From Belief Propagation to
 Generalised Belief Propagation

Mahdi Jafari Siavoshani
Sharif University of Technology

Institute of Network Coding September 2015

Outline

- Backgrounds on Graphical Models
- Backgrounds on Statistical Physics
- Region-Based Approximation
- A Special Case: Bethe Approximation and Recovering BP
- Region Graph Method and Generalized Belief Propagation (GBP)
- GBP for Estimating the Partition Function of the 2D Ising Model

Backgrounds on
 Graphical Models

Graphical Models Is All About Factorization

- Consider n random variables X_{1}, \ldots, X_{n} whereX $_{i} \in \mathcal{X}_{i}$

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{a \in A} \psi_{a}\left(x_{a}\right)
$$

Probabilistic notions such as conditional independence
<==>

Graph-theoretic notions such as cliques and separation

- Generally two types of graphical models are common in practice
- Bayesian Network (directed graphical models)
- Markov Random Field (undirected graphical models)

Bayesian Network

- The probability distribution is factorized according to a directed acyclic graph

$$
\begin{gathered}
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i \in V} p_{i}\left(x_{i} \mid x_{\pi(i)}\right) \\
p_{i}\left(x_{i} \mid x_{\pi(i)}\right) \geq 0 \\
\int p_{i}\left(x_{i} \mid x_{\pi(i)}\right)=1
\end{gathered}
$$

- $p_{i}\left(x_{i} \mid x_{\pi(i)}\right)$ is indeed a conditional probability distribution

Markov Random Field

- Let $G(V, E)$ be an undirected graph and $p\left(x_{V}\right)>0$
- Global Markov Property:

$$
\forall W \subseteq V: \quad p\left(x_{W} \mid x_{V \backslash W}\right)=p\left(x_{W} \mid x_{\Delta W}\right)
$$

$$
p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_{C}\left(x_{C}\right)
$$

Markov Random Field

- Let $G(V, E)$ be an undirected graph and $p\left(x_{V}\right)>0$
- Global Markov Property:

$$
\forall W \subseteq V: \quad p\left(x_{W} \mid x_{V \backslash W}\right)=p\left(x_{W} \mid x_{\Delta W}\right)
$$

Hammersley and Clifford Theorem

Normalization constant called

Markov Random Field

- Example:

$$
p\left(x_{1}, \ldots, x_{7}\right)=\frac{1}{Z} \psi_{1234}\left(x_{1}, \ldots, x_{4}\right) \psi_{456}\left(x_{4}, x_{5}, x_{6}\right) \psi_{67}\left(x_{6}, x_{7}\right)
$$

Markov Random Field

- Example:

$$
p\left(x_{1}, \ldots, x_{7}\right)=\frac{1}{Z} \psi_{1234}\left(x_{1}, \ldots, x_{4}\right) \psi_{456}\left(x_{4}, x_{5}, x_{6}\right) \psi_{67}\left(x_{6}, x_{7}\right)
$$

Factor Graph

- Let $V=\{1, \ldots, n\}$ and A indexes the factors
$=>$ A factor graph is a bipartite graph $G=(V, A, E)$

$$
\begin{gathered}
p(\boldsymbol{x}) \triangleq p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{a \in A} \psi_{a}\left(\boldsymbol{x}_{a}\right) \\
Z=\sum_{\boldsymbol{x}} \prod_{a \in A} \psi_{a}\left(\boldsymbol{x}_{a}\right)
\end{gathered}
$$

Factor Graph

- Let $V=\{1, \ldots, n\}$ and A indexes the factors
$=>$ A factor graph is a bipartite graph $G=(V, A, E)$

$$
\begin{gathered}
p(\boldsymbol{x}) \triangleq p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{a \in A} \psi_{a}\left(\boldsymbol{x}_{a}\right) \\
Z=\sum_{\boldsymbol{x}} \prod_{a \in A} \psi_{a}\left(\boldsymbol{x}_{a}\right)
\end{gathered}
$$

- Example: $V=\{1, \ldots, 7\}$ and $A=\{a, b, c\}$

$$
p(\boldsymbol{x})=\frac{1}{Z} \psi_{a}\left(\boldsymbol{x}_{a}\right) \psi_{b}\left(\boldsymbol{x}_{b}\right) \psi_{c}\left(\boldsymbol{x}_{c}\right)
$$

Two Important Problems!

- Computing the marginal distribution $p\left(\boldsymbol{x}_{W}\right)$ over a particular subset $W \subset V$ of nodes

$$
p\left(\boldsymbol{x}_{W}\right)=\sum_{\boldsymbol{x} \backslash \boldsymbol{x}_{W}} p(\boldsymbol{x})
$$

- Computing a mode of the density

$$
\underset{\boldsymbol{x} \in \mathcal{X}^{n}}{\arg \max } p(\boldsymbol{x})
$$

Two Important Problems!

- Computing the marginal distribution $p\left(\boldsymbol{x}_{W}\right)$ over a particular subset $W \subset V$ of nodes

$$
p\left(\boldsymbol{x}_{W}\right)=\sum_{\boldsymbol{x} \backslash \boldsymbol{x}_{W}} p(\boldsymbol{x})
$$

- Computing a mode of the density

$$
\underset{\boldsymbol{x} \in \mathcal{X}^{n}}{\arg \max } p(\boldsymbol{x})
$$

In general, these problems are hard!

- Example: Consider binary random variables X_{0}, \ldots, X_{100}. To compute $p\left(x_{0}\right)$ we need to sum over an exponential number of terms:

$$
p\left(x_{0}\right)=\sum_{x_{1}, \ldots, x_{100} \in\{0,1\}} p\left(x_{0}, x_{1}, \ldots, x_{100}\right)
$$

Partition Function

- The partition function Z of a graphical model encodes important information about the underlying distribution
- Z is an important quantity for physicist => from Z we can compute experimentally measurable quantities
- If all ψ_{a} are hard constraints $=>Z$ counts the number of valid configuration in the system

Partition Function

- The partition function Z of a graphical model encodes important information about the underlying distribution
- Z is an important quantity for physicist => from Z we can compute experimentally measurable quantities
- If all ψ_{a} are hard constraints $=>Z$ counts the number of valid configuration in the system

1	7	2	5	4	9	6	8	3
6	4	5	8	7	3	2	1	9
3	8	9	2	6	1	7	4	5
4	9	6	3	2	7	8	5	1
8	1	3	4	5	6	9	7	2
2	5	7	1	9	8	4	3	6
9	6	4	7	1	5	3	2	8
7	3	1	6	8	2	5	9	4
5	2	8	9	3	4	1	6	7

Partition Function

- The partition function Z of a graphical model encodes important information about the underlying distribution
- Z is an important quantity for physicist => from Z we can compute experimentally measurable quantities
- If all ψ_{a} are hard constraints $=>Z$ counts the number of valid configuration in the system

1	7	2	5	4	9	6	8	3
6	4	5	8	7	3	2	1	9
3	8	9	2	6	1	7	4	5
4	9	6	3	2	7	8	5	1
8	1	3	4	5	6	9	7	2
2	5	7	1	9	8	4	3	6
9	6	4	7	1	5	3	2	8
7	3	1	6	8	2	5	9	4
5	2	8	9	3	4	1	6	7

Partition Function

- The partition function Z of a graphical model encodes important information about the underlying distribution
- Z is an important quantity for physicist => from Z we can compute experimentally measurable quantities
- If all ψ_{a} are hard constraints $=>Z$ counts the number of valid configuration in the system

1	7	2	5	4	9	6	8	3
6	4	5	8	7	3	2	1	9
3	8	9	2	6	1	7	4	5
4	9	6	3	2	7	8	5	1
8	1	3	4	5	6	9	7	2
2	5	7	1	9	8	4	3	6
9	6	4	7	1	5	3	2	8
7	3	1	6	8	2	5	9	4
5	2	8	9	3	4	1	6	7

Partition Function

- The partition function Z of a graphical model encodes important information about the underlying distribution
- Z is an important quantity for physicist => from Z we can compute experimentally measurable quantities
- If all ψ_{a} are hard constraints $=>Z$ counts the number of valid configuration in the system

1	7	2	5	4	9	6	8	3
6	4	5	8	7	3	2	1	9
3	8	9	2	6	1	7	4	5
4	9	6	3	2	7	8	5	1
8	1	3	4	5	6	9	7	2
2	5	7	1	9	8	4	3	6
9	6	4	7	1	5	3	2	8
7	3	1	6	8	2	5	9	4
5	2	8	9	3	4	1	6	7

Partition Function

- The partition function Z of a graphical model encodes important information about the underlying distribution
- Z is an important quantity for physicist => from Z we can compute experimentally measurable quantities
- If all ψ_{a} are hard constraints $=>Z$ counts the number of valid configuration in the system

1	7	2	5	4	9	6	8	3
6	4	5	8	7	3	2	1	9
3	8	9	2	6	1	7	4	5
4	9	6	3	2	7	8	5	1
8	1	3	4	5	6	9	7	2
2	5	7	1	9	8	4	3	6
9	6	4	7	1	5	3	2	8
7	3	1	6	8	2	5	9	4
5	2	8	9	3	4	1	6	7

$Z=$ number of valid Sudoku configurations

Belief Propagation (BP) (Sum-Product Algorithm)

- Messages are exchanged between variable nodes and factor nodes of a factor graph

Belief Propagation (BP) (Sum-Product Algorithm)

- Messages are exchanged between variable nodes and factor nodes of a factor graph

- Message update rules:

Belief Propagation (BP) (Sum-Product Algorithm)

- Messages are exchanged between variable nodes and factor nodes of a factor graph

- Message update rules:
$n_{i \rightarrow a}\left(x_{i}\right)=\prod_{c \in N(i) \backslash a} m_{c \rightarrow i}\left(x_{i}\right)$

Belief Propagation (BP)
 (Sum-Product Algorithm)

- Messages are exchanged between variable nodes and factor nodes of a factor graph

- Message update rules:
$n_{i \rightarrow a}\left(x_{i}\right)=\prod_{c \in N(i) \backslash a} m_{c \rightarrow i}\left(x_{i}\right)$ $m_{a \rightarrow i}\left(x_{i}\right)=\sum_{\boldsymbol{x}_{a} \backslash x_{i}} f_{a}\left(\boldsymbol{x}_{a}\right) \prod_{j \in N(a) \backslash i} n_{j \rightarrow a}\left(x_{j}\right)$

Belief Propagation (BP)

- How to compute the marginals?

Belief Propagation (BP)

- How to compute the marginals?

Belief Propagation (BP)

- How to compute the marginals?

Belief Propagation (BP)

- How to compute the marginals?

$B P$ is exact on trees, but only gives an approximation on graphs with cycles!

Backgrounds
 on
 Statistical Physics

Boltzmann Law

- A fundamental result of statistical mechanics is that, in thermal equilibrium, the probability of a state will be given by Boltzmann's distribution:

$$
p(\boldsymbol{x})=\frac{1}{Z(T)} e^{-E(\boldsymbol{x}) / T}
$$

Alternative point of view

Energy Assigned to a Factor Graph

- Consider factor graph $G=(V, A, E)$
- For probability distribution

$$
p(\boldsymbol{x})=\frac{1}{Z} \prod_{a \in A} f_{a}\left(\boldsymbol{x}_{a}\right)
$$

we can define energy of state \boldsymbol{x} as

$$
E(\boldsymbol{x})=-\sum_{a \in A} \ln f_{a}\left(\boldsymbol{x}_{a}\right)
$$

(Helmholtz) Free Energy

- Free energy of a system is defined as

$$
F_{H} \triangleq U-H
$$

- U is average energy:

$$
U \triangleq \sum_{\boldsymbol{x}} p(\boldsymbol{x}) E(\boldsymbol{x})
$$

- H is entropy:

$$
H=-\sum_{\boldsymbol{x}} p(\boldsymbol{x}) \ln p(\boldsymbol{x})
$$

- $p(\boldsymbol{x})$ is the actual probability distribution of the system
- Note that we have $F_{H}=-\ln Z$

Variational Approach (Gibbs Free Energy)

- Instead of true probability distribution $p(\boldsymbol{x})$ consider some other distribution $b(\boldsymbol{x})$. Then define

$$
F(b) \triangleq U(b)-H(b)
$$

- where
- We can show

$$
\begin{aligned}
U(b) & \triangleq \sum_{\boldsymbol{x}} b(\boldsymbol{x}) E(\boldsymbol{x}) \\
H(b) & \triangleq \sum_{\boldsymbol{x}} b(\boldsymbol{x}) \ln b(\boldsymbol{x})
\end{aligned}
$$

$$
F(b)=F_{H}+D(b \| p)
$$

$=>F(b)$ takes its minimum at $b(\boldsymbol{x})=p(\boldsymbol{x})$

Variational Approach

- Consider the following optimization problem

$$
F_{H}=\left\{\begin{array}{c}
\min F(b) \\
\text { s.t. } b \text { is a joint probability distribution over } \boldsymbol{x}
\end{array}\right.
$$

- This optimization problem provides an exact procedure for computing the partition function (in fact F_{H}) and recovering $p(\boldsymbol{x})$
- Bad news: this problem is at least as hard as the original problem of partition function computation

$$
\text { As } n \text { becomes large, this method is intractable! }
$$

- Good news: we can use it to develop approximation methods!

A General Approach to Upper Bound F_{H}

- A more practical approach to upper bound F_{H} is to minimize $F(b)$ over a restricted class of probability distribution

- Example: mean-field approximation

$$
b_{\mathrm{MF}}=\prod_{i \in V} b_{i}\left(x_{i}\right)
$$

- We can extend this method by considering more complicated form for $b(\boldsymbol{x})$ that leads to a tractable distribution.
=> Example: structured mean-field approach

A General Approximation Approach

$$
\begin{array}{ll}
& \min _{b} F(b) \\
\text { s.t. } & 0 \leq b(\boldsymbol{x}) \leq 1, \quad \forall \boldsymbol{x} \\
& \sum_{\boldsymbol{x}} b(\boldsymbol{x})=1
\end{array}
$$

A General Approximation Approach

$$
\begin{array}{ll}
& \min _{b} F(b) \\
\text { s.t. } & 0 \leq b(\boldsymbol{x}) \leq 1, \quad \forall \boldsymbol{x} \\
& \sum_{\boldsymbol{x}} b(\boldsymbol{x})=1
\end{array}
$$

A General Approximation Approach

Region-Based Approximation

Region-Based Approximation (Main Idea)

- Break the factor graph into regions

Region-Based Approximation (Main Idea)

- Break the factor graph into regions

Region-Based Approximation (Main Idea)

- Break the factor graph into regions

Region-Based Approximation (Main Idea)

- Break the factor graph into regions

Region-Based Approximation (Main Idea)

- Break the factor graph into regions

Region-Based Approximation (Main Idea)

- Break the factor graph into regions

- Approximate the overall free energy as: the sum of the free energy of all the regions

$$
F_{\mathcal{R}} \approx \sum_{R \in \mathcal{R}} F_{R}\left(b_{R}\right)
$$

Region-Based Approximation (Main Idea)

- Break the factor graph into regions

- Approximate the overall free energy as: the sum of the free energy of all the regions

$$
F_{\mathcal{R}} \approx \sum_{R \in \mathcal{R}} F_{R}\left(b_{R}\right)
$$

- Heuristic: to have a good approximation => Find good set of regions

Region-Based Approximation (Definitions)

- A region R of a factor graph consists of V_{R} and A_{R} such that: if $a \in A_{R} \Rightarrow N(a) \in V_{R}$

Region-Based Approximation (Definitions)

- A region R of a factor graph consists of V_{R} and A_{R} such that: if $a \in A_{R} \Rightarrow N(a) \in V_{R}$

Region-Based Approximation (Definitions)

- A region R of a factor graph consists of V_{R} and A_{R} such that: if $a \in A_{R} \Rightarrow N(a) \in V_{R}$

Region-Based Approximation (Definitions)

- A region R of a factor graph consists of V_{R} and A_{R} such that: if $a \in A_{R} \Rightarrow N(a) \in V_{R}$

Region-Based Approximation (Definitions)

- A region R of a factor graph consists of V_{R} and A_{R} such that: if $a \in A_{R} \Rightarrow N(a) \in V_{R}$

Region-Based Approximation (Definitions)

- A region R of a factor graph consists of V_{R} and A_{R} such that: if $a \in A_{R} \Rightarrow N(a) \in V_{R}$
- Associated quantities of a region:

Region Energy

$$
E_{R}\left(\boldsymbol{x}_{R}\right) \triangleq-\sum_{a \in A_{R}} \log f_{a}\left(\boldsymbol{x}_{a}\right)
$$

Region-Based Approximation (Definitions)

- A region R of a factor graph consists of V_{R} and A_{R} such that: if $a \in A_{R} \Rightarrow N(a) \in V_{R}$

- Associated quantities of a region:

Region Energy

$$
E_{R}\left(\boldsymbol{x}_{R}\right) \triangleq-\sum_{a \in A_{R}} \log f_{a}\left(\boldsymbol{x}_{a}\right)
$$

Region Entropy

$$
H_{R}\left(b_{R}\right) \triangleq-\sum_{\boldsymbol{x}_{R}} b_{R}\left(\boldsymbol{x}_{R}\right) \log b_{R}\left(\boldsymbol{x}_{R}\right)
$$

Region Average Energy

$$
U_{R}\left(b_{R}\right) \triangleq \sum_{\boldsymbol{x}_{R}} b_{R}\left(\boldsymbol{x}_{R}\right) E_{R}\left(\boldsymbol{x}_{R}\right)
$$

Region-Based Approximation (Definitions)

- A region R of a factor graph consists of V_{R} and A_{R} such that: if $a \in A_{R} \Rightarrow N(a) \in V_{R}$

- Associated quantities of a region:

Region Energy

$$
E_{R}\left(\boldsymbol{x}_{R}\right) \triangleq-\sum_{a \in A_{R}} \log f_{a}\left(\boldsymbol{x}_{a}\right)
$$

Region Entropy

$$
H_{R}\left(b_{R}\right) \triangleq-\sum_{\boldsymbol{x}_{R}} b_{R}\left(\boldsymbol{x}_{R}\right) \log b_{R}\left(\boldsymbol{x}_{R}\right)
$$

Region (Gibbs) Free Energy

$$
F_{R}\left(b_{R}\right) \triangleq U_{R}\left(b_{R}\right)-H_{R}\left(b_{R}\right)
$$

Region-Based Approximation

- Region-based (approximate) entropy:

$$
H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right) \triangleq \sum_{R \in \mathcal{R}} c_{R} H_{R}\left(b_{R}\right)
$$

- Region-based average energy:

$$
U_{\mathcal{R}}\left(\left\{b_{R}\right\}\right) \triangleq \sum_{R \in \mathcal{R}} c_{R} U_{R}\left(b_{R}\right)
$$

- Region-based (Gibbs) free energy:

$$
F_{\mathcal{R}}\left(\left\{b_{R}\right\}\right) \triangleq U_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)-H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)
$$

Region-Based Approximation

- Region-based (approximate) entropy:

$$
\begin{aligned}
& H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right) \triangleq \sum_{R \in \mathcal{R}} c_{R} H_{R}\left(b_{R}\right) \\
& \text { verage energy: } \\
& U_{\mathcal{R}}\left(\left\{b_{R}\right\}\right) \triangleq \sum_{R \in \mathcal{R}} c_{R} U_{R}\left(b_{R}\right)
\end{aligned}
$$

- Region-based (Gibbs) free energy:

$$
F_{\mathcal{R}}\left(\left\{b_{R}\right\}\right) \triangleq U_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)-H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)
$$

Valid Region-Based Approximation

- Definition: A set of regions \mathcal{R} and associated counting numbers c_{R} give a valid approximation if:

$$
\sum_{R \in \mathcal{R}} c_{R} I_{A_{R}}(a)=\sum_{R \in \mathcal{R}} c_{R} I_{V_{R}}(i)=1, \quad \forall i \in V \text { and } \forall a \in A
$$

- Why valid region-based approximation?
- If $b_{R}(\boldsymbol{x})=p_{R}(\boldsymbol{x}) \Rightarrow U=U_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$
- In general $H \neq H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$ but H is equal to $H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$ up to total number of degrees of freedom in the system

Valid Region-Based Approximation

- Definition: A set of regions \mathcal{R} and associated counting numbers c_{R} give a valid approximation if:

$$
\sum_{R \in \mathcal{R}} c_{R} I_{A_{R}}(a)=\sum_{R \in \mathcal{R}} c_{R} I_{V_{R}}(i)=1, \quad \forall i \in V \text { and } \forall a \in A
$$

- Why valid region-based approximation?
- If $b_{R}(\boldsymbol{x})=p_{R}(\boldsymbol{x}) \Rightarrow U=U_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$
- In general $H \neq H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$ but H is equal to $H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$ up to total number of degrees of freedom in the system

Valid Region-Based Approximation

- Definition: A set of regions \mathcal{R} and associated counting numbers c_{R} give a valid approximation if:

$$
\sum_{R \in \mathcal{R}} c_{R} I_{A_{R}}(a)=\sum_{R \in \mathcal{R}} c_{R} I_{V_{R}}(i)=1, \quad \forall i \in V \text { and } \forall a \in A
$$

- Why valid region-based approximation?
$\sqrt{\text { - If }} b_{R}(\boldsymbol{x})=p_{R}(\boldsymbol{x}) \Rightarrow U=U_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$
X. In general $H \neq H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$ but H is equal to $H_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$ up to total number of degrees of freedom in the system

Region-Based Approximation (Constraints on Beliefs)

1. Normalization: $\forall R \in \mathcal{R}, b_{R}\left(\boldsymbol{x}_{R}\right)$ forms a probability function:

$$
\sum_{\boldsymbol{x}_{R}} b_{R}\left(\boldsymbol{x}_{R}\right)=1
$$

2. Local consistency: if the set of variable nodes $W \subseteq R \cap S:$

3. Inequality: $0 \leq b_{R}\left(\boldsymbol{x}_{R}\right) \leq 1$

The above expressions give a set of local constraints!

A Special Case:
 Bethe Approximation and Recovering BP

Bethe Approximation

- Two types of regions, large and small: $\mathcal{R}=\mathcal{R}_{L} \cup \mathcal{R}_{S}$
- n regions in \mathcal{R}_{S} each contains one variable node
- m regions in \mathcal{R}_{L} each contains one factor node and the neighboring variable nodes

Bethe Approximation

- Two types of regions, Iarge and small: $\mathcal{R}=\mathcal{R}_{L} \cup \mathcal{R}_{S}$
- n regions in \mathcal{R}_{S} each contains one variable node
- m regions in \mathcal{R}_{L} each contains one factor node and the neighboring variable nodes

$$
\begin{aligned}
& \left.\left.\mathcal{R}_{L}: a, 1,2,4,5\right) b, 2,5\right) c, 2,3,5,6 \\
& \mathcal{R}_{S}: 1
\end{aligned}
$$

Bethe Approximation

- Two types of regions, Iarge and small: $\mathcal{R}=\mathcal{R}_{L} \cup \mathcal{R}_{S}$
- n regions in \mathcal{R}_{S} each contains one variable node
- m regions in \mathcal{R}_{L} each contains one factor node and the neighboring variable nodes

$$
\begin{aligned}
& \stackrel{c_{R}=1}{\stackrel{\longleftrightarrow}{a, 1,2,4,5}(b, 2,5)} \\
& \mathcal{R}_{L}:(1) 2,3,3,5,6
\end{aligned}
$$

Bethe Approximation

- Two types of regions, Iarge and small: $\mathcal{R}=\mathcal{R}_{L} \cup \mathcal{R}_{S}$
- n regions in \mathcal{R}_{S} each contains one variable node
- m regions in \mathcal{R}_{L} each contains one factor node and the neighboring variable nodes

Bethe Approximation

- Two types of regions, Iarge and small: $\mathcal{R}=\mathcal{R}_{L} \cup \mathcal{R}_{S}$
- n regions in \mathcal{R}_{S} each contains one variable node
- m regions in \mathcal{R}_{L} each contains one factor node and the neighboring variable nodes

Good news: this choice of counting numbers give a valid approximation for variational free energy!

Bethe Approximation

Bethe Average Energy

$$
U_{\text {Bethe }}=-\sum_{a \in A} \sum_{\boldsymbol{x}_{a}} b_{a}\left(\boldsymbol{x}_{a}\right) \log f_{a}\left(\boldsymbol{x}_{a}\right)
$$

Bethe Entropy

$$
H_{\text {Bethe }}=-\sum_{a \in A} \sum_{\boldsymbol{x}_{a}} b_{a}\left(\boldsymbol{x}_{a}\right) \log b_{a}\left(\boldsymbol{x}_{a}\right)+\sum_{i \in V}\left(d_{i}-1\right) \sum_{x_{i}} b_{i}\left(x_{i}\right) \log b_{i}\left(x_{i}\right)
$$

Bethe Approximation

Bethe Average Energy

$$
U_{\text {Bethe }}=-\sum_{a \in A} \sum_{\boldsymbol{x}_{a}} b_{a}\left(\boldsymbol{x}_{a}\right) \log f_{a}\left(\boldsymbol{x}_{a}\right)
$$

Bethe Entropy

$$
H_{\text {Bethe }}=-\sum_{a \in A} \sum_{\boldsymbol{x}_{a}} b_{a}\left(\boldsymbol{x}_{a}\right) \log b_{a}\left(\boldsymbol{x}_{a}\right)+\sum_{i \in V}\left(d_{i}-1\right) \sum_{x_{i}} b_{i}\left(x_{i}\right) \log b_{i}\left(x_{i}\right)
$$

Bethe Approximation

Bethe Average Energy

$$
U_{\text {Bethe }}=-\sum_{a \in A} \sum_{\boldsymbol{x}_{a}} b_{a}\left(\boldsymbol{x}_{a}\right) \log f_{a}\left(\boldsymbol{x}_{a}\right)
$$

Bethe Entropy

$$
H_{\text {Bethe }}=-\sum_{a \in A} \sum_{\boldsymbol{x}_{a}} b_{a}\left(\boldsymbol{x}_{a}\right) \log b_{a}\left(\boldsymbol{x}_{a}\right)+\sum_{i \in V}\left(d_{i}-1\right) \sum_{x_{i}} b_{i}\left(x_{i}\right) \log b_{i}\left(x_{i}\right)
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { If the factor graph } \\
\text { has no cycle }
\end{array} \\
& \longrightarrow p(\boldsymbol{x})=\frac{\prod_{a \in A} p_{a}\left(\boldsymbol{x}_{a}\right)}{\prod_{i \in V}\left[p_{i}\left(x_{i}\right)\right]^{d_{i}-1}}
\end{aligned} \begin{gathered}
\text { Bethe approximation is } \\
\text { exact: } \\
H_{\text {Bethe }}=H \text { if } b(\boldsymbol{x})=p(\boldsymbol{x})
\end{gathered}
$$

Bethe Approximation (Constraints on Beliefs)

- Constraints:
- Normalization: $\sum_{x_{a}} b_{a}\left(\boldsymbol{x}_{a}\right)=\sum_{x_{i}} b_{i}\left(x_{i}\right)=1, \quad \forall i \in V$ and $\forall a \in A$
- Consistency: $\quad \sum_{x_{a} \backslash x_{i}} b_{a}\left(\boldsymbol{x}_{a}\right)=b_{i}\left(x_{i}\right), \quad \forall a \in A$ and $\forall i \in N(a)$
- Inequality: $0 \leq b\left(\boldsymbol{x}_{a}\right) \leq 1, \quad 0 \leq b_{i}\left(x_{i}\right) \leq 1, \quad \forall a \in A$ and $\forall i \in V$

Bethe Approximation (Constraints on Beliefs)

- Constraints:
- Normalization: $\sum_{x_{a}} b_{a}\left(\boldsymbol{x}_{a}\right)=\sum_{x_{i}} b_{i}\left(x_{i}\right)=1, \quad \forall i \in V$ and $\forall a \in A$
- Consistency: $\quad \sum_{\boldsymbol{x}_{a} \backslash x_{i}} b_{a}\left(\boldsymbol{x}_{a}\right)=b_{i}\left(x_{i}\right), \quad \forall a \in A$ and $\forall i \in N(a)$
- Inequality: $0 \leq b\left(\boldsymbol{x}_{a}\right) \leq 1, \quad 0 \leq b_{i}\left(x_{i}\right) \leq 1, \quad \forall a \in A$ and $\forall i \in V$
- Bad news:
- The above constraints do not necessarily lead to a probability distribution over \boldsymbol{x} !
- We me have negative entropy!

Bethe Approximation (Constraints on Beliefs)

- Constraints:
- Normalization: $\sum_{x_{a}} b_{a}\left(\boldsymbol{x}_{a}\right)=\sum_{x_{i}} b_{i}\left(x_{i}\right)=1, \quad \forall i \in V$ and $\forall a \in A$
- Consistency: $\quad \sum_{\boldsymbol{x}_{a} \backslash x_{i}} b_{a}\left(\boldsymbol{x}_{a}\right)=b_{i}\left(x_{i}\right), \quad \forall a \in A$ and $\forall i \in N(a)$
- Inequality: $0 \leq b\left(\boldsymbol{x}_{a}\right) \leq 1, \quad 0 \leq b_{i}\left(x_{i}\right) \leq 1, \quad \forall a \in A$ and $\forall i \in V$
- Bad news:
- The above constraints do not necessarily lead to a probability distribution over \boldsymbol{x} !
- We me have negative entropy!

Factor graph without cycle

The above conditions are the only constraints that are necessary to have a realizable probability distribution

Connection Between Bethe Approximation and BP

- Theorem:

Connection Between Bethe Approximation and BP

- Theorem:

Connection Between Bethe Approximation and BP

- Theorem:
Interior stationary points of Bethe Free Energy

$$
\min _{b} F_{\text {Bethe }}=\min _{b}\left[U_{\text {Bethe }}-H_{\text {Bethe }}\right]
$$

s.t. $\sum_{\boldsymbol{x}_{a}} b_{a}\left(\boldsymbol{x}_{a}\right)=1$
$\sum_{x_{a} \backslash x_{i}} b_{a}\left(\boldsymbol{x}_{a}\right)=b_{i}\left(x_{i}\right)$
$\sum_{x_{i}} b_{i}\left(x_{i}\right)=1$
$0 \leq b_{a}\left(\boldsymbol{x}_{a}\right) \leq 1$
$0 \leq b_{i}\left(x_{i}\right) \leq 1$

Connection Between Bethe Approximation and BP

- Theorem:
 Bethe Free Energy

$$
\min _{b} F_{\text {Bethe }}=\min _{b}\left[U_{\text {Bethe }}-H_{\text {Bethe }}\right]
$$

$$
m_{a \rightarrow i}\left(x_{i}\right)=\sum_{\boldsymbol{x}_{a} \backslash x_{i}} f_{a}\left(\boldsymbol{x}_{a}\right) \prod_{j \in N(a) \backslash i} n_{j \rightarrow a}\left(x_{j}\right)
$$

s.t. $\sum_{\boldsymbol{x}_{a}} b_{a}\left(\boldsymbol{x}_{a}\right)=1$

$$
n_{i \rightarrow a}\left(x_{i}\right)=\prod_{c \in N(i) \backslash a} m_{c \rightarrow i}\left(x_{i}\right)
$$

$$
\sum_{\boldsymbol{x}_{a} \backslash x_{i}}^{\boldsymbol{x}_{a}} b_{a}\left(\boldsymbol{x}_{a}\right)=b_{i}\left(x_{i}\right)
$$

Leads to the interior stationary points

$$
\sum_{x_{i}} b_{i}\left(x_{i}\right)=1
$$

$$
0 \leq b_{a}\left(\boldsymbol{x}_{a}\right) \leq 1
$$

$$
0 \leq b_{i}\left(x_{i}\right) \leq 1
$$

Connection Between Bethe Approximation and BP

- Theorem:

$$
\min _{b} F_{\text {Bethe }}=\min _{b}\left[U_{\text {Bethe }}-H_{\text {Bethe }}\right]
$$

$$
m_{a \rightarrow i}\left(x_{i}\right)=\sum_{x_{a} \backslash x_{i}} f_{a}\left(\boldsymbol{x}_{a}\right) \prod_{j \in N(a) \backslash i} n_{j \rightarrow a}\left(x_{j}\right)
$$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{x_{a}} b_{a}\left(\boldsymbol{x}_{a}\right)=1 \\
\sum_{x_{a} \backslash x_{i}} b_{a}\left(\boldsymbol{x}_{a}\right)=b_{i}\left(x_{i}\right) \\
\sum_{x_{i}} b_{i}\left(x_{i}\right)=1 \\
0 \leq b_{a}\left(\boldsymbol{x}_{a}\right) \leq 1 \\
0 \leq b_{i}\left(x_{i}\right) \leq 1
\end{array}
$$

$$
\left.i\left(x_{i}\right)\right\} \longleftarrow
$$

$$
n_{i \rightarrow a}\left(x_{i}\right)=\prod_{c \in N(i) \backslash a} m_{c \rightarrow i}\left(x_{i}\right)
$$

Proof Idea (using Lagrange method)

- Write the Lagrangian of the Bethe optimization problem
- Take derivative of \mathcal{L} and find the stationary points of $F_{\text {Bethe }}$
- By appropriate change of variables, connect them to BP update rule

Region Graph Method and

Generalized Belief Propagation

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex $\longrightarrow>$ a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

- Counting numbers: $c_{v}=1-\sum_{u \in \mathcal{A}(v)} c_{u}, \quad \forall v \in \mathcal{G}_{\mathrm{RG}} \longrightarrow$ a valid approximation!

The Region Graph Method

- Definition: region graph $\mathcal{G}_{\mathrm{RG}}=\left(\mathcal{V}_{\mathrm{RG}}, \mathcal{E}_{\mathrm{RG}}\right)$ each vertex \longrightarrow a region of the original factor graph $G=(V, A, E)$

- Counting numbers: $c_{v}=1-\sum_{u \in \mathcal{A}(v)} c_{u}, \quad \forall v \in \mathcal{G}_{\mathrm{RG}} \longrightarrow$ a valid approximation!
- $\forall \alpha \in V \cup A \longrightarrow \mathcal{G}_{\mathrm{RG}}(\alpha)$ is a connected graph!

The Region Graph Method (The Region-Based Approximation)

- The region-based (Gibbs) free energy approximation

$$
F_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)=\sum_{R \in \mathcal{R}} c_{R} F_{R}\left(b_{R}\right)
$$

- Approximate free energy optimization problem:

$$
\begin{array}{ll}
& \min _{\left\{b_{R}\right\}} F_{\mathcal{R}}\left(\left\{b_{R}\right\}\right) \\
\text { s.t. } & \sum_{\boldsymbol{x}_{P} \backslash \boldsymbol{x}_{C}} b_{P}\left(\boldsymbol{x}_{P}\right)=b_{C}\left(\boldsymbol{x}_{C}\right) \\
& \sum_{\boldsymbol{x}_{R}} b_{R}\left(\boldsymbol{x}_{R}\right)=1 \\
& 0 \leq b_{R}\left(\boldsymbol{x}_{R}\right) \leq 1
\end{array}
$$

The Region Graph Method (The Region-Based Approximation)

- The region-based (Gibbs) free energy approximation

$$
F_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)=\sum_{R \in \mathcal{R}} c_{R} F_{R}\left(b_{R}\right)
$$

- Approximate free energy optimization problem:

$$
\begin{array}{ll}
\min _{\left\{b_{R}\right\}} F_{\mathcal{R}}\left(\left\{b_{R}\right\}\right) \\
\text { s.t. } & \sum_{x_{P} \backslash \boldsymbol{x}_{C}} b_{P}\left(\boldsymbol{x}_{P}\right)=b_{C}\left(\boldsymbol{x}_{C}\right) \\
& \sum_{x_{R}} b_{R}\left(\boldsymbol{x}_{R}\right)=1 \\
& 0 \leq b_{R}\left(\boldsymbol{x}_{R}\right) \leq 1
\end{array}
$$

The Region Graph Method (The Region-Based Approximation)

- The region-based (Gibbs) free energy approximation

$$
F_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)=\sum_{R \in \mathcal{R}} c_{R} F_{R}\left(b_{R}\right)
$$

- Approximate free energy optimization problem:

$\min _{\left\{b_{R}\right\}} F_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)$
s.t.
$\sum_{\boldsymbol{x}_{P} \backslash \boldsymbol{x}_{C}} b_{P}\left(\boldsymbol{x}_{P}\right)=b_{C}\left(\boldsymbol{x}_{C}\right)$
$\sum_{\boldsymbol{x}_{R}} b_{R}\left(\boldsymbol{x}_{R}\right)=1$
$0 \leq b_{R}\left(\boldsymbol{x}_{R}\right) \leq 1$

The free energy approximation is exact:
$F_{\mathcal{R}}=F$ if $b(\boldsymbol{x})=p(\boldsymbol{x})$

Generalized Belief Propagation (The Parent to Child Algorithm)

- We have only one kind of message $m_{P \rightarrow R}\left(\boldsymbol{x}_{R}\right)$

Generalized Belief Propagation (The Parent to Child Algorithm)

- We have only one kind of message $m_{P \rightarrow R}\left(\boldsymbol{x}_{R}\right)$

Generalized Belief Propagation (The Parent to Child Algorithm)

- We have only one kind of message $m_{P \rightarrow R}\left(\boldsymbol{x}_{R}\right)$

$$
b_{P} \propto\left(m_{A \rightarrow P} m_{B \rightarrow P}\right)\left(m_{C \rightarrow R} m_{C \rightarrow G} m_{E \rightarrow G}\right) \prod_{a \in A_{P}} f_{a}\left(\boldsymbol{x}_{a}\right)
$$

Generalized Belief Propagation (The Parent to Child Algorithm)

- We have only one kind of message $m_{P \rightarrow R}\left(\boldsymbol{x}_{R}\right)$

$$
b_{P} \propto\left(m_{A \rightarrow P} m_{B \rightarrow P}\right)\left(m_{C \rightarrow R} m_{C \rightarrow G} m_{E \rightarrow G}\right) \prod_{a \in A_{P}} f_{a}\left(\boldsymbol{x}_{a}\right)
$$

Generalized Belief Propagation (The Parent to Child Algorithm)

- We have only one kind of message $m_{P \rightarrow R}\left(\boldsymbol{x}_{R}\right)$

$$
\begin{aligned}
& b_{P} \propto\left(m_{A \rightarrow P} m_{B \rightarrow P}\right)\left(m_{C \rightarrow R} m_{C \rightarrow G} m_{E \rightarrow G}\right) \prod_{a \in A_{P}} f_{a}\left(\boldsymbol{x}_{a}\right) \\
& b_{R} \propto\left(m_{P \rightarrow R} m_{C \rightarrow R}\right)\left(m_{D \rightarrow F} m_{C \rightarrow G} m_{E \rightarrow G}\right) \prod_{a \in A_{R}} f_{a}\left(\boldsymbol{x}_{a}\right)
\end{aligned}
$$

Generalized Belief Propagation (The Parent to Child Algorithm)

- We have only one kind of message $m_{P \rightarrow R}\left(\boldsymbol{x}_{R}\right)$

$$
\begin{gathered}
b_{P} \propto\left(m_{A \rightarrow P} m_{B \rightarrow P}\right)\left(m_{C \rightarrow R} m_{C \rightarrow G} m_{E \rightarrow G}\right) \prod_{a \in A_{P}} f_{a}\left(\boldsymbol{x}_{a}\right) \\
b_{R} \propto\left(m_{P \rightarrow R} m_{C \rightarrow R}\right)\left(m_{D \rightarrow F} m_{C \rightarrow G} m_{E \rightarrow G}\right) \prod_{a \in A_{R}} f_{a}\left(\boldsymbol{x}_{a}\right) \\
b_{R}\left(\boldsymbol{x}_{R}\right)=\sum_{\boldsymbol{x}_{P} \backslash \boldsymbol{x}_{R}} b_{P}\left(\boldsymbol{x}_{P}\right)
\end{gathered}
$$

Generalized Belief Propagation (The Parent to Child Algorithm)

- We have only one kind of message $m_{P \rightarrow R}\left(\boldsymbol{x}_{R}\right)$

Connection Between Region Graph Method and GBP

- Theorem:

- In contrast to Bethe approximation: people started from the region-based approximation and using Lagrange method derived the GBP algorithm

Generalized Belief Propagation

- Generalized belief propagation has other variations:
- Parent to child algorithm
- Child to parent algorithm
- two-way algorithm
- The BP algorithm is a special case of all the above algorithms if the regions are chosen according to Bethe approximation
- The GBP is more complex than BP but it provides more flexibility in terms of choosing the regions (i.e. how to approximate Gibbs free energy)

Generalized Belief Propagation for
 Estimating the Partition Function of the 2D Ising Model

Chun Lam Chan, Sidharth Jaggi, Navin Kashyap, and Pascal O. Vontobel

2D Ising Model

- Motivated by a 2D run-length limited (RLL) constraints problem
- A symmetric (d, k) RLL constraint imposes (horizontally and vertically):
- At least d zero symbols between two ones
- At most k zero symbols between two ones
- Sabato, G. and Molkaraie observed that GBP can potentially outperform BP approximating capacity of an RLL problem

Capacity of 2D (1, ∞)-RLL Constraint

Capacity of 2D (1, ∞)-RLL Constraint

Estimated $C(m, m)$ vs channel width m for
2D ($1, \infty$)-RLL constraint

Capacity of 2D (1, ∞)-RLL Constraint

Estimated $\mathrm{C}(\mathrm{m}, \mathrm{m})$ vs channel width m for
2D ($1, \infty$)-RLL constraint

- C_GBP - C_BP

$$
C(m, m)=\frac{\log _{2} Z(m, m)}{m \times m}
$$

2D Binary Ising Model

Region-Based Approximation (The Choice of Regions)

Region-Based Approximation (The Region Graph)

Previous Work and Our Result

- Previous work:

For any binary log-supermodular graphical model, for any fixed pound of BP, we have

$$
Z \geq Z_{\mathrm{BP}}\left(\left\{b_{i}, b_{a}\right\}\right) . \quad F_{\mathrm{B}}\left(\left\{b_{i}, b_{a}\right\}\right)=-\log Z_{\mathrm{BP}}\left(\left\{b_{i}, b_{a}\right\}\right)
$$

- Our result:

For $R_{m \times n}$ based on 2D Ising model of size no large than 5×5 or $3 \times \mathrm{n}$, for any fixed pound of GBP, we have

$$
Z \geq Z_{\mathcal{R}, \operatorname{GBP}}\left(\left\{b_{R}\right\}\right) . \quad \quad F_{\mathcal{R}}\left(\left\{b_{R}\right\}\right)=-\log Z_{\mathcal{R}, \operatorname{GBP}}\left(\left\{b_{R}\right\}\right)
$$

- Conjecture:

The above statement is true for any $R_{m \times n}$ based on 2D Ising model of any size

Proof Idea

- First, we show that

$$
\frac{Z}{Z_{\mathcal{R}, \mathrm{GBP}}\left(\left\{b_{R}\right\}\right)}=\sum_{x} \prod_{R \in \mathcal{R}}\left(b_{R}\left(\boldsymbol{x}_{R}\right)\right)^{c_{R}}
$$

- Using result of Ruozzi, we can show that the 2D Ising model can be transformed to a log-supermodular graphical model
- This transformation preserves the partition function and also does not change the fixed-point-based approximation of partition function using GBP
- Next, we analyze the above ratio for binary pairwise graphical models with log-supermodular factor function

Thank You!

$$
80.0
$$

Some of the References

- J. S. Yedidia, W. T. Freeman, and Y. Weiss, "Constructing free energy approximations and generalized belief propagation algorithms," IEEE Trans. Inf. Theory, 2005.
- E. B. Sudderth, M. Wainwright, and A. S. Willsky, "Loop series and Bethe variational bounds in attractive graphical models," NIPS 2007.
- N. Ruozzi, "The Bethe partition function of log-supermodular graphical models," NIPS, 2012.
- Sabato, G. and Molkaraie, M., "Generalized Belief propagation for the noiseless capacity and information rates of run-length limited constraints," IEEE Trans. Comm., 2012.
- C. L. Chan, M. J. Siavoshani, S. Jaggi, N. Kashyap, and P. O. Vontobel, "Generalized Belief Propagation for Estimating the Partition Function of the 2D Ising Model," ISIT'15, Hong Kong, 2015.

