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Abstract—Batched sparse (BATS) codes are proposed for trans-
mitting a collection of packets through communication networks
employing linear network coding. BATS codes generalize fountain
codes and preserve the properties such as ratelessness and low
encoding/decoding complexity. Moreover, the buffer size and
the computation capability of the intermediate network nodes
required to apply BATS codes are independent of the number
of packets for transmission. It is verified theoretically for certain
cases and demonstrated numerically for the general cases that
BATS codes achieve rates very close to the capacity of linear
operator channels.

I. INTRODUCTION

One fundamental task of communication networks is to
distribute a bulk of digital data, called a file, from a source
node to a set of destination nodes. Fountain codes, including
LT codes [1] and Raptor codes [2], provide a good solution for
routing networks, where the intermediate nodes apply store-
and-forward. In a routing network, the transmission from the
source node to a destination node is modelled by an erasure
channel. The source node keeps transmitting coded packets
generated by a fountain code encoder and a destination node
can decode the original file after receiving n coded packets,
where n is just slightly larger than the number of the input
packets K, without any knowledge of which packets are
received. The encoding/decoding complexity of a Raptor code
is O(TK), where T is the size of a packet.

Store-and-forward, however, is not an optimal operation of
the intermediate nodes. For example, the routing capacity of
the network in Fig. 1 is 0.64 packet per use. If we allow coding
(recoding) at the intermediate node and treat the network as a
concatenation of two erasure channels, we see that the capacity
of the network is 0.8 packet per use. Treating a packet as a
vector of symbols in a finite field, linear network coding [3]
allows intermediate nodes to transmit linear combinations of
the packets it has received. Random linear network coding
[4] achieves the multicast capacity in terms of packets per
use [5]. For example, the capacity of the network in Fig. 1
can be achieved using the following random linear network
coding scheme [6]. The source node s transmits random
linear combinations of the input packets and node a transmits
random linear combinations of the packets it has received.
The destination node t can decode the input packets when
it receives enough coded packets with linearly independent
coding vectors. See also [7, Section 19.7] for a discussion.

The random linear network coding scheme for the above
example has high complexity. For transmitting a file of K
packets, the total encoding complexity is O(TK2) and the
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Fig. 1. s is the source node, t is the destination node, and a is the intermediate
node that does not demand the file. Both links are capable of transmitting one
packet per use and have a packet loss rate 0.2.

decoding complexity is O(K3 + TK2). Besides the en-
coding/decoding complexity, the complexity of intermediate
operations is important though ignored by many works. For an
intermediate node in a routing network, no matter how many
packets the file contains, the buffer size and the number of the
operations for processing a packet remain constant. However,
for the network coding scheme, the intermediate node needs
to buffer almost K packets and the coding complexity of the
intermediate nodes is O(TK).

Applying fountain codes to networks employing linear
network coding cannot reduce the complexity. First, simply
using fountain codes in the source node cannot reduce the
coding complexity and the buffer size of the intermediate
nodes. Second, the fast belief propagation decoding algo-
rithm of fountain codes usually fails after re-coding of the
fountain coded packets. Designing “sparse” network coding
to approximate fountain codes may be possible for special
communication scenarios [8], but in general it is difficult to
guarantee that the degree of the received packets follows a
specific distribution using distributed encoding.

One practical method to simplify the complexity of network
coding is to group input packets into chunks (also called
generations or classes), a subset of the K packets. Encoding,
recoding and decoding are all performed within one chunk. It
reduces the encoding and decoding complexity to O(TKL)
and O(KL2 +TKL), respectively, where chunks are disjoint
and have size L. Maymounkov et al. [9] showed that random
scheduling of chunks achieves the min-cut bound when the
chunk size goes to infinity. Two groups have independently
shown by simulation that using overlapped chunks can im-
prove the throughput [10], [11] of random scheduling for
practical chunk sizes. Intuitively, the advantage of overlapped
chunks is to use the decoded chunks to help the decoding
of the other chunks. Overlapped chunks have some prop-
erties similar to fountain codes, but the existing designs of
overlapping are still based on heuristics. Moreover, these file
distribution schemes [8]–[12] require the intermediate nodes
to buffer the whole file.

We propose batched sparse (BATS) codes, which extend
the idea of fountain codes to the realm of networks and



also take the advantages of network coding. BATS codes are
fully compatible with linear network coding by employing
a new design freedom called batch. A batch is a set of M
packets generated by using a same subset of input packets.
The encoding complexity of a BATS code is O(TKM) and
the corresponding decoding complexity is O(KM2+TKM).
Moreover, when applying BATS codes, an intermediate node
uses O(TM) time to recode a packet and buffers O(M)
packets.

As an end-to-end coding scheme working at the source
and destination nodes, BATS codes are suitable for a large
range of networks as long as the end-to-end operation on the
packets of a batch is a linear transformation, which can be
different for different batches. BATS codes are robust against
dynamical network topology and packet loss since the end-
to-end operation remains linear. Moreover, BATS codes work
with random linear network coding with small finite fields.
Most existing works on random linear network coding requires
a large field size to guarantee a full rank for the transfer matrix.
For BATS codes, however, the transfer matrices of the batches
are allowed to have arbitrary rank deficiency.

The linear transformation on batches can be modelled by
a linear operator channel (LOC), a channel model studied for
linear network coding [13]. We verify theoretically for certain
cases and demonstrate numerically for the general cases that
BATS codes achieve rates very close to the capacity of
memoryless LOCs. The batch size M determines the tradeoff
between the complexity and the maximum achievable rate.
When M = 1, BATS codes degenerate to LT codes, which
have the lowest complexity but without the benefit of network
coding. When M = K, BATS codes has the same complexity
of random linear network coding, and at the same time the
potential of network coding can be fully realized.

II. BATCHED SPARSE (BATS) CODES

Consider encoding K input packets, each of which has T
symbols in a finite field F with size q. A packet is denoted by
a column vector. In the following discussion, we equate a set
of packets to the matrix formed by juxtaposing the packets in
this set. For example, the set of the input packets is denoted
by the matrix

B =
[
b1, b2, · · · , bK

]
,

where bi is the ith input packets. When treating as a set, we
also write bi ∈ B, B′ ⊂ B, etc. We use rk(A) to denote the
matrix rank of A.

A. Encoding of Batches

A batch is a set of M coded packets generated from a subset
of these input packets. For i = 1, 2, . . ., the ith batch Xi is
generated using a subset Bi ⊂ B of the input packets as

Xi = BiGi,

where Gi is called the generator matrix of the ith batch.
We call the packets in Bi the contributors of the ith batch.
The formation of Bi depends on a degree distribution Ψ =

b1 b2 b3 b4 b5 b6

G1 G2 G3 G4 G5

Fig. 2. Tanner graph for encoding and transmitting of the first five batches.

(Ψ0,Ψ1, · · · ,ΨK): First sample the distribution Ψ which
returns a degree di with probability Ψdi

; Then uniformly at
random choose di input packets forming Bi. The design of Ψ
is discussed later in Section III.

The dimension of Gi is di×M . There are two options for
designing Gi. i) Gi are pre-designed. ii) Gi are generated
on the fly. In this paper, we analyze BATS codes with
random generator matrices, i.e., all the components of Gi are
independently chosen, uniformly at random by the encoder.
Random generation matrix is not only good for analysis, but
also implementable. E.g., Gi, i = 1, 2, · · · , can be generated
by a pseudorandom generator and can be recovered in the
destinations by the same pseudorandom generator.

The encoding of BATS codes can be described by Tanner
graphs. A Tanner graph has K variable nodes, where the
variable node i corresponds to the ith input packet bi, and
n check nodes, where the check node j corresponds to the jth
batch Xj . Check node j is connected to variable node i if bi
is a contributor of batch j. Fig. 2 illustrates an example of
Tanner graph for encoding.

B. Transmission of Batches

To transmit a batch, the source node transmits the packets
in the batch. No feedback is required to stop the transmission
of each batch. BATS codes are rateless codes, i.e., the number
of batches that can be transmitted is not fixed. When applying
linear network coding, an intermediate node encodes the
received packets of a batch into new packets using linear
combinations and transmit these new packets on its outgoing
links. These new packets are considered to be in the same
batch. The rule is that the packets in different batches are
not mixed inside the network. BATS codes are robust against
dynamical network topology and packet loss since the end-to-
end operation remains linear.

To apply BATS codes, we further need to consider how to
schedule the transmission of batches in the source node and
the intermediate nodes and how to manage the buffers at the
intermediate nodes. The design of these network operations
varies for different applications. For example, for the file trans-
mission in a directed acyclic network, when the intermediate
network nodes do not require the file, sequential scheduling
of batches at the source node and the intermediate nodes can
minimize the buffer requirement at the intermediate nodes. In
contrast, for the file distribution in a peer-to-peer network,
since all network nodes request the file, random scheduling of
batches can reduce the protocol overhead.
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Fig. 3. A decoding graph

Given the end-to-end transformations applied to the batches,
the design of BATS codes does not depend on the details of
the network operations. So we will not discuss details of the
network operations on the batches in this paper. Nevertheless,
we demonstrate how a BATS code works in the three-node
network in Section IV-B, where some general guidelines on
the design of the intermediate operation are given. Note that
though the three-node network is simple, it arises in some
important applications, e.g. wireless relay networks.

Let Yi be the received packets at a destination node that
belong to the ith batch. We have

Yi = XiHi = BiGiHi, (1)

where Hi is the transfer matrix of the ith batch determined
by linear network coding [3], [14]. The number of rows of
Hi is M , while the number of columns varies for different
batches. We assume that GiHi is known by the destination
node through the coding vectors in the packet headers. When
the packet length T is sufficiently large, this overhead is
negligible.

The operation of the network on the batches in (1) can be
modelled as a linear operator channel (LOC), which has been
studied for linear network coding [13]. In this sense, a BATS
code is a channel code for LOCs. If Hi, i = 1, 2, · · · , are
independent instances of a generic random matrix H , then the
LOC is a memoryless channel with transfer matrix H . We
will analyze the performance of BATS codes for memoryless
LOCs. Unless otherwise specified, the LOCs referred to in the
rest of this paper are memoryless.

C. Belief Propagation (BP) Decoding

A destination tries to decode the input packets using Yi

and the knowledge of GiHi for i = 1, 2, . . . , n. The decod-
ing process is better described using the bipartite graph in
Fig. 3, which is the same with the encoding graph except that
associated with each check node i is the matrix GiHi.

A check node i is called decodable if GiHi has rank di. As-
sume that check node i0 is decodable. Then Bi0 is recovered
by solving the linear system of equations Yi0 = Bi0Gi0Hi0 ,
which must have a unique solution since rk(Gi0Hi0) = di0 .
After decoding the i0th batch, we recover the di0 input packets
in Bi0 . Then substitute the values of these input packets in
the undecoded batches. Consider that bk is in Bi0 . If variable
node k has only one edge that connects with check node i0,
just remove variable node k. If variable node k also connects
check node i1 6= i0, then besides removing the node, also

remove the row in Gi1Hi1 corresponding to variable node
k. In the decoding graph, this is equivalent to first removing
check node i0 and its neighboring variable nodes, and then
for each removed variable node update its neighboring check
nodes. We repeat this decoding-substitution procedure on the
new graph until no more check nodes are decodable.

In Section III, we give a sufficient condition of the degree
distribution such that the BP decoding of BATS codes succeeds
with high probability.

D. Precoding of BATS Codes

The same technique of Raptor codes is applied here to
reduce the encoding/decoding complexity of BATS codes. The
input packets are first encoded using a traditional erasure code
(precoding), and then encoded by a BATS code. We require
that the belief propagation decoding of BATS codes recovers
a constant fraction of its input packets. The traditional erasure
code is capable of recovering the original input packets in face
of a fixed fraction of erasures.

E. Complexity

The complexity of encoding a batch with degree d is
O(TMd). For a encoding graph with n check nodes, i.e.,
n batches, the encoding complexity is O(TM

∑n
i=1 di) =

O(TMm), where m =
∑n

i=1 di is the number of edges in
the decoding graph, which converges to O(TMnE[Ψ]) when
n is large where E[Ψ] =

∑
d dΨd.

Let ki = rk(Hi) and k′i be the rank of GiHi when check
node i is decodable. It is clear that k′i ≤ ki ≤ M . The
computation involved in the decoding includes two parts:
the first part is the decoding of decodable check nodes,
which has complexity O(

∑
i k
′3
i + T

∑
i k
′2
i ); the second

part is updating the decoding graph, which has complexity
O(T

∑
i(di − k′i)M). So the total complexity is O(

∑
i k
′3
i +

T
∑

i k
′2
i + T

∑
i(di − k′i)M), which can be simplified to

O(nM3 + TM
∑

i di). When n is large, the complexity
converges to O(M3n+ TMnE[Ψ]). Usually, T and E[Ψ] is
larger than M and the second term is dominant.

To reduce the encoding/decoding complexity, we hope to
have small E[Ψ]. We show that it is possible to have E[Ψ] =
O(M). In the design of BATS codes, M is a parameter
independent of K. The rate of the code is K

nM packets per
transmission. When the rate of the code converges to a constant
value, we see that the encoding and decoding complexity are
O(TKM) and O(KM2 + TKM), respectively.

III. DEGREE DISTRIBUTIONS

In this section we look at how to design degree distributions
such that i) the BP decoding succeeds with high probability, ii)
the encoding/decoding complexity is low, and iii) the coding
rate is large. The clue is in the decoding process of BATS
codes.

We analyze the decoding of a BATS code with random
generator matrices over a memoryless LOC with transfer
matrix H . Associated with each check node is a degree and
a rank. The probability that a check node has degree d is Ψd



and for a check node with degree d, the probability that it has
rank r is hd,r = Pr{rk(GdH) = r}, where Gd is a d ×M
random matrix with uniform i.i.d components. The generator
matrix of a batch with degree d is just an instance of Gd. hd,r
can be computed using only the rank distribution of H (see
[15] for the expression). For convenience, we also call the pair
(d, r) the degree of a check node. Let Ψd,r = Ψdhd,r be the
probability that a check node has degree (d, r). A decoding
graph with K variable nodes and n check nodes is denoted
by BATS(K,n, {Ψd,r}). The design coding rate of the BATS
code is θ = K/n.

We use the result of density evolution to show the asymp-
totic decoding performance of a sequence of decoding graph
BATS(K,n, {Ψd,r}) with constant θ. We apply Wormald’s
theorem [16] to approximate the density evolution by differ-
ential equations. The details of the analysis are omitted and
can be found in [15]. Assume that the maximum D such that
ΨD is nonzero is not related to K. Let

Ω(x) =

M∑
r=1

h∗r,r

D∑
d=r+1

dΨdId−r,r(x) +

M∑
r=1

hr,rrΨr,

where h∗r,r = 1−q−1

1−q−r−1hr+1,r and

Ia,b(x) =

a+b−1∑
j=a

(
a+ b− 1

j

)
xj(1− x)a+b−1−j

is called regularized incomplete beta function. Define

ρ̃1(τ) =
(1− τ/C0)

E[Ψ]
(Ω(τ/C0) + θ ln(1− τ/C0)) ,

where C0 = θ/E[Ψ]. We obtain the following sufficient
condition of the degree distribution such that the BP decoding
of BATS codes succeeds with high probability when K is
sufficiently large.

Theorem 1: Consider a sequence of decoding graph
BATS(K,n, {Ψd,r}) with constant θ. For any ε > 0, consider
a degree distribution with ρ̃1(τ) ≥ ε for τ ∈ [0, C0(1 − η)].
There exist constant K0, c and c′ such that when K ≥ K0,
with probability at least 1−cn7/24 exp(−c′n1/8), the decoding
terminates with at most ηK input packets erased.

Theorem 1 enables us to consider the following optimization
problem to find an asymptotically optimal degree distribution
that maximizes the coding rate:

max θ (2)
s.t. Ω(x) + θ ln(1− x) ≥ 0, 0 < x ≤ 1− η

Ψd ≥ 0, d = 1, · · · , D∑
d

Ψd = 1.

The only channel information required in the optimization
problem is the rank distribution of H . We can further show that
using D > dM/ηe − 1 does not give better optimal value in
the above optimization problem. Thus we set D = dM/ηe−1,
which complies our assumption that D is not related to K.

IV. ACHIEVABLE RATES

The coding rate of a BATS codes is given by the average
number of packets that can be transmitted using one batch.
The rate can also be normalized by the batch size.

A. Asymptotically Achievable Rates

The BP decoding algorithm, if succeeds, recovers at least
(1−η)K packets. Thus, the maximum achievable rate of BATS
codes is at least θ̂(1 − η), where θ̂ is the optimal value of
the optimization problem (2). In terms of packets per use, the
capacity of a LOC with the transfer matrix H is E[rk(H)] [13].
As channel codes for LOCs, the maximum achievable rate of
BATS codes is upper bounded by the capacity of LOCs. So
θ̂(1− η) ≤ E[rk(H)]. The maximum achievable rate of BATS
codes is lower bounded by the following theorem (proved in
[15]).

Theorem 2: Let θ̂ be the optimal value of the optimization
in (2). Then

θ̂ ≥ max
r=1,2,··· ,M

rhr,r.

Even though the lower bound given by the theorem is loose
in general, it shows that BATS codes achieve rates arbitrarily
close to the capacity for the following special case. We call
an LOC with transfer matrix H full-rank if h1 = h2 = · · · =
hM−1 = 0, where hi = Pr{rk(H) = i}. For a full-rank
LOC, θ̂ ≥MhM,M →MhM = E[rk(H)] when the field size
q → ∞. Since η can be taken arbitrarily small, BATS codes
achieve rates arbitrarily close to the capacity of full-rank LOCs
over sufficiently large finite fields.

To see the achievable rates for the general cases, we nu-
merically solve the optimization problem (2) by taking discrete
values for x. Let θ̃ be the optimal value of this relaxed version
of (2). Set M = 5, q = 16 and η = 0.01. A rank distribution
{h0, h1, . . . , hM} is generated as follows: First, h0 = 0 and
for i > 1, hi is independently and uniformly chosen between
zero and one; Then, normalize the rank distribution such
that

∑
i hi = 1. We compute θ̃ for 24345 rank distributions

independently generated and compare (1−η)θ̃ with
∑M

r=1 rhr
by computing λ = (

∑M
r=1 rhr − (1 − η)θ̃)/

∑M
r=1 rhr. The

results show that for more than 99% rank distributions, λ is
smaller than 0.05, and the largest λ is 0.1145. This means that
BATS codes achieve rates very close to the capacity even for
LOCs over small finite fields. When using larger fields, the
gap between the maximum achievable rate and the capacity
becomes smaller. E.g., after changing the field size to q = 64,
for more than 99% rank distributions, λ is smaller than 0.026,
and the largest λ reduces to 0.0876.

B. Finite Length Performance

We use the network in Fig. 1 to illustrate the performance of
BATS codes. The source node s applies BATS code encoding.
In each time slot, s sends a packet to a. Assume transmission
is instantaneous and node a receives the packet, if not erased,
at the same time slot. No matter whether particular packets
are received or not, node a transmits at each time slot a linear
combination of the packets it has received so far. After M time



i 26 27 34 35 43
Ψi 0.0163 0.245 0.082 0.0937 0.0325
i 44 55 56 71 72

Ψi 0.1046 0.0371 0.0736 0.0345 0.057
i 94 95 131 203 204

Ψi 0.0412 0.0373 0.0694 0.0655 0.0104

TABLE I
DOMINANT PROBABILITY MASSES FOR M = 32.

slots, node s switches to another batch and node a clears its
buffer for the last batch. These operations of the network min-
imize the transmission delay and are asymptotically optimal
when M goes to infinity.

The operation at node a for a batch is given by a random
matrix T , an M × M upper unitriangular matrix with all
the upper triangular, off-diagonal entries independently and
uniformly distributed1. Let D be an M ×M random diagonal
matrix with independent components. A diagonal component
of D is zero with probability 0.2 and is one with probability
0.8. D models the erasures on a link. The transfer matrix
of the network is H = D1TD2, where D1, T and D2 are
independent; D1 and D2 follow the same distribution of D.

The rank distribution of H is approximated by the empirical
distribution obtained using 105 independent samples of H .
Using the (empirical) rank distribution, a degree distribution
is obtained by solving (2) by taking discrete values of x. For
example, when η = 0.08, M = 32 and q = 4, the dominant
probability masses are given in Table I. Note that we do not
optimize the degree distribution for different K, so the coding
rates we obtained can be further improved.

BATS codes are rateless codes, i.e., the coding rate is not
fixed. To see the performance of a BATS code, we use the
average coding rate defined as follows. Consider that the
source node encode K packets using a BATS code, and the
decoder stops after recovering η̄K packets. Repeat the above
simulation J times and let nj be the number of batches used
when the decoder stops in the jth simulation. The average
coding rate of the BATS code is defined as η̄KJ/

∑
j nj .

In the following, we will compare the average coding rates
for different parameters, and the average coding rates are
maximized over η̄.

The first thing we want to show is that BATS codes
outperform fountain codes. We know that when M = 1, BATS
codes become Raptor codes and the intermediate operation T
becomes forwarding. BATS codes can achieve rates exceeding
0.64 (see the rates in bold letters in Table II), the routing
capacity, which serves as an upper bound on the maximum
achievable rate for Raptor codes.

Another trend we observe is that using large q also increases
the rates. A closer look at the simulations further reveals that
the gain by increasing q becomes smaller when q is large. For
example, when K = 32000, increasing q from 2 to 4 gains

1A unitriangular matrix has unit entries on the main diagonal. The interme-
diate operation modelled by a unitriangular matrix becomes forwarding when
M = 1.

K q = 2 q = 4 q = 8 q = 16

16000 0.5826 0.6145 0.6203 0.6248
32000 0.6087 0.6441 0.6524 0.6574
64000 0.6259 0.6655 0.6762 0.6818

TABLE II
AVERAGE CODING RATES FOR M = 32.

5.82% in the rate, but increasing q from 4 to 8 gains 1.29%.

V. CONCLUDING REMARKS

Benefiting from network coding and the properties of foun-
tain codes, BATS codes are ideal for transmitting files through
communication networks. Besides low encoding/decoding
complexity, BATS codes can be realized with constant compu-
tation and storage complexity at the intermediate nodes. This
desirable property makes BATS code a suitable candidate for
the making of universal network coding based network devices
that can potentially replace routers.
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