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What is Semantic Communication?

▶ A widely discussed but ambiguously defined concept

▶ Most existing works focus on:
1. Replacing the encoder/decoder with a neural network

▶ Often framed as “end-to-end learning”
▶ But ultimately still falls under joint source-channel coding

2. Using a knowledge base to reduce transmission
▶ This essentially reduces conditional entropy: H(X|Y) ≤ H(X)

So... what is really new?
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Semantic Language

Cornerstone

Semantic Communication

Language Exploitation Language Design

Incl. semantic encoder/decoder, knowledge base, etc.

Parts of the language are fixed The language is fully designable

Human communication;

Prompt engineering for LLM;

……

Discrepancy

DeepJSCC for specific sources 

and channels;

……

Consistence

Figure: The framework of semantic communications.1

1Yulin Shao, Qi Cao, and Deniz Gündüz. “A Theory of Semantic Communication”. In: IEEE Transactions on
Mobile Computing 23.12 (2024), pp. 12211–12228.



A semantic language (W ,S,P,Q).
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Encoding Decoding
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Semantic Cost
LU =

∑
w,s

p(w)u(s|w)ℓ(s).



Three Problems

▶ Semantic encoding: encoding intended meanings at the
transmitter

▶ Semantic decoding: reconstructing meaning from received
messages

▶ Combined semantic encoding and decoding (CSED)
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Semantic Decoding (Encoding Scheme is Fixed)

The semantic rate-distortion region (decoding) Rdec is the vertical
line between(

LP,DP,∆̃n′1,n
′
2,...,n

′
M

)
and

(
LP,DP,∆̃n′′1 ,n′′2 ,...,n′′M

)
.

▶ The receiver may not have accurate prior information on the
distribution of the meanings p(w).

▶ Semantic decoding achieves the optimal distortion if and only
if for any message s

argmax
w

q(w)p(ŝ|w) ⊆ argmax
w

p(w)p(ŝ|w).



Semantic Decoding (Encoding Scheme is Fixed)

The semantic rate-distortion region (decoding) Rdec is the vertical
line between(

LP,DP,∆̃n′1,n
′
2,...,n

′
M

)
and

(
LP,DP,∆̃n′′1 ,n′′2 ,...,n′′M

)
.

▶ The receiver may not have accurate prior information on the
distribution of the meanings p(w).

▶ Semantic decoding achieves the optimal distortion if and only
if for any message s

argmax
w
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q(w)p(ŝ|w) ⊆ argmax
w

p(w)p(ŝ|w).



Combined semantic encoding and decoding

Head nod

Head shake

𝒮𝒲 𝒲

▶ Maggie’s Gift: both semantic encoding and semantic decoding
is better than CSED.

▶ What if the transmitter is clever enough and predicts that the
receiver would improve its interpretation?
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Future Work

Multiple Transmission
▶ Transmit a single meaning

▶ semantic encoding: repetition coding or different encoding
schemes across multiple channel uses?

▶ semantic decoding: how to jointly decode the intended
meaning (e.g., the majority vote, maximum ratio combing,
etc.)?
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▶ After multiple times of transmission, the receiver can estimate
p(ŝ) of the received symbols, and hence p(s) and p(w).
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Future Work

Interaction-based transmission
▶ Feedback-aided transmission.
▶ Semantic communication with no language agreement.
▶ Effective and goal-oriented communication.
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2ŝ

3ŝ
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Future Work

▶ Network semantic communication
▶ broadcast channels
▶ multiple-access channels
▶ wiretap channels
▶ relay channels
▶ mesh networks

▶ Beyond human language
▶ Interacting with generative models like ChatGPT.
▶ simulating an individual’s painting style.
▶ Predicting earthquakes based on seismic wave properties.
▶ Creating anthropomorphic robots.



One More Thing...

Is a channel with memory considered a semantic channel?



My Thesis: Parallel Network
The output of any channel in the network does not connect to any
channel.

p(z1,1, z1,2|x1, x2)

p(z2,1|x2, x3)

Channel 1

Channel 2

Source 1

Source 2

Source 3

Enc 1

Enc 2

Enc 3

Dec 1

Dec 2

Sink 1

Sink 2

x1 ∈ X1,n

x2 ∈ X2,n

x3 ∈ X3,n

z1,1

z1,2

z2,1

x1, x2, x3

x1, x2, x3

x1

Figure: An Example of the Parallel Network.

G = {GDEC1 ,GDEC2}

What if the output of a channel connects to its own input?
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Chemical Residual Channel2

The previous experiments will af-
fect what experiments are later
run.

2Qi Cao and Qiaoqiao Zhou. “Zero-Error Capacity of the Chemical Residual Channel”. In: IEEE Transactions on
Information Theory 70.2 (2024), pp. 854–864.



Chemical Residual Channel & Channel with Memory

Channel
p(yi|xi, yi−1)

User Encoder Decoder Sink
xi yi

Chemical Residual Channel (Channel with Output Memory)

Channel
p(yi|xi, xi−1)

User Encoder Decoder Sink
xi yi

Channel with Input Memory3456

3R. Ahlswede, N. Cai, and Z. Zhang. “Zero-error capacity for models with memory and the enlightened dictator
channel”. In: IEEE Trans. Inf. Theory 44.3 (1998), pp. 1250–1252. issn: 0018-9448.

4G. Cohen, E. Fachini, and J. Körner. “Zero-Error Capacity of Binary Channels With Memory”. In: IEEE Trans.
Inf. Theory 62.1 (2016), pp. 3–7. issn: 0018-9448.

5Qi Cao et al. “On Zero-Error Capacity of Binary Channels With One Memory”. In: IEEE Transactions on
Information Theory 64.10 (2018), pp. 6771–6778.

6Qi Cao, Qi Chen, and Baoming Bai. “On Zero-Error Capacity of Graphs With One Edge”. In: IEEE
Transactions on Information Theory 71.5 (2025), pp. 3350–3359.



Semantic Channel78

Pr(yt|xt, xt−1, xt−2, ..., x1, yt−1, yt−2, ..., y1)

=Pr(yt|xt, xt−1, xt−2, ..., xt−k1+1, yt−1, yt−2, ..., yt−k2+1)

=


1
2 , if (a) xt ̸= xt−1 = xt−2 = xt−k1+1 for t ≥ k1,
1
2 , if (b) xt ̸= yt−1 = yt−2 = ... = yt−k2+1, t ≥ k2,

1, if yt = xt and not (a), not (b),

Zero-error capacity is
▶ If k2 ∈ {2, 3} or k1 ≥ k2 ≥ 4, then C(Mk1,k2) = logωk2 .

▶ If k1 = 2 and k2 > 3, then 0 ≤ C(Mk1,k2) ≤ 1/2.
▶ If k2 > k1 ≥ 3, then logωk1 ≤ C(Mk1,k2) ≤ log λk1 .

7R. Ahlswede, N. Cai, and Z. Zhang. “Zero-error capacity for models with memory and the enlightened dictator
channel”. In: IEEE Trans. Inf. Theory 44.3 (1998), pp. 1250–1252. issn: 0018-9448.

8Qi Cao, Yulin Shao, and Shangwei Ge. “On the Zero-Error Capacity of Semantic Channels With Input and
Output Memories”. In: IEEE Wireless Communications Letters 14.3 (2025), pp. 896–900.
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Thank you!

”The most incomprehensible thing about the world is that it is
at all comprehensible.”

- Albert Einstein
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