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Smart Grid Frequency Control

e Electrical (ac) grids run at a standard nominal frequency (a global
property of the grid)
e E.g., 50Hz in Asia, 60Hz in North America

* Electricity supply should match demand

* |f demand increases (exceeds supply), frequency drops

* |f deviation from nominal more than 0.5Hz => frequency excursion
* [f excursion persists, generators are impacted (e.g., shut down)



Automatic Generator Control (AGC)

* A fundamental control to maintain grid’s nominal frequency

* Aims to adjust supply to match changing demand
* E.g., when demand rises, ramp up generator speed to supply more

* Works in a feedback control loop under a specifiable gain parameter
* Gain impacts responsiveness and stability

* A large grid may have multiple generator and load buses

* Organized into multiple (interconnected) areas

* Electricity flows between areas along tie-lines, subject to distribution of
demand / supply
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* Adjustment based on area control error (ACE)
* Aims to correct frequency & power export deviation




Smart Grid: Cybersecurity Challenges

Cyber attacks (wormes, viruses,
malwares) travel fast & far!
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Time Delay Attack (TDA)

* Introduces malicious delays into
network communications

e E.g., MITM buffering of SCADA
packets for actuation

* Encrypting packets may not help

* Trustworthy clock synchronization
among distributed devices can be
challenging



False Data Injection (FDI)

* Tampers with sensing and
control content in SCADA packets

* Bypasses operator’s integrity
check, e.g., bad data detection
(BDD)

e Can take different forms
* Bias attack, scaling attack, etc.
* Sophisticated design possible ...



Time-optimal FDI
(FDI-optimal)

* Minimizes time-to-emergency
(TTE)

* Causes system damage in the
least time (since launch of
attack)

* Persists over multiple AGC
cycles, while satisfying BDD-
bypass constraints



Adaptive FDI to keep
stealthy (FDI-adaptive)

* Modifies tie-line
measurements while keeping
frequency deviations within a
specified target

* Phase 1: Learns control
model while mimicking
normal operation

* Phase 2: Once ready,
promptly drives system
frequency beyond safe range



Footprint of attacks in tie-line flows
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Tie-line flows (cf. frequency) give indirect (but earlier) evidence of attacks



Machine Learning for Attack Defense

* Traditionally, OT network is airgapped; now, IT-OT convergence for business
analytics, etc

* Perimeter defense (e.g., firewall, DMZ, VPN) can be breached (no lack of
real-world incidents)
* Ukraine power system attack, Colonial Pipeline ransomware attack

* Need resilience against attacks (NIST defense-in-depth)

* Detect, classify, mitigate attacks
* E.g., maintain availability during attack, forensics afterwards

* Oftentimes, lack of analytical formulas that are sufficiently accurate and
complete
* They also rely on parameters that are changing

* Machine learning provides an alternative data-driven approach without a
priori detailed system model



The Ukraine attack
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ML/DL challenges

 Attacks do happen in the real world (though only high-profile cases
get reported) — system traces will include them

e But hard to label massive data in practice
* According to SANS survey, many operators suspect they were attacked but
can’t tell exactly when / how
* Relative scarcity of attack data itself
* New types of attack may emerge too (little prior knowledge about them)

* Distribution ICS spans large geographical areas
* Vastly distributed data sources, rendering massive communications expensive
or infeasible
* Administratively separate data owners (e.g., different utility operators)



Desirable ML/DL features

» Techniques that can unravel subtle spatial / temporal correlations in
data traces

e Support for finer grained situation awareness, e.g., attack
classification beyond detection

* Models trained on (mostly) normal operations

* Unsupervised (or semi-supervised) methods

* Federated learning that is communication-efficient and/or privacy

preserving

* Recent paradigm of learning a latent model of data representation, then fine
tuning it for fulfilling different downstream tasks



Unsupervised attack detection and
classification based on TCN-VAE ...



Variational Auto-encoder (VAE)

* Encoder generates variants of input real data in a latent space
* Decoder reconstructs data, tracks RMSE of reconstructed data

* Through back propagation optimization based on decoder feedback,
encoder minimizes RMSE to make generative samples realistic

* Model obtained depends on data used to train it, e.g., using normal (non-
attack) data samples only

* Importance of temporal dimension of data:
* CNN (convolutional neural network)
e LSTM (long-short-term memory)
* TCN (temporal convolutional network)

* Investigation of CNN-VAE vs. LSTM-VAE vs. TCN-VAE



TCN-VAE architecture
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* Tracks statistics (mean and variance) in latent space
* 48 features as shown



Data sets and training

* Datasets from industry-strength PowerWorld simulator for electrical
transmission
* Transient behaviors in addition to steady state
* Varied loadings subject to short-term randomness

* Normal operation, or under TDA, FDI-optimal, FDI-adaptive attack

* Varied strengths of attack
* Negligible (not so important), weak (but eventually damaging), moderate,

strong
* VAE model trained from normal operation only

» Attack detected if RMSE deviation from the normal exceeds a (tunable)
threshold



Value

Beyond detection: classification by gradient profiles
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* TCN-VAE produces gradients during back-propagation optimization process
* These gradients form a profile (across features in data trace)
* Different classes of attacks (including no attack) can be identified by their gradient profiles
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Clustering of gradient profiles

Model Method Silhouette Calinski- Davies-
i K‘ m ea n S Score 7 Harabasz T Bouldin|
.. ) K-Means 0.2793 12032.4 1.7298
* Based on (multl-dlmen5|onal) TCN-VAE  DBScan 0.0619 7981.9 1.0683
data distance AP 0.1469 458.0 2.7416
K-Means 0.333 6109.8 2615
o
DBScan LSTM-VAE  DBScan 203111 149.7 1.3643
* Based on data density AP 0.1327 285.8 1.3517
o ] K-Means 0.0479 534.8 3.4035
 Affin Ity propagation CNN-VAE  DBScan -0.2036 69.4 1.9879
* Based on data similarity i G el 1408
TABLE 1

* Various metrics of how well
the profiles cluster

UNSUPERVISED CLASSIFICATION RESULTS.



K-Means Clusters
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* View of two PCA components

* Results depend on VAE variant, because their back-
propagation optimization produces the gradients being
clustered

* However, well clustered profiles don’t necessarily agree
better with groundtruths (what really matters)



Cluster

Classification performance
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Comparison

Cluster
Actual

w/ supervised
ML (XGboost)

(0.00)

0 1 2 3 V] 1 2 3
Attack type Predicted
a. K-Means (TCN-VAE) b. XGboost
Overall Accuracy ~ 97% Overall Accuracy > 99%

XGboost has the best performance among several supervised ML
alternatives, including SVM and AdaBoost




Confusion matrix and ROC
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Federated contrastive learning for
detecting stealthy attacks with
unlabeled data™ ...



Problem setup

* Detection of BDD-bypassing stealthy FDI attacks
 Data sources are geographically distributed (bandwidth concerns)
* Data owners are administratively separate (privacy concerns)

 Challenge: effective global learning without sharing massive (non-iid)
local raw data

* Solution: Federated learning by FedCLD
* Global control center and local control centers collaborate to learn a latent
representation of (mostly) unlabeled grid data, through updates of model
parameters only

* Using learned latent representation, local center runs an online binary
classifier to perform downstream task of attack detection



Comparison w/ local and centralized learning

R a = 0.05% a=01% a=1%
Accuracy  Precision  Recall ~ Fl-score  Accuracy Precision  Recall Fl-score  Accuracy Precision Recall  Fl-score
10 93.56 94.97 88.58 90.89 93.93 95.33 89.19 91.45 95.30 96.45 91.62 93.55
20 94.77 95.82 90.82 92.79 95.73 96.52 92.57 94.22 96.28 96.82 93.66 95.04
30 95.06 96.04 91.35 93.23 95.61 96.38 92.39 94.05 96.44 96.88 93.99 95.26
40 95.11 96.36 91.23 93.25 95.65 96.73 92.24 94.07 96.56 97.36 93.91 95.40
50 95.18 96.28 91.46 93.38 95.71 96.72 92.37 94.16 96.65 97.23 94.23 95.55
Local 89.28 91.54 81.41 83.79 90.53 92.46 83.81 86.25 91.89 93.47 86.37 88.71
Centralized 97.46 97.58 95.93 96.70 97.66 97.77 96.26 96.97 98.21 98.35 97.09 97.69




Convergence
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Impacts of learning rounds and
communication frequency
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Conclusion

* Next-generation cyber-physical systems (e.g., smart power grids)
susceptible to cyberattacks due to reliance on ICT

* Machine learning can be useful for defenses (e.g., attack detection
and classification) without good enough analytical models

* Addressed several key challenges in the ML
* Lack of data labels

e Lack of attack data
e Distributed locations of data sources
* Different ownerships of local data
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