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Graphical Models Is All About 
Factorization

• Consider n random variables                  where 

• Generally two types of graphical models are common in 
practice 

• Bayesian Network (directed graphical models) 

• Markov Random Field (undirected graphical models)

X1, . . . , Xn

p(x1, . . . , xn) =
Y

a2A

 a(xa)

Xi 2 Xi

Probabilistic notions such as conditional independence  
<==> 

Graph-theoretic notions such as cliques and separation



Bayesian Network
• The probability distribution is factorized according to a 

directed acyclic graph 

•                    is indeed a conditional probability distribution

i

⇡(i)

Z
pi(xi|x⇡(i)) = 1

pi(xi|x⇡(i)) � 0

p(x1, . . . , xn) =
Y

i2V

pi(xi|x⇡(i))

pi(xi|x⇡(i))



Markov Random Field
• Let               be an undirected graph and  

• Global Markov Property:

G(V,E)

8W ✓ V : p(xW |xV \W ) = p(xW |x�W )

p(xV ) > 0

(
)
p(x1, . . . , xn) =

1

Z

Y

C2C
 C(xC)

Hammersley and Clifford Theorem



Markov Random Field
• Let               be an undirected graph and  

• Global Markov Property:

G(V,E)

8W ✓ V : p(xW |xV \W ) = p(xW |x�W )

p(xV ) > 0

(
)
p(x1, . . . , xn) =

1

Z

Y

C2C
 C(xC)

Normalization constant called 
partition function

Usually the set of 
maximal cliques

Hammersley and Clifford Theorem



• Example:

Markov Random Field

p(x1, . . . , x7) =
1

Z

 1234(x1, . . . , x4) 456(x4, x5, x6) 67(x6, x7)
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Factor Graph
• Let                          and     indexes the factors  

=> A factor graph is a bipartite graph 
V = {1, . . . , n} A

G = (V,A,E)

p(x) , p(x1, . . . , xn) =
1

Z

Y

a2A

 a(xa)

Z =
X

x

Y

a2A

 a(xa)

i

j

k

a

b



Factor Graph
• Let                          and     indexes the factors  

=> A factor graph is a bipartite graph 

• Example:                         and A = {a, b, c}V = {1, . . . , 7}

V = {1, . . . , n} A
G = (V,A,E)

p(x) , p(x1, . . . , xn) =
1

Z

Y

a2A

 a(xa)

Z =
X

x

Y

a2A

 a(xa)

3

2 4

1

5

6

7

a b c

i

j

k

a

b

p(x) =
1

Z
 a(xa) b(xb) c(xc)



Two Important Problems!
• Computing the marginal distribution            over a particular 

subset             of nodes

• Computing a mode of the density

argmax

x2Xn
p(x)

p(xW ) =
X

x\xW

p(x)

p(xW )

W ⇢ V



Two Important Problems!
• Computing the marginal distribution            over a particular 

subset             of nodes

• Computing a mode of the density

In general, these problems are hard!

• Example: Consider binary random variables                     . 
To compute           we need to sum over an exponential 
number of terms: 

argmax

x2Xn
p(x)

X0, . . . , X100

p(x0)

p(x0) =
X

x1,...,x1002{0,1}

p(x0, x1, . . . , x100)

p(xW ) =
X

x\xW

p(x)

p(xW )

W ⇢ V



Partition Function
• The partition function    of a graphical model encodes 

important information about the underlying distribution 

•     is an important quantity for physicist => from     we can 
compute experimentally measurable quantities 

• If all      are hard constraints =>    counts the number of 
valid configuration in the system
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Partition Function
• The partition function    of a graphical model encodes 

important information about the underlying distribution 

•     is an important quantity for physicist => from     we can 
compute experimentally measurable quantities 

• If all      are hard constraints =>    counts the number of 
valid configuration in the system

1 7 2 5 4 9 6 8 3
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4 9 6 3 2 7 8 5 1
8 1 3 4 5 6 9 7 2
2 5 7 1 9 8 4 3 6
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        number of valid Sudoku configurations



Belief Propagation (BP) 
(Sum-Product Algorithm)

• Messages are exchanged between variable nodes and factor 
nodes of a factor graph

ia

ma!i(xi)

i a

ni!a(xi)
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Belief Propagation (BP) 
(Sum-Product Algorithm)

• Messages are exchanged between variable nodes and factor 
nodes of a factor graph

• Message update rules:

ia

ma!i(xi)

i a

ni!a(xi)

ni!a(xi) =
Y

c2N(i)\a

mc!i(xi)

i a

ni!a(xi)



Belief Propagation (BP) 
(Sum-Product Algorithm)

• Messages are exchanged between variable nodes and factor 
nodes of a factor graph

• Message update rules:

ia

ma!i(xi)

m

a!i

(x
i

) =
X

xa\xi

f

a

(x
a

)
Y

j2N(a)\i

n

j!a

(x
j

)

i a

ni!a(xi)

ni!a(xi) =
Y

c2N(i)\a

mc!i(xi)

i a

ni!a(xi)

ia

ma!i(xi)



Belief Propagation (BP)
• How to compute the marginals?



Belief Propagation (BP)
• How to compute the marginals?

i



Belief Propagation (BP)
• How to compute the marginals?

i a



Belief Propagation (BP)
• How to compute the marginals?

i a

BP is exact on trees, but only gives an 
approximation on graphs with cycles!



Backgrounds 
on 

Statistical Physics



Boltzmann Law 
• A fundamental result of statistical mechanics is that, in 

thermal equilibrium, the probability of a state will be given by 
Boltzmann’s distribution: 

Alternative point of view

p(x) =
1

Z(T )
e�E(x)/T

Arbitrary 
probability 
distribution

View 
Boltzmann’s law 
as a postulate

Define an 
energy for the 

system
p(x)



Energy Assigned to a Factor 
Graph

• Consider factor graph  

• For probability distribution  
 
 
 
we can define energy of state    as

G = (V,A,E)



(Helmholtz) Free Energy
• Free energy of a system is defined as 

•    is average energy:  

•     is entropy: 

•         is the actual probability distribution of the system 

• Note that we have



Variational Approach 
(Gibbs Free Energy)

• Instead of true probability distribution        consider some 
other distribution       . Then define 

• where 

• We can show

=>         takes its minimum at



Variational Approach
• Consider the following optimization problem 

• This optimization problem provides an exact procedure for 
computing the partition function (in fact      ) and recovering 

• Bad news: this problem is at least as hard as the original 
problem of partition function computation 

• Good news: we can use it to develop approximation methods!

FH p(x)

As     becomes large, this method is intractable!    n



A General Approach to 
Upper Bound 

• A more practical approach to upper bound      is to minimize  
        over a restricted class of probability distribution 

• Example: mean-field approximation 

• We can extend this method by considering more complicated 
form for        that leads to a tractable distribution.  
=> Example: structured mean-field approach

FH

All 
distributions

Some restricted set of 
distributions



A General Approximation Approach
min
b

F (b)

s.t. 0  b(x)  1, 8x
X

x

b(x) = 1
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Approximate          by 
some simpler and more 

tractable function

F (b)



A General Approximation Approach
min
b

F (b)

s.t. 0  b(x)  1, 8x
X

x

b(x) = 1

Approximate          by 
some simpler and more 

tractable function

F (b)

Minimize         over a set of beliefs           
which approximate the probability 

simplex over

F (b) b

x

All distributions

a set of beliefs



Region-Based Approximation
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Region-Based Approximation 
(Main Idea)

• Break the factor graph into regions

FR ⇡
X

R2R
FR(bR)

• Approximate the overall free energy as: the sum of the free 
energy of all the regions



Region-Based Approximation 
(Main Idea)

• Break the factor graph into regions

FR ⇡
X

R2R
FR(bR)

• Approximate the overall free energy as: the sum of the free 
energy of all the regions

• Heuristic: to have a good approximation => Find good set of 
regions
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Region-Based Approximation 
(Definitions)

• A region    of a factor graph consists of      and       such that:

• Associated quantities of a region:

Region Energy

ER(xR) , �
X

a2AR

log fa(xa)

Region Average Energy

UR(bR) ,
X

xR

bR(xR)ER(xR)

Region Entropy

HR(bR) , �
X

xR

bR(xR) log bR(xR)

R



Region-Based Approximation 
(Definitions)

• A region    of a factor graph consists of      and       such that:

• Associated quantities of a region:

Region (Gibbs) Free Energy

FR(bR) , UR(bR)�HR(bR)

Region Energy

ER(xR) , �
X

a2AR

log fa(xa)

Region Average Energy

UR(bR) ,
X

xR

bR(xR)ER(xR)

Region Entropy

HR(bR) , �
X

xR

bR(xR) log bR(xR)

R



Region-Based Approximation
• Region-based (approximate) entropy: 

• Region-based average energy: 

• Region-based (Gibbs) free energy:



Region-Based Approximation
• Region-based (approximate) entropy: 

• Region-based average energy: 

• Region-based (Gibbs) free energy:

Counting numbers   



Valid Region-Based Approximation
• Definition: A set of regions     and associated counting 

numbers      give a valid approximation if: 

• Why valid region-based approximation? 

• If  

• In general                         but     is equal to    
up to total number of degrees of freedom in the system
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Valid Region-Based Approximation
• Definition: A set of regions     and associated counting 

numbers      give a valid approximation if: 

• Why valid region-based approximation? 

• If  

• In general                         but     is equal to    
up to total number of degrees of freedom in the system



Region-Based Approximation 
(Constraints on Beliefs)

1. Normalization:                           forms a probability function: 

2. Local consistency: if the set of variable nodes 
                  : 

3. Inequality:

The above expressions give a set of local constraints!     



A Special Case: 
Bethe Approximation 

and 
Recovering BP
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Bethe Approximation
• Two types of regions, large and small: 

•    regions in      each contains one variable node 

•     regions in      each contains one factor node and the 
neighboring variable nodes

Good news: this choice of counting numbers give a valid approximation for  
variational free energy!



Bethe Approximation
Bethe Average Energy

UBethe = �
X

a2A

X

xa

ba(xa) log fa(xa)

Bethe Entropy

HBethe = �
X

a2A

X

xa

b
a

(x

a

) log b
a

(x

a

) +

X

i2V

(d
i

� 1)

X

xi

b
i

(x
i

) log b
i

(x
i

)



Bethe Approximation
Bethe Average Energy

UBethe = �
X

a2A

X

xa

ba(xa) log fa(xa)

Bethe Entropy

HBethe = �
X

a2A

X

xa

b
a

(x

a

) log b
a

(x

a

) +

X

i2V

(d
i

� 1)

X

xi

b
i

(x
i

) log b
i

(x
i

)

If the factor graph 
has no cycle

Bethe approximation is 
exact:               



Bethe Approximation
Bethe Average Energy

UBethe = �
X

a2A

X

xa

ba(xa) log fa(xa)

Bethe Entropy

HBethe = �
X

a2A

X

xa

b
a

(x

a

) log b
a

(x

a

) +

X

i2V

(d
i

� 1)

X

xi

b
i

(x
i

) log b
i

(x
i

)

If the factor graph 
has no cycle

Bethe approximation is 
exact:               



Bethe Approximation 
(Constraints on Beliefs)

• Constraints:
• Normalization:

• Consistency:

• Inequality:



Bethe Approximation 
(Constraints on Beliefs)

• Constraints:
• Normalization:

• Consistency:

• Inequality:

• Bad news: 
• The above constraints do not necessarily lead to a 

probability distribution over   !
• We me have negative entropy!



Bethe Approximation 
(Constraints on Beliefs)

• Constraints:
• Normalization:

• Consistency:

• Inequality:

• Bad news: 
• The above constraints do not necessarily lead to a 

probability distribution over   !
• We me have negative entropy!

Factor graph 
without cycle

The above conditions are the only 
constraints that are necessary to have a 

realizable probability distribution
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• Theorem:
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Connection Between 
Bethe Approximation and BP

• Theorem:

Interior stationary points of 
Bethe Free Energy

BP fixed points with 
positive beliefs

m

a!i

(x
i

) =
X

xa\xi

f

a

(x
a

)
Y

j2N(a)\i

n

j!a

(x
j

)

ni!a(xi) =
Y

c2N(i)\a

mc!i(xi)

Leads to the interior 
stationary points

Proof Idea (using Lagrange method)
• Write the Lagrangian of the Bethe optimization problem 
• Take derivative of      and find the stationary points of  
• By appropriate change of variables, connect them to BP update rule



Region Graph Method 
and 

Generalized Belief Propagation
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•                                     is a connected graph!
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The Region Graph Method 
(The Region-Based Approximation)

• The region-based (Gibbs) free energy approximation  

• Approximate free energy optimization problem:

If the region graph 
has no cycle

The free energy 
approximation is exact:               

C

P
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Generalized Belief Propagation 
(The Parent to Child Algorithm)

• We have only one kind of message  
A

CP

B

ED R

GF Message Update Rules



Connection Between 
Region Graph Method and GBP

• Theorem: 

• In contrast to Bethe approximation:  
people started from the region-based approximation and 
using Lagrange method derived the GBP algorithm

Interior stationary points of 
the constrained region-base 

free energy for a valid 
region graph

GBP fixed points with 
positive beliefs



Generalized Belief Propagation
• Generalized belief propagation has other variations: 

• Parent to child algorithm 

• Child to parent algorithm 

• two-way algorithm 

• The BP algorithm is a special case of all the above algorithms 
if the regions are chosen according to Bethe approximation 

• The GBP is more complex than BP but it provides more 
flexibility in terms of choosing the regions (i.e. how to 
approximate Gibbs free energy)



Generalized Belief Propagation  
for 

Estimating the Partition Function  
of 

the 2D Ising Model

joint work with 
Chun Lam Chan, Sidharth Jaggi, Navin Kashyap, and Pascal O. Vontobel



2D Ising Model
• Motivated by a 2D run-length limited (RLL) constraints problem 

• A symmetric (d, k) RLL constraint imposes 
(horizontally and vertically): 

• At least d zero symbols between two ones 

• At most k zero symbols between two ones 

• Sabato, G. and Molkaraie observed that GBP can potentially 
outperform BP approximating capacity of an RLL problem



Capacity of 2D (1,   )-RLL Constraint

Shannon capacity
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Estimated C(m,m) vs channel width m for 
2D (1,     )-RLL constraint
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2D Binary Ising Model

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

Binary variables: {0,1}

Homogenous pairwise  
function
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Previous Work and Our Result
• Previous work:  

For any binary log-supermodular graphical model, for any 
fixed pound of BP, we have 

• Our result: 
For          based on 2D Ising model of size no large than 5 x 5 
or 3 x n, for any fixed pound of GBP, we have 

• Conjecture: 
The above statement is true for any          based on 2D Ising 
model of any size



Proof Idea
• First, we show that 

• Using result of Ruozzi, we can show that the 2D Ising model 
can be transformed to a log-supermodular graphical model 

• This transformation preserves the partition function and 
also does not change the fixed-point-based 
approximation of partition function using GBP 

• Next, we analyze the above ratio for binary pairwise graphical 
models with log-supermodular factor function



Thank You!
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