +m/L) dB.

Upper Bound on BER

The input-output weight enumerating function (IOWEF) of the BMST
system can be computed from that of the basic code.

The BER can be upper-bounded by an improved union bound.

Notice that an incomplete (truncated) IOWEF is sufficient for upper bounds.
(See Xiao Ma, Jia Liu and Baoming T-COMM 2013).
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Simulation Results
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Figure: Comparison of the weight spectrum between the independent transmission
system and the ensemble of the BMST system. The basic code is a terminated
systematic encoded 4-state (2, 1, 2) convolutional code defined by the polynomial
generator matrix G(D) = [1, (1 +D +D2)/(1 +D2)]. The BMST system encodes L = 19

sub-blocks of data with memory m = 1.
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Figure: Coding gain analysis of the BMST system. The basic code is a terminated
convolutional code (CC) with the polynomial generator matrix [1, 1+D+D

2

1+D2
]. The coding

parameters of the BMST system are m = 1, L = 19, d = 19, and Imax = 18. The
decoding algorithm is performed after all 20 transmitted sub-blocks are
received (forword-backward schedule).
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1+D2, 1 +D +D2]. The system encodes L = 1000

sub-blocks of data and the iterative sliding-window decoding algorithm is performed,
where the encoding memories and the decoding delays are specified in the legends.
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Shannon limit of rate 4/7
Hamming Code [7, 4]

Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
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Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
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Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
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Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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Repetition codes

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
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dashed lines correspond to the respective Shannon limits.

Xiao Ma (SYSU) Block Markov Superposition Transmission Hong Kong, October, 2013 40 / 91



Simulation Results

−1 0 1 2 3 4 5 6 7 8 9
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
(dB)

B
E

R

 

 
Repetition codes

RC[6,1]2000,  m = 10,  d = 30

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Shannon limit of rate 1/2
CRC + CC,  k = 10000,  n = 20068

Figure: The basic code C is a concatenated code of dimension k = 10000 and length
n = 20068, where the outer code is a 32-bit CRC code and the inner code is a terminated
convolutional code with the polynomial generator matrix [1 +D2, 1 +D +D2]. Other
coding parameters of the BMST system are L = 1000 and Imax = 18.
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CRC + CC,  k = 10000,  n = 20068

Figure: The basic code C is a concatenated code of dimension k = 10000 and length
n = 20068, where the outer code is a 32-bit CRC code and the inner code is a terminated
convolutional code with the polynomial generator matrix [1 +D2, 1 +D +D2]. Other
coding parameters of the BMST system are L = 1000 and Imax = 18.
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Shannon limit of rate 1/2
CRC + CC,  k = 10000,  n = 20068
 m = 1,  d = 7

Figure: The basic code C is a concatenated code of dimension k = 10000 and length
n = 20068, where the outer code is a 32-bit CRC code and the inner code is a terminated
convolutional code with the polynomial generator matrix [1 +D2, 1 +D +D2]. Other
coding parameters of the BMST system are L = 1000 and Imax = 18.
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Figure: The basic code C is a concatenated code of dimension k = 10000 and length
n = 20068, where the outer code is a 32-bit CRC code and the inner code is a terminated
convolutional code with the polynomial generator matrix [1 +D2, 1 +D +D2]. Other
coding parameters of the BMST system are L = 1000 and Imax = 18.
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Figure: The basic code C is a concatenated code of dimension k = 10000 and length
n = 20068, where the outer code is a 32-bit CRC code and the inner code is a terminated
convolutional code with the polynomial generator matrix [1 +D2, 1 +D +D2]. Other
coding parameters of the BMST system are L = 1000 and Imax = 18.

Xiao Ma (SYSU) Block Markov Superposition Transmission Hong Kong, October, 2013 54 / 91



Simulation Results

0 1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BCJR only

CRC + list Viterbi10log
10

(2)

10log
10

(3)

10log
10

(4)

 E
b
/N

0
(dB)

B
E

R

 

 
Shannon limit of rate 1/2
CRC + CC,  k = 10000,  n = 20068
 m = 1,  d = 7
 m = 2,  d = 2
 m = 2,  d = 7
 m = 2,  d = 7 with list Viterbi

Figure: The basic code C is a concatenated code of dimension k = 10000 and length
n = 20068, where the outer code is a 32-bit CRC code and the inner code is a terminated
convolutional code with the polynomial generator matrix [1 +D2, 1 +D +D2]. Other
coding parameters of the BMST system are L = 1000 and Imax = 18.
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I t = 0,
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1≤ℓ≤m P t−ℓΠℓ t ≥ 1,

where I is

the identity matrix of order n and 0 is the zero matrix of order n.
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Define a sequence of matrices P0 =






0, t ≤ −1,

I t = 0,
∑

1≤ℓ≤m P t−ℓΠℓ t ≥ 1,

where I is

the identity matrix of order n and 0 is the zero matrix of order n.

The parity-check matrix of the BMST system is given by

HBMST = diag{H , · · · ,H
︸       ︷︷       ︸

L

, I , · · · , I
︸    ︷︷    ︸

m

}PT
,

where, the superscript T denotes“transpose”and

P =





I P1 P2 · · · PL+m−1

I P1 · · · PL+m−2

. . .
. . .

...

I P1

I





.
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What we really care about is whether or not the basic code

has efficient encoding/decoding algorithms.
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Simulation Results
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15, 256, 5)800. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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Figure: The basic code C is the Consultative Committee on Space Data System
(CCSDS) standard code of dimension k = 1784 and length n = 4092, where the outer
code is a [255, 223] Reed-Solomon (RS) code over F256 and the inner code is a
terminated convolutional code with the polynomial generator matrix
G(D) = [1 +D +D2

+D3
+D6, 1 +D2

+ D3
+D5

+D6]. Other coding parameters of
the BMST system are L = 100 and Imax = 18.
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Conclusions

Conclusions
We presented a new method for constructing long codes from short codes;

The encoding process can be as fast as the short code, while the decoding
has a fixed but tunable delay.

With an iterative sliding-window decoding algorithm, the performance of
BMST can approach the derived lower bound in low error rate region;

This scheme can be generalized, for example, to non-binary codes, lattice
codes, and so on.

In principle, any code can be the basic code as long as it has efficient
encoding algorithm and (exact or approximated) soft-in soft-out (SISO)
decoding algorithm.
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