A Theory of Semantic Communication

Qi Cao

Joint work with Yulin Shao and Daniz Gündüs

INC, 2025

► A widely discussed but ambiguously defined concept

► A widely discussed but ambiguously defined concept

Semantic communication is like a box of chocolates - you never know what definition you're gonna get.

- A widely discussed but ambiguously defined concept
- ► Most existing works focus on:
 - 1. Replacing the encoder/decoder with a neural network
 - ► Often framed as "end-to-end learning"
 - But ultimately still falls under joint source-channel coding

- A widely discussed but ambiguously defined concept
- Most existing works focus on:
 - 1. Replacing the encoder/decoder with a neural network
 - Often framed as "end-to-end learning"
 - But ultimately still falls under joint source-channel coding
 - 2. Using a knowledge base to reduce transmission
 - ▶ This essentially reduces conditional entropy: $H(X|Y) \le H(X)$

- A widely discussed but ambiguously defined concept
- ► Most existing works focus on:
 - 1. Replacing the encoder/decoder with a neural network
 - Often framed as "end-to-end learning"
 - But ultimately still falls under joint source-channel coding
 - 2. Using a knowledge base to reduce transmission
 - ▶ This essentially reduces conditional entropy: $H(X|Y) \le H(X)$

So... what is really new?

Semantic & Technical

▶ Technical communication ✓ Semantic communication ✗

Semantic & Technical

▶ Technical communication ✓ Semantic communication ✗

- ► Technical communication 🗴 Semantic communication 🗸
 - lt deosn't mttaer in waht oredr the ltteers in a wrod are.
 - ► The olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae.
 - ► The rset can be a toatl mses and you can sitll raed it wouthit porbelm.

Language

Language

H =	0	1	0	1	1	0	0	1	1
	1	1	1	0	0	1	0	0	
	0	0	1	0	0	1	1	1	
	1	0	0	1	1	0	1	0	

We never consider the cost of transmitting the codebook.

Figure: The framework of semantic communications.¹

¹Yulin Shao, Qi Cao, and Deniz Gündüz. "A Theory of Semantic Communication". In: IEEE Transactions on Mobile Computing 23.12 (2024), pp. 12211–12228.

A semantic language (W, S, P, Q).

A semantic language (W, S, P, Q).

Semantic Distortion

$$D_{\boldsymbol{U},\boldsymbol{Q}} = \sum_{w,s,\hat{\boldsymbol{s}},\hat{\boldsymbol{w}}} p(w)u(s|w)c(\hat{\boldsymbol{s}}|s)q(\hat{\boldsymbol{w}}|\hat{\boldsymbol{s}})d(w,\hat{\boldsymbol{w}}).$$

Semantic Cost

$$L_{U} = \sum_{s} p(w)u(s|w)\ell(s), \quad \text{or all } s \in \mathbb{R}$$

Three Problems

- Semantic encoding: encoding intended meanings at the transmitter
- Semantic decoding: reconstructing meaning from received messages
- Combined semantic encoding and decoding (CSED)

Three Problems

Semantic Encoding (Decoding Scheme is Fixed)

Figure: Semantic rate-distortion region (encoding).

Semantic Encoding (Decoding Scheme is Fixed)

Figure: Semantic rate-distortion region (encoding).

Semantic Encoding (Decoding Scheme is Fixed)

Figure: Semantic rate-distortion region (encoding).

Semantic Decoding (Encoding Scheme is Fixed)

The semantic rate-distortion region (decoding) R_{dec} is the vertical line between

$$\left(L_{\textbf{\textit{P}}}, D_{\textbf{\textit{P}},\widetilde{\Delta}_{n'_{1},n'_{2},...,n'_{M}}}\right) \text{ and } \left(L_{\textbf{\textit{P}}}, D_{\textbf{\textit{P}},\widetilde{\Delta}_{n''_{1},n''_{2},...,n''_{M}}}\right).$$

Semantic Decoding (Encoding Scheme is Fixed)

The semantic rate-distortion region (decoding) R_{dec} is the vertical line between

$$\left(L_{\textbf{\textit{P}}}, D_{\textbf{\textit{P}}, \widetilde{\Delta}_{n'_{1}, n'_{2}, \dots, n'_{M}}\right) \text{ and } \left(L_{\textbf{\textit{P}}}, D_{\textbf{\textit{P}}, \widetilde{\Delta}_{n''_{1}, n''_{2}, \dots, n''_{M}}\right).$$

The receiver may not have accurate prior information on the distribution of the meanings p(w).

Semantic Decoding (Encoding Scheme is Fixed)

The semantic rate-distortion region (decoding) R_{dec} is the vertical line between

$$\left(L_{\boldsymbol{P}}, D_{\boldsymbol{P}, \widetilde{\Delta}_{n'_{1}, n'_{2}, \dots, n'_{M}}}\right) \text{ and } \left(L_{\boldsymbol{P}}, D_{\boldsymbol{P}, \widetilde{\Delta}_{n''_{1}, n''_{2}, \dots, n''_{M}}}\right).$$

- The receiver may not have accurate prior information on the distribution of the meanings p(w).
- Semantic decoding achieves the optimal distortion if and only if for any message s

$$\operatorname{arg\,max}_{w} q(w)p(\hat{s}|w) \subseteq \operatorname{arg\,max}_{w} p(w)p(\hat{s}|w).$$

Combined semantic encoding and decoding

Maggie's Gift: both semantic encoding and semantic decoding is better than CSED.

Combined semantic encoding and decoding

- Maggie's Gift: both semantic encoding and semantic decoding is better than CSED.
- What if the transmitter is clever enough and predicts that the receiver would improve its interpretation?

A bug walking in the grid world.

A bug walking in the grid world.

Figure: (a) semantic encoding $R_{\rm enc}$, (b) semantic decoding $R_{\rm dec}$, (c) CSED $R_{\rm csed}$.

Multiple Transmission

- Transmit a single meaning
 - semantic encoding: repetition coding or different encoding schemes across multiple channel uses?
 - semantic decoding: how to jointly decode the intended meaning (e.g., the majority vote, maximum ratio combing, etc.)?

Multiple Transmission

- Transmit a single meaning
 - semantic encoding: repetition coding or different encoding schemes across multiple channel uses?
 - semantic decoding: how to jointly decode the intended meaning (e.g., the majority vote, maximum ratio combing, etc.)?

After multiple times of transmission, the receiver can estimate $p(\hat{s})$ of the received symbols, and hence p(s) and p(w).

Interaction-based transmission

- ► Feedback-aided transmission.
- ▶ Semantic communication with no language agreement.
- ► Effective and goal-oriented communication.

- Network semantic communication
 - broadcast channels
 - multiple-access channels
 - wiretap channels
 - relay channels
 - mesh networks
- Beyond human language
 - Interacting with generative models like ChatGPT.
 - simulating an individual's painting style.
 - Predicting earthquakes based on seismic wave properties.
 - Creating anthropomorphic robots.

One More Thing...

Is a channel with memory considered a semantic channel?

My Thesis: Parallel Network

The output of any channel in the network does not connect to any channel.

Figure: An Example of the Parallel Network.

$$\mathbf{G} = \{G^{DEC_1}, G^{DEC_2}\}$$

My Thesis: Parallel Network

The output of any channel in the network does not connect to any channel.

Figure: An Example of the Parallel Network.

$$m{G} = \{G^{DEC_1}, G^{DEC_2}\}$$

What if the output of a channel connects to its own input?

Chemical Residual Channel²

The previous experiments will affect what experiments are later run.

 $^{^2}$ Qi Cao and Qiaoqiao Zhou. "Zero-Error Capacity of the Chemical Residual Channel". In: IEEE Transactions on Information Theory 70.2 (2024), pp. 854–864.

Chemical Residual Channel & Channel with Memory

Chemical Residual Channel (Channel with Output Memory)

Channel with Input Memory³⁴⁵⁶

³R. Ahlswede, N. Cai, and Z. Zhang. "Zero-error capacity for models with memory and the enlightened dictator channel". In: *IEEE Trans. Inf. Theory* 44.3 (1998), pp. 1250–1252. ISSN: 0018-9448.

⁴G. Cohen, E. Fachini, and J. Körner. "Zero-Error Capacity of Binary Channels With Memory". In: *IEEE Trans. Inf. Theory* 62.1 (2016), pp. 3–7. ISSN: 0018-9448.

⁵Qi Cao et al. "On Zero-Error Capacity of Binary Channels With One Memory". In: *IEEE Transactions on Information Theory* 64.10 (2018), pp. 6771–6778.

⁶Qi Cao, Qi Chen, and Baoming Bai. "On Zero-Error Capacity of Graphs With One Edge". In: *IEEE Transactions on Information Theory* 71.5 (2025), pp. 3350–3359.

Semantic Channel⁷⁸

$$\begin{split} & \text{Pr}\big(y_t \big| x_t, x_{t-1}, x_{t-2}, ..., x_1, y_{t-1}, y_{t-2}, ..., y_1\big) \\ = & \text{Pr}\big(y_t \big| x_t, x_{t-1}, x_{t-2}, ..., x_{t-k_1+1}, y_{t-1}, y_{t-2}, ..., y_{t-k_2+1}\big) \\ = & \begin{cases} \frac{1}{2}, & \text{if (a) } x_t \neq x_{t-1} = x_{t-2} = x_{t-k_1+1} \text{ for } t \geq k_1, \\ \frac{1}{2}, & \text{if (b) } x_t \neq y_{t-1} = y_{t-2} = ... = y_{t-k_2+1}, \ t \geq k_2, \\ 1, & \text{if } y_t = x_t \text{ and not (a), not (b),} \end{cases} \end{split}$$

⁷R. Ahlswede, N. Cai, and Z. Zhang. "Zero-error capacity for models with memory and the enlightened dictator channel". In: *IEEE Trans. Inf. Theory* 44.3 (1998), pp. 1250–1252. ISSN: 0018-9448.

Semantic Channel⁷⁸

$$\begin{split} & \text{Pr}(y_t|x_t, x_{t-1}, x_{t-2}, ..., x_1, y_{t-1}, y_{t-2}, ..., y_1) \\ = & \text{Pr}(y_t|x_t, x_{t-1}, x_{t-2}, ..., x_{t-k_1+1}, y_{t-1}, y_{t-2}, ..., y_{t-k_2+1}) \\ = & \begin{cases} \frac{1}{2}, & \text{if (a) } x_t \neq x_{t-1} = x_{t-2} = x_{t-k_1+1} \text{ for } t \geq k_1, \\ \frac{1}{2}, & \text{if (b) } x_t \neq y_{t-1} = y_{t-2} = ... = y_{t-k_2+1}, \ t \geq k_2, \\ 1, & \text{if } y_t = x_t \text{ and not (a), not (b),} \end{cases} \end{split}$$

Zero-error capacity is

- ▶ If $k_2 \in \{2,3\}$ or $k_1 \ge k_2 \ge 4$, then $C(M_{k_1,k_2}) = \log \omega_{k_2}$.
- ▶ If $k_1 = 2$ and $k_2 > 3$, then $0 \le C(M_{k_1,k_2}) \le 1/2$.
- ▶ If $k_2 > k_1 \ge 3$, then $\log \omega_{k_1} \le C(M_{k_1,k_2}) \le \log \lambda_{k_1}$.

⁷R. Ahlswede, N. Cai, and Z. Zhang. "Zero-error capacity for models with memory and the enlightened dictator channel". In: *IEEE Trans. Inf. Theory* 44.3 (1998), pp. 1250–1252. ISSN: 0018-9448.

Reference

- [1] Yulin Shao, Qi Cao, and Deniz Gündüz. "A Theory of Semantic Communication". In: *IEEE Transactions on Mobile Computing* 23.12 (2024), pp. 12211–12228.
- [2] Qi Cao and Qiaoqiao Zhou. "Zero-Error Capacity of the Chemical Residual Channel". In: IEEE Transactions on Information Theory 70.2 (2024), pp. 854–864.
- [3] R. Ahlswede, N. Cai, and Z. Zhang. "Zero-error capacity for models with memory and the enlightened dictator channel". In: *IEEE Trans. Inf. Theory* 44.3 (1998), pp. 1250–1252. ISSN: 0018-9448.
- [4] G. Cohen, E. Fachini, and J. Körner. "Zero-Error Capacity of Binary Channels With Memory". In: *IEEE Trans. Inf. Theory* 62.1 (2016), pp. 3–7. ISSN: 0018-9448.
- [5] Qi Cao et al. "On Zero-Error Capacity of Binary Channels With One Memory".In: IEEE Transactions on Information Theory 64.10 (2018), pp. 6771–6778.
- [6] Qi Cao, Qi Chen, and Baoming Bai. "On Zero-Error Capacity of Graphs With One Edge". In: *IEEE Transactions on Information Theory* 71.5 (2025), pp. 3350–3359.
- [7] R. Ahlswede, N. Cai, and Z. Zhang. "Zero-error capacity for models with memory and the enlightened dictator channel". In: *IEEE Trans. Inf. Theory* 44.3 (1998), pp. 1250–1252. ISSN: 0018-9448.
- [8] Qi Cao, Yulin Shao, and Shangwei Ge. "On the Zero-Error Capacity of Semantic Channels With Input and Output Memories". In: *IEEE Wireless Communications*Letters 14.3 (2025), pp. 896–900.

Thank you!

"The most incomprehensible thing about the world is that it is at all comprehensible."

- Albert Einstein