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Abstract—BATS code is a low-complexity random linear
network coding scheme that can achieve asymptotic bandwidth
optimality for many types of networks with packet loss. In this
paper, we propose a BATS code based network protocol and
evaluate the performance by real-device experiments. Our re-
sults demonstrate significant ready-to-implement gain of network
coding over forwarding in multi-hop network transmission with
packet loss. We also propose an improved protocol to handle the
practical issues observed in the experiments.

I. INTRODUCTION

Packet loss in network communications is a general phe-
nomenon. For example, due to noise and interference in
wireless communication, the packets transmitted on the net-
work links may not be correctly received. In moden wireline
networks (e.g., the Internet backbone), packet loss is mainly
due to congestion. The corrupted packets are detected and
treated as lost packets. In this paper, we propose and conduct
experiments on two network coding [1]–[3] based protocols
for reliable transmission over networks with packet loss.

It is well known that for multicast networks, linear network
coding [2], [3] in general has throughput gain over forwarding.
For unicast networks, in the presence of packet loss, network
coding can also improve the throughput. For example, in the
line network illustrated in Fig. 1, wireless network links exist
only between two neighboring nodes. Suppose the packets
transmitted on a network link are erased independently with
probability 0.1. If only forwarding is applied at the interme-
diate nodes, after L hops, the network throughput is upper
bounded by (1 − 0.1)L packet per timeslot. In other words,
while the capacity of the network is 0.9 packet per timeslot
regardless of L (see discussion below), the network throughput
decreases exponentially with L.

By means of retransmission, it is actually possible to
achieve the capacity of the network in Fig. 1 in an ideal
setting. One typical retransmission scheme is that the source
node encodes its packet using a fountain code (e.g., LT codes
[4], Raptor codes [5] and online codes [6]) and each node
retransmits the packets that are not correctly received by
the node at the next hop. However, the feedback required
by retransmission costs bandwidth, which can be expensive,
e.g., in wireless communication. In scenarios like satellite and
deep space communication, feedback has long delay or may
not even be available. Moreover, a retransmission scheme as
described is not capacity achieving for networks with multicast
links, e.g., the example in Fig. 2.
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The following baseline random linear network coding
(RLNC) scheme can achieve the capacity of networks with
packet loss for a wide range of scenarios [7]–[13], including
the networks in Figs. 1 and 2. The source node transmits
random linear combinations of the input packets and an
intermediate node transmits random linear combinations of
the packets it has received. Note that no erasure coding is
required for each link though packet loss is allowed. The
network code itself plays the role of an end-to-end erasure
code. A destination node can decode the input packets after it
has received enough coded packets with linearly independent
coding vectors.

However, complexity issues prevent practical implementa-
tion of the baseline RLNC scheme for real systems. These
issues include

1) the computational cost of encoding and decoding at
the source and sink nodes, respectively,

2) the storage and computational cost of network coding
at the intermediate nodes, and

3) the coefficient vector overhead.

One effective strategy to resolve the above issues is to restrict
the application of network coding to small subsets of the
input packets [8]. In addition to disjoint subsets of the input
packets [8], [14], this strategy can be applied on overlapped
subsets of the input packets [15]–[19]. More sophisticated
approaches apply network coding to small subsets of the coded
packets generated from the input packets [20]–[24]. Among
these approaches, BATS codes [20], [21] have the highest and
close-to-optimal achievable rates [24]. Further, as a matrix
generalization of fountain codes, BATS codes have the unique
rateless property: A BATS code encoder can generate poten-
tially unlimited number of batches, each of which consists
of a set of coded packets. During the network transmission,
network coding is restricted to the packets belonging to the
same batch.

In this paper, we discuss how to design BATS code based
network transmission protocols (BATS protocols), which have
a different nature compared with traditional network protocols
based on retransmission/forwarding. We focus on the major
design issues of BATS protocols in handling both independent
and burst packet loss. We propose two protocols, BATSpro-1
and BATSpro-2, both of which do not need any feedback for
reliable transmission and can readily be used in line networks
and its generalizations (e.g., the network in Fig. 2).

BATSpro-1 has a simple scheduling strategy and small
storage requirement at the intermediate nodes: only one batch
(e.g., 16 packets) is cached at an intermediate node. Our
experiments show that in line networks, the throughput of
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Fig. 1: A three-hop wireless network. Node R0 is the source node, node R3

is the destination node, and nodes R1 and R2 are the intermediate nodes that
do not demand the input packets. Wireless network links exist only between
two neighboring nodes. Each link can transmit one packet per timeslot.
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Fig. 2: A tree-type wireless network with multicast links. Node R0 is the
source node, nodes R3,1, R3,2, R3,3 and R3,4 are the destination nodes,
and nodes R1, R2,1 and R2,2 are the intermediate nodes that do not demand
the input packets. The two outgoing links of R1/R2,1/R2,2 share the same
wireless channel.

BATSpro-1 decreases very slowly when the number of hops
L increases, and it is much higher than that of using only
forwarding at the intermediate network nodes. BATSpro-2 is an
improvement of BATSpro-1 for networks with burst packet loss
and dynamic link status, where more sophisticated scheduling
and cache management are involved.

Line topology is a basic building block for general net-
works. As enabling techniques for line networks, our proto-
cols can be extended for general networks. The BATS code
protocols introduced here can be used with other wireless
network technologies. For example, Huang et al. [26] have
demonstrated the performance of BATS codes with the cross-
next-hop network coding [27] and with multiple concurrent
transmission sessions.

II. BATS CODES

We give an introduction to BATS codes in this section and
refer readers to [21] for a more detailed discussion. In the
sequel, a packet is regarded as a column vector over a finite
field F of size q (e.g., q = 28). Fix integers K and T . We
encode K input packets, each of which denoted by a column
vector in FT . We equate a set of packets to a matrix formed
by juxtaposing the packets in this set.

A. Encoding

A BATS code consists of an inner code and an outer code
over the field F. The outer code is a matrix generalization of a
fountain code, and hence rateless. The outer code encodes the
file to be transmitted into batches, each containing M packets.
A batch is generated as follows:

1) Sample a degree distribution Ψ = (Ψ0,Ψ1, · · · ,ΨD)
and obtain a degree d with probability Ψd, where D
is the maximum degree;

2) Uniformly at random choose d input packets and form
a matrix B by juxtaposing the d packets;

3) The batch X is generated by

X = BG, (1)

where G is a d × M matrix over F, called the
generator matrix of the batch.

All the batches are independently generated using the same
three steps. The generator matrix G can be generated randomly
or designed deterministically, and is known by the decoder.
When M = 1 and the components of the generator matrices
are all nonzero, the above batch encoding process becomes the
encoding of LT codes.

We now turn to the inner code, which is formed by the
linear transformations on the batches. The batches generated
by the outer code are transmitted in a network employing
linear network coding. We assume that linear network coding
at the intermediate network nodes is only performed among
packets belonging to the same batch so that the end-to-end
transformation of each batch is a linear operation. Let H be
the transfer matrix of a batch and Y be the output (received)
packets of the batch. We have

Y = XH = BGH. (2)

The number of rows of H is M . The number of columns of
H corresponds to the number of packets received for the i-
th batch, which may vary for different batches and is finite.
We assume that H is known by the decoder. In linear network
coding, this knowledge can be obtained at the destination nodes
through the coefficient vectors.

Suppose that the transfer matrices of the first n batches are
H1, H2, . . ., Hn. Denote by rk(H) the rank of a matrix H.
Let

hr =
|{k ∈ {1, 2, . . . , n} : rk(Hk) = r}|

n
. (3)

The empirical rank distribution of the transfer matrices h =
(h0, h1, . . . , hM ) is an important parameter for the design of
BATS codes, which will be discussed further.

B. Decoding

The inner code preserves the degrees of the batches so that
an efficient belief propagation (BP) decoding algorithm can be
used to jointly decode the outer code and the inner code. A
destination node tries to decode the input packets using Y and
the knowledge of G and H for all the received batches. We
say a batch is decodable if rk(GH) is equal to the degree
d, i.e., the linear system in (2) with B as the variable has
a unique solution. The BP decoding of BATS codes keeps
looking for decodable batches. If a decodable batch is found,
the input packets of this batch are recovered by solving the
associated linear system (2) and the recovered input packets
are substituted into the batches that have not been solved. If a
decodable batch cannot be found, the BP decoding stops. Our
goal is to decode a given fraction of the input packets before
the BP decoding stops.

To guarantee the success of the BP decoding, a proper
degree distribution is crucial. The asymptotic analysis of BP
decoding in [21] induces a degree-distribution optimization
problem, which maximizes the coding rate and has the rank
distribution h as a parameter. It is demonstrated numerically



for general cases that the BATS code with BP decoding
achieves rates very close to the average empirical rank

∑
i ihi,

the theoretical upper bound on the achievable rate of the code
in packets per batch.

C. Practical Design

We have discussed how to recover a given fraction of
the input packets. To reliably transmit all the input packets,
we can use the precode technique first introduced for Raptor
codes. That is, before applying the batch encoding process,
the input packets are first encoded using a traditional erasure
code (called a precode). The batch encoding process is applied
to the precoded input packets generated by the precode. If the
BP decoding of the BATS code can recover a given fraction of
the precoded input packets, the precode is able to recover the
original input packets in face of a fixed fraction of erasures.
Due to similar requirements, the precode for Raptor codes can
be applied to BATS without much modifications. Readers can
find the detailed discussion of these techniques in [28], [29].

Though the degree distribution optimized asymptotically
performs well when the number of input packets is very
large (e.g., 100,000), when the number of input packets is
small, BP decoding tends to stop before the desired fraction
of input packets are decoded. When the BP decoding stops,
one approach to continue the decoding process is inactivation
[28], [30]–[32]. With inactivation, when there are no decodable
batches, we instead pick an undecoded input packet b and
mark it as inactive. We substitute the inactive packet b into the
batches like a decoded packet, except that b is an indeterminate.
The decoding process is repeated until all input packets are
either decoded or inactive. The inactive input packets can
be recovered by solving a linear system of equations using
Gaussian elimination. In a nutshell, inactivation decoding
trades computation cost (decoding inactive input symbols using
Gaussian elimination) with coding overhead. BATS codes
with inactivation decoding has demonstrated nearly optimal
performance in simulation [21].

III. BASIC BATS PROTOCOL

Starting from this section, we discuss BATS protocols that
use BATS codes in practical network transmission. A general
BATS protocol has three kinds of modules in two layers as
illustrated in Fig. 3: The higher layer includes the encoding and
decoding modules of BATS codes and the lower layer includes
multiple batch forwarding (BF) modules. In this paper, we
only consider the sequential concatenation of these modules
as shown in this figure.

We first introduce a basic BATS protocol for multihop wire-
less networks, called BATSpro-1. Though simple, it demon-
strates the desired performance gain in some scenarios. We
will discuss later how to improve the basic protocol to handle
some practical issues.

A. Encoding Module

BATS encoding and decoding modules are employed only
at the source and the destination nodes, respectively. BATS
encoding takes a file as input and generates batches using the
algorithm described in the last section. The output packets of
the encoding module have the following structure. Consider

batch
forwarding

batch
forwarding

batch
forwarding

batch
forwarding

BATS
encoding

BATS
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input file output file

Fig. 3: Structure of a BATS code protocol in the line network in Fig. 1. Each
batch forwarding module runs on a network node. The first node includes an
encoding module and the last node includes a decoding module.

batch ID coeff. vector payload

Fig. 4: Format of an output packet. A batch ID usually has 16 to 32 bits.
Taking M = 16 and q = 28 as example, a coefficient vector has 16 bytes.

a batch X generated as (1). For the i-th packet in X, we
attach a coefficient vector ei which is a (column) vector of
M symbols in F known by the decoder. It is required that ei,
i = 1, . . . ,M are linearly independent. Here we assume that all
the components of ei are zero except that the i-th component
is one. The encoding module outputs M packets for a batch
consecutively, where the i-th packet p[i] includes three fields:

1) batch ID: a unique identifier for each batch,
2) coefficient vector ei, and
3) the i-th column of X as the payload.

The format of an output packet is illustrated in Fig. 4.

A packet of the format in Fig. 4 is transmitted between
the modules of the BATS code protocol and is called a BATS
packet. For a BATS packet p, the three fields are referred to as
pI , pC and pB , respectively. We will simply refer to a BATS
packet as a packet when the context makes it clear.

B. Batch Forwarding

The BF module is employed at all the nodes. Under
the principle that only packets of the same batch can be
network coded, we have a lot of freedom in designing batch
forwarding, including how to manage the buffer content, and
how to schedule the transmission of batches/packets. We first
introduce the BF module of BATSpro-1.

The main procedure of the BF module of BATSpro-1 has
the flow chart given in Fig. 5. The BF module repeats this
procedure for each received packet. The design of this module
is based on the assumption that the packets of the same batch
are received consecutively. The batch of the received packet
in the last run of the main procedure is called the current
batch. A BF module has a variable to keep the batch ID of
the current batch, which is initially null. The main procedure
has two branches:

• If the batch ID of a received packet is the same as the
current batch, the packet is just saved in the cache of
the module.



• If the batch ID of a received packet is different from
the current batch, in addition to saving the packet, the
following operations are performed: First, the current
batch is marked as a readied batch, and the variable
of the current batch is changed to the batch ID of
the received packet. Second, a recoding procedure (to
be specified later) is applied on the readied batch to
generate M recoded BATS packets, which are then
transmitted to the next hop.

At the source node and the destination node, the operation of
the BF module can be simplified to forwarding only.

Suppose the readied batch has N ≤ M packets, denoted
by p[i], i = 1, . . . , N . The recoding procedure generates M
recoded BATS packets p̃[j], j = 1, . . . ,M as follows. First
p̃I [j] is the batch ID of the readied batch. The other two fields
of p̃[j] are calculated by

p̃C [j] =

N∑
i=1

α[i, j]pC [i], p̃B [j] =

N∑
i=1

α[i, j]pB [i],

where α[i, j], i = 1, . . . , N are the linear combination coeffi-
cients chosen from F. There are various approaches to choose
α[i, j]. One approach is to choose α[i, j] uniformly at random
from the field F. Another approach, called systematic recoding,
chooses the coefficients of the first N recoded packets such that
p̃B [j] = pB [j], j ≤ N and the coefficients of the remaining
recoded packets randomly. Systematic recoding can reduce the
computation cost of recoding significantly when M − N is
small.

Now let us check the storage cost of a BF module at an
intermediate node. Suppose the BF modules output the BATS
packets of the same batch ID consecutively and the network
links preserve the order of the input packets. Then, the BATS
packets of the same batch ID arrive a BF module consecutively.
Thus, at most M BATS packets are cached before recoding is
applied.

C. Decoding Module

Consider a batch X generated at the source node and a
sequence of received BATS packets at the destination node
p[i], i = 1, . . . , N with the batch ID of X. It can be verified
inductively that

pB [i] = XpC [i], i = 1, . . . , N.

Writing the above equations in matrix form, we obtain (2).
The decoding module can apply the algorithm introduced in
the last section to decode input packets.

As an option, the decoding module sends a feedback to the
encoding module when the decoding succeeds.

IV. EXPERIMENTS ON BATSPRO-1

In this section, we discuss the implementation and experi-
ments of BATSpro-1.

BATS packet

save packet

new batch? end

readied batch ← current batch
current batch ← new batch

recode M packets of the readied batch

transmit the M recoded packets

end

yes

no

Fig. 5: Flow chart of the batch forwarding module of BATSpro-1 in an
intermediate node.

A. Implementation in Real Devices

In the existing network protocol stack, one possible place
to implement BATSpro-1 is the MAC layer or between the
IP layer and the MAC layer. Here we choose to implement
BATSpro-1 at the application layer based on the UDP protocol.
The IP protocol is almost transparent in our experiments so
it has little effect on the performance. BATSpro-1 is imple-
mented using C/C++ in linux operating systems (Ubuntu and
OpenWRT) and portable to other operating systems.

We use two laptop computers as the source and destination
nodes, respectively. Label the source node by R0 and the
destination node by RL. The wireless interfaces of R0 and RL

are set to the station mode and the access point (AP) mode,
respectively. The intermediate nodes are WiFi routers with dual
radios that operate on different WiFi channels. These routers
are labeled by R1, R2, . . . , RL−1, respectively. For each WiFi
router, one of the interfaces is set to the station mode and the
other is set to the AP mode. We connect these devices to form
a line network:

• The source node is connected to the AP of R1.

• The interface of Ri in the station mode is connected
to the AP of Ri+1, for i = 1, . . . , L− 2.

• The interface of RL−1 in the station mode is con-
nected to the destination node.

We choose the wireless channels carefully to avoid cross chan-
nel interference. Further, retransmission in WiFi is suppressed
since network coding has the function of erasure correction.
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Fig. 6: Compare BATSpro-1 and fountain code protocol when the link loss rate
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the source node transmission rate is 1000 Kbit/s. For BATSpro-1, M = 16.

TABLE I
COMPARE BATSPRO-1 AND FOUNTAIN CODES IN A FOUR-HOP LINE NET-
WORK WITH REAL-WORLD PACKET LOSS. FOR BOTH PROTOCOLS: K =
512, q = 28 , T = 1024, AND THE SOURCE NODE TRANSMISSION RATE

IS 500 KBIT/S. FOR BATSPRO-1, M = 16.

Fountain BATS

trials

279.45 291.45
241.42 314.10
315.36 319.78
237.53 362.61
260.61 296.41

mean 266.87 316.87

B. Compare with Fountain Codes

We compare BATSpro-1 with a fountain code protocol
where the encoding/decoding module is similar to BATS
encoding/decoding module with M = 1, but the intermediate
nodes only forward packets. So in the fountain code protocol,
the coefficient vector field is not required. Packet loss in WiFi
occurs naturally due to noise and interference in air. Since
the loss pattern fluctuates quickly, it is hard to conduct fair
comparison. We instead artificial delete a packet with certain
probability at the WiFi interface independently. The devices in
this case are put close enough so that the real-world loss is
neglectable.

The experiment results are given in Fig. 6. For both BATS
codes and Fountain codes, we use K = 5120, q = 28 and T =
1024. For the BATS codes, we use batch size 16. The source
node transmission rate is 1000 Kbit/s for both BATSpro-1 and
the fountain code protocol.

We also conduct the experiments with real-world packet
loss (not the artificially generated packet loss). In Table I, we
give the experiment results for five trials of BATSpro-1 and
five trials of fountain codes in a network with four hops. In
this case, K = 512 and the source node transmission rate is
500 Kbit/s for both BATSpro-1 and the fountain code protocol.
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Fig. 7: Empirical rank distribution example in a four-hop line network with
real-world packet loss. The two curves marked by 10% and 20% loss are the
expected rank distributions of the four-hop line network with 10% and 20%
percent independent loss rates, respectively. The average ranks of the three
cases are 11.07, 13.13 and 11.12, respectively.

V. IMPROVED BATS PROTOCOL

In this section, we first discuss a couple of issues of
BATSpro-1, and then propose a new protocol, BATSpro-2, to
resolve these issues.

A. Burst Loss

Though BATSpro-1 works very well when the link loss
is independent as we demonstrated in the last section, the
advantage of network coding in BATSpro-1 can be reduced
when the link loss is bursty. Burst loss tends to occur in
wireless transmission due to interference and fading.

Let us use an example to illustrate the issue of burst loss
for BATSpro-1. Suppose in a line network, 10 percent of the
packets transmitted on a link are erased, but the losses on
each link are not independent: the packets belonging to a batch
are either all erased or all correctly received. We can check
that in BATSpro-1, an intermediate node always receives M
packets for a batch. For such a loss pattern, the performance
of BATSpro-1 is reduced to (1−0.1)L packet per timeslot for
L hops, the same as that of the fountain code calculated in the
introduction.

In a real-world scenario, the burst loss is not as extreme as
the above example. We sample an empirical rank distribution
in our real-world experiments of BATSpro-1 given in Fig. 7,
where the expected rank distributions of independent link loss
are also plotted for comparison.

One approach to resolve the above issue of burst loss is to
interleave the packets of different batches for transmission.
This technique is used in the physical layer of wireless
transmission to resolve the issue of burst error. When using
interleaving, since the packets of the same batch are not
transmitted consecutively, more packets are required to be
cached at an intermediate node so that effective recoding can
be applied.



B. Adaptive Recoding

We say a set of packets belonging to the same batch are
linearly independent if the coefficient vectors of these packets
are linearly independent. Define the rank of a batch at a
network node as the maximum number of linearly independent
received packets of the batch. Note that the rank of a batch at
the destination node is exactly the rank of the transfer matrix of
the batch (see (2)). The theory of BATS codes tells us that the
inner code should maximize the average empirical rank

∑
i ihi.

Since the rank of a batch tends to decrease for each hop of
transmission, the recoding scheme should try to maximize the
total expected ranks of all batches at the next hop node.

In BATSpro-1, the recoding generates the same number of
coded packets for all batches, no matter how many packets
are received in the batch. This is not optimal for maximizing
the total expected ranks. Intuitively, we should transmit more
packets for a batch with a higher rank because compared with
a batch with a lower rank, the former contains more useful
information for decoding. This intuition can be justified in
Appendix A.

Further, due to interleaving, an intermediate node may not
receive the packets of the same batch consecutively. Therefore,
an adaptive recoding approach must be applied based on the
currently received packets of a batch. For each batch b in the
cache of a node, we maintain two variables:

1) rb: the rank of the packets received, and
2) tb: the number of packets transmitted.

We define a priority function F which takes these two variables
as inputs. Hence, the priority of a batch b is defined as F (b) =
F (rb, tb). Whenever there is an opportunity for transmission,
the node transmits a packet of the batch b with the largest
value of F (b). One example of the priority function is

F (b) = rb − tb.

When two batches b and b′ have rb−tb = rb′−tb′ and rb > rb′ ,
we may opt to transmit a packet of batch b. Accordingly, we
may modify the above definition as

F (b) = rb − tb +
rb
M
.

The use of the above priority function will be justified in
Appendix B.

To simplify the computation at the intermediate nodes, we
may not want to check the linear independence of the packets
of a batch. Instead, we may just count how many packets of a
batch are received, and redefine rb as the number of packets
received for batch b. The above adaptive recoding approach
can be similarly applied.

C. Batch Forwarding in BATSpro-2

BATSpro-2 shares the same encoding and decoding mod-
ules as BATSpro-1. There are two main procedures in the BF
module of BATSpro-2, named the receiving procedure and the
transmitting procedure. The flow charts of the procedures are
given in Fig. 8 and Fig. 9 respectively.

The receiving procedure repeats for each received packet.
There is no assumption on the ordering of the received packets.

BATS packet

buffer full?

remove batches with smallest priority

save packet

end

yes

no

Fig. 8: Flow chart of the receiving procedure in the BF of BATSpro-2 at an
intermediate node.

start

find the batch with highest priority

recode a packet of the chosen batch

transmit the recoded packet

end

Fig. 9: Flow chart of the transmitting procedure in the BF of BATSpro-2 at
an intermediate node.

The buffer size is a tunable parameter according to the memory
limitation. If the buffer is full, batches with the smallest
priority are removed. To ensure that there are enough slots
in the buffer for the batch of the receiving packet, the removal
process continues until there are at least M empty slots left.

The transmitting procedure is repeated automatically. The
batch with the highest priority is selected, and a packet for
the selected batch is generated for transmission. The way to
generate a new packet is exactly the same as the way to
generate a recoded packet of the readied batch in BATSpro-1.
Further, the priority-based batch selection also plays the role
of an interleaver: we deliberately decrease the priority of a
batch if it was just selected.

At the destination node, the BF module of BATSpro-2
simply forwards packets to the decoding module.



VI. CONCLUDING REMARKS

In this paper, we discussed in details the design and the
implementation of BATS code enabled network transmission
protocols for multihop wireless networks. Our experiments
show that using BATS code can achieve much higher rates than
using fountain codes in multihop wireless networks. There are
more refinements to be considered in the future. For example,
when feedback is available, the protocols can make use of this
additional information for recoding and rate control. We will
conduct more experiments in various real-world scenarios to
evaluate the refined protocols.
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APPENDIX
JUSTIFICATIONS OF ADAPTIVE RECODING

Consider a batch with rank r at an intermediate node,
and t recoded packets are generated uniformly at random
as we specified in Section III-B. The t recoded packets are
transmitted to the node at the next hop and each of the
transmitted packets is independently erased with probability p.
We are interested in two quantities in this probability model.
The first is the expected rank of the batch at the next hop:

Eq(r, t) =

t∑
i=0

(
t

i

)
(1− p)ipt−i

min{i,r}∑
j=0

jζi,rj

where ζi,rj is the probability that any i already received packets
have rank j. The second is the probability fq(r, t) that a new
recoded packet u generated uniformly at random, if correctly
transmitted, is linearly independent with the already received
packets of this batch. We have

fq(r, t) =

t∑
i=0

(
t

i

)
(1− p)ipt−i

min{r,i}∑
j=0

ζi,rj (1− q−r+j).

For convenience, we write Bp(t, i) =
(
t
i

)
(1− p)ipt−i.

A. Number of Packets to Recode

See a characterization of ζi,rj in [21]. We know that

lim
q→∞

ζi,rj =

{
1 j = min{r, i},
0 otherwise.

Thus, when q is large (e.g., q = 28), we can approximate
Eq(r, t) by

E(r, t) =

t∑
i=0

Bp(t, i) min{r, i}.

It is straightforward to check that

E(r, t+ 1) =

{
E(r, t) + (1− p) t < r,

E(r, t) + (1− p)
∑r−1

i=0 Bp(t, i) t ≥ r.

Now we consider two batches with rank r1 and r2 at a
node, where r1 > r2. Suppose that we transmit M +s packets
for the batch with rank r1 and M−s packets for the batch with
rank r2. We want to show that s = 0 as in BATSpro-1 is not
the optimal choice. Let β(s) = E(r1,M + s) +E(r2,M − s).
We can check that

β(1)− β(0)

= [E(r1,M + 1)− E(r1,M)]− [E(r2,M)− E(r2,M − 1)]

= (1− p)
r1−1∑
i=0

Bp(M, i)− (1− p)
r2−1∑
i=0

Bp(M − 1, i)

≥ (1− p)
r2∑
i=0

Bp(M, i)− (1− p)
r2−1∑
i=0

Bp(M − 1, i)

≥ 0,

where first inequality follows from r1 − 1 ≥ r2 and the last
inequality is verified in the following lemma.

Lemma 1. When t > r,
∑r+1

i=0 Bp(t+ 1, i) ≥
∑r

i=0Bp(t, i),
where the equality holds only when p = 0 or 1.

Proof: By using the formula(
t+ 1

i

)
=

(
t

i− 1

)
+

(
t

i

)
, i = 1, 2, . . . , t,

we have
r+1∑
i=0

Bp(t+ 1, i) =

r+1∑
i=0

(
t+ 1

i

)
(1− p)ipt+1−i

= pt+1 + p

r+1∑
i=1

(
t

i

)
(1− p)ipt−i +

r∑
i=0

(
t

i

)
(1− p)i+1pt−i

=

r∑
i=0

Bp(t, i) +

(
t

r + 1

)
(1− p)r+1pt−r ≥

r∑
i=0

Bp(t, i),

where the equality holds only when p = 0 or 1.

B. Priority Function

Similar to Section A in this Appendix, when q is large, we
can approximate fq(r, t) by

f(r, t) =

min{t,r−1}∑
i=0

(
t

i

)
(1− p)ipt−i

=

{
1 t < r,∑r−1

i=0

(
t
i

)
(1− p)ipt−i t ≥ r.

The function f(r, t) is the ideal priority function to be used
for the independent erasure model defined at the beginning
of this appendix. However, the priority function F (r, t) given
in Section V-B is computationally much simpler and hence
more favored in real implementations. In the following, we
check that the priority functions F (r, t) and f(r, t) are actually
consistent in most cases.



It is easy to see that

1) f(r + 1, t) ≥ f(r, t) for t, r ≥ 0;
2) f(r + 1, t+ 1) = f(r, t) = 1 for t < r;
3) f(r + 1, t+ 1) ≥ f(r, t) for t ≥ r due to Lemma 1,

where equality holds only when p = 0 or 1; and
4) f(r, t+ 1) ≤ f(r, t) for t < r.

On the other hand, we can check that f(r, t+ 1) ≤ f(r, t) for
t ≥ r as

f(r, t+ 1) =

r−1∑
i=0

(
t+ 1

i

)
(1− p)ipt+1−i

= pt+1 + p

r−1∑
i=1

(
t

i

)
(1− p)ipt−i +

r−2∑
i=0

(
t

i

)
(1− p)i+1pt−i

= f(r, t)−
(

t

r − 1

)
(1− p)rpt+1−r ≤ f(r, t)

where equality holds only when p = 0 or 1.

Consider two batches b and b′ with rb = r, tb = t, rb′ =
r + α and tb′ = t + β for α ≥ β. We discuss the following
three cases where 0 < p < 1.

Case I: α ≥ β ≥ 0. If rb′ − tb′ = r− t+ α− β > rb − tb,
which implies α > β, then f(r+α, t+β) ≥ f(r, t) by applying
the above properties of f inductively. If rb′ − tb′ = rb − tb,
which implies α = β, then f(rb′ , tb′) ≥ f(rb, tb). Therefore,
f(r, t) and F (r, t) are consistent.

Case II: α ≥ 0 > β. Now rb′ − tb′ > rb − tb and f(r +
α, t+β) ≥ f(r+α, t) ≥ f(r, t). Therefore, f(r, t) and F (r, t)
are consistent.

Case III: 0 > α > β. Now rb′−tb′ > rb−tb. When t+β <
r+α, we have f(r+α, t+β) = 1 ≥ f(r, t). However, f(r, t)
may be inconsistent when t+β ≥ r+α since we may not have
f(r + α, t+ β) ≥ f(r, t). Numerical results show that which
one of f(r+α, t+β) and f(r, t) is larger depends on the value
of p. Since f(r+α, t+β) ≥ f(r+β+1, t+β) ≥ f(1, t−r),
we have

f(r + α, t+ β)− f(r, t)

≥ pt−r −
r−1∑
i=0

(
t

i

)
(1− p)ipt−i

≥ pt−r − [1− t(1− p)t−1p− (1− p)t],

which is positive when p is sufficiently small. Therefore, the
priority function F (r, t) is also consistant with f(r, t) when p
is sufficiently small.
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