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Smart Grid Frequency Control

• Electrical (ac) grids run at a standard nominal frequency (a global 
property of the grid)
• E.g., 50Hz in Asia, 60Hz in North America

• Electricity supply should match demand
• If demand increases (exceeds supply), frequency drops
• If deviation from nominal more than 0.5Hz => frequency excursion
• If excursion persists, generators are impacted (e.g., shut down)



Automatic Generator Control (AGC)

• A fundamental control to maintain grid’s nominal frequency
• Aims to adjust supply to match changing demand
• E.g., when demand rises, ramp up generator speed to supply more

• Works in a feedback control loop under a specifiable gain parameter
• Gain impacts responsiveness and stability

• A large grid may have multiple generator and load buses
• Organized into multiple (interconnected) areas
• Electricity flows between areas along tie-lines, subject to distribution of 

demand / supply



A multi-area 
electrical 
grid



AGC loop in 
multi-area 
grid

• Adjustment based on area control error (ACE)
• Aims to correct frequency & power export deviation



Smart Grid: Cybersecurity Challenges

power grid
(physical)

renewables
PHEVs

Cyber attacks (worms, viruses, 
malwares) travel fast & far!Cyber network for digital 

communication & control ICT overlay to 
improve 
operations



Time Delay Attack (TDA)
• Introduces malicious delays into 

network communications
• E.g., MITM buffering of SCADA 

packets for actuation

• Encrypting packets may not help
• Trustworthy clock synchronization 

among distributed devices can be 
challenging



False Data Injection (FDI)
• Tampers with sensing and 

control content in SCADA packets
• Bypasses operator’s integrity 

check, e.g., bad data detection 
(BDD)
• Can take different forms
• Bias attack, scaling attack, etc.
• Sophisticated design possible …



Time-optimal FDI 
(FDI-optimal)

• Minimizes time-to-emergency 
(TTE)
• Causes system damage in the 

least time (since launch of 
attack)
• Persists over multiple AGC 

cycles, while satisfying BDD-
bypass constraints



Adaptive FDI to keep 
stealthy (FDI-adaptive)

• Modifies tie-line 
measurements while keeping 
frequency deviations within a 
specified target 
• Phase 1: Learns control 

model while mimicking 
normal operation
• Phase 2: Once ready, 

promptly drives system 
frequency beyond safe range



Footprint of attacks in tie-line flows

Without system crash With system crash

Tie-line flows (cf. frequency) give indirect (but earlier) evidence of attacks



Machine Learning for Attack Defense

• Traditionally, OT network is airgapped; now, IT-OT convergence for business 
analytics, etc
• Perimeter defense (e.g., firewall, DMZ, VPN) can be breached (no lack of 

real-world incidents)
• Ukraine power system attack, Colonial Pipeline ransomware attack

• Need resilience against attacks (NIST defense-in-depth)
• Detect, classify, mitigate attacks 
• E.g., maintain availability during attack, forensics afterwards

• Oftentimes, lack of analytical formulas that are sufficiently accurate and 
complete
• They also rely on parameters that are changing

• Machine learning provides an alternative data-driven approach without a 
priori detailed system model



The Ukraine attack

Months of reconnaissance to gain knowledge for highly 
synchronized, multistage, multisite attack 

Delivery of 
BlackEnergy 
in spear-
phishing 
emails w/ 
attached MS 
docs

Data 
exfiltration &
theft of 
credentials to 
breach VPN

Remote access tools to issue malicious 
SCADA commands: open substation 
breakers

Call center jam to 
confuse

If, after opening breakers, attackers had followed up 
with reclosing them at the wrong time (malicious 

desync), generators would have been damaged and 
blackout would have been much longer 



ML/DL challenges

• Attacks do happen in the real world (though only high-profile cases 
get reported) – system traces will include them
• But hard to label massive data in practice
• According to SANS survey, many operators suspect they were attacked but 

can’t tell exactly when / how 
• Relative scarcity of attack data itself
• New types of attack may emerge too (little prior knowledge about them)

• Distribution ICS spans large geographical areas
• Vastly distributed data sources, rendering massive communications expensive 

or infeasible
• Administratively separate data owners (e.g., different utility operators)



Desirable ML/DL features

• Techniques that can unravel subtle spatial / temporal correlations in 
data traces
• Support for finer grained situation awareness, e.g., attack 

classification beyond detection
• Models trained on (mostly) normal operations
• Unsupervised (or semi-supervised) methods
• Federated learning that is communication-efficient and/or privacy 

preserving
• Recent paradigm of learning a latent model of data representation, then fine 

tuning it for fulfilling different downstream tasks



Unsupervised attack detection and 
classification based on TCN-VAE …



Variational Auto-encoder (VAE)

• Encoder generates variants of input real data in a latent space
• Decoder reconstructs data, tracks RMSE of reconstructed data
• Through back propagation optimization based on decoder feedback, 

encoder minimizes RMSE to make generative samples realistic 
• Model obtained depends on data used to train it, e.g., using normal (non-

attack) data samples only
• Importance of temporal dimension of data:

• CNN (convolutional neural network)
• LSTM (long-short-term memory)
• TCN (temporal convolutional network)

• Investigation of CNN-VAE vs. LSTM-VAE vs. TCN-VAE



TCN-VAE architecture

• Tracks statistics (mean and variance) in latent space
• 48 features as shown



Data sets and training

• Datasets from industry-strength PowerWorld simulator for electrical 
transmission
• Transient behaviors in addition to steady state

• Varied loadings subject to short-term randomness
• Normal operation, or under TDA, FDI-optimal, FDI-adaptive attack
• Varied strengths of attack
• Negligible (not so important), weak (but eventually damaging), moderate, 

strong
• VAE model trained from normal operation only
• Attack detected if RMSE deviation from the normal exceeds a (tunable) 

threshold



Beyond detection: classification by gradient profiles 

• TCN-VAE produces gradients during back-propagation optimization process
• These gradients form a profile (across features in data trace)
• Different classes of attacks (including no attack) can be identified by their gradient profiles



Clustering of gradient profiles

• K-means
• Based on (multi-dimensional) 

data distance

• DBScan
• Based on data density

• Affinity propagation
• Based on data similarity

• Various metrics of how well 
the profiles cluster



2D visualization of 
K-means clusters

• View of two PCA components
• Results depend on VAE variant, because their back-

propagation optimization produces the gradients being 
clustered

• However, well clustered profiles don’t necessarily agree 
better with groundtruths (what really matters)

CNN-VAE LSTM-VAE TCN-VAE



Classification performance



Comparison 
w/ supervised 
ML (XGboost)

XGboost has the best performance among several supervised ML 
alternatives, including SVM and AdaBoost



Confusion matrix and ROC



Federated contrastive learning for 
detecting stealthy attacks with 

unlabeled data* …



Problem setup

• Detection of BDD-bypassing stealthy FDI attacks
• Data sources are geographically distributed (bandwidth concerns)
• Data owners are administratively separate (privacy concerns)
• Challenge: effective global learning without sharing massive (non-iid) 

local raw data
• Solution: Federated learning by FedCLD
• Global control center and local control centers collaborate to learn a latent 

representation of (mostly) unlabeled grid data, through updates of model 
parameters only
• Using learned latent representation, local center runs an online binary 

classifier to perform downstream task of attack detection



Comparison w/ local and centralized learning

a = 1%a = 0.1%a = 0.05%
R

F1-scoreRecallPrecisionAccuracyF1-scoreRecallPrecisionAccuracyF1-scoreRecallPrecisionAccuracy

93.5591.6296.4595.3091.4589.1995.3393.9390.8988.5894.9793.5610
95.0493.6696.8296.2894.2292.5796.5295.7392.7990.8295.8294.7720
95.2693.9996.8896.4494.0592.3996.3895.6193.2391.3596.0495.0630
95.4093.9197.3696.5694.0792.2496.7395.6593.2591.2396.3695.1140
95.5594.2397.2396.6594.1692.3796.7295.7193.3891.4696.2895.1850

88.7186.3793.4791.8986.2583.8192.4690.5383.7981.4191.5489.28Local
97.6997.0998.3598.2196.9796.2697.7797.6696.7095.9397.5897.46Centralized



Convergence 
of FedCLD



Impacts of learning rounds and 
communication frequency



Conclusion

• Next-generation cyber-physical systems (e.g., smart power grids) 
susceptible to cyberattacks due to reliance on ICT
• Machine learning can be useful for defenses (e.g., attack detection 

and classification) without good enough analytical models
• Addressed several key challenges in the ML
• Lack of data labels
• Lack of attack data
• Distributed locations of data sources
• Different ownerships of local data
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