6.2 Strong Typicality vs Weak Typicality
Summary

- Weak typicality: empirical entropy $\approx H(X)$

- Strong typicality

- Both have AEP, but strong typicality has stronger conditional asymptotic properties (Theorem 6.10).

- Strong typicality works only for finite alphabet, i.e., $|X| < 1$, but weak typicality works for any countable alphabet.
Summary

- Weak typicality: empirical entropy $\approx H(X)$
- Strong typicality: empirical distribution $\sim p(x)$
Summary

- Weak typicality: empirical entropy $\approx H(X)$
- Strong typicality: empirical distribution $\sim p(x)$
- Strong typicality \Rightarrow weak typicality (Proposition 6.5)

Both have AEP, but strong typicality has stronger conditional asymptotic properties (Theorem 6.10).

Strong typicality works only for finite alphabet, i.e., $|X| < 1$, but weak typicality works for any countable alphabet.
Summary

- Weak typicality: empirical entropy $\approx H(X)$
- Strong typicality: empirical distribution $\sim p(x)$
- Strong typicality \Rightarrow weak typicality (Proposition 6.5)
- Weak typicality $\not\Rightarrow$ strong typicality (to be discussed)
Summary

• Weak typicality: empirical entropy $\approx H(X)$
• Strong typicality: empirical distribution $\sim p(x)$
• Strong typicality \Rightarrow weak typicality (Proposition 6.5)
• Weak typicality $\not\Rightarrow$ strong typicality (to be discussed)
• Both have AEP, but strong typicality has stronger conditional asymptotic properties (Theorem 6.10).
Summary

- Weak typicality: empirical entropy $\approx H(X)$
- Strong typicality: empirical distribution $\sim p(x)$
- Strong typicality \Rightarrow weak typicality (Proposition 6.5)
- Weak typicality $\not\Rightarrow$ strong typicality (to be discussed)
- Both have AEP, but strong typicality has stronger conditional asymptotic properties (Theorem 6.10).
- Strong typicality works only for finite alphabet, i.e., $|\mathcal{X}| < \infty$, but weak typicality works for any countable alphabet.
Strong Typicality \Rightarrow Weak Typicality

Proposition 6.5 For any $x \in X^n$, if $x \in T^n_{[X] \delta}$, then $x \in W^n_{[X] \eta}$, where $\eta \to 0$ as $\delta \to 0$.

Proof Idea

- By strong AEP and the definition of weak typicality.
Proposition 6.5 For any $x \in \mathcal{X}^n$, if $x \in T^n_{[X] \delta}$, then
\[x \in W^n_{[X] \eta}, \] where $\eta \rightarrow 0$ as $\delta \rightarrow 0$.

Proof
Proposition 6.5 For any $x \in X^n$, if $x \in T^n_{[X] \delta}$, then $x \in W^n_{[X] \eta}$, where $\eta \to 0$ as $\delta \to 0$.

Proof
1. If $x \in T^n_{[X] \delta}$, by Property 1 of strong AEP, we have
Proposition 6.5 For any $x \in X^n$, if $x \in T^n_{[X] \delta}$, then $x \in W^n_{[X] \eta}$, where $\eta \to 0$ as $\delta \to 0$.

Proof
1. If $x \in T^n_{[X] \delta}$, by Property 1 of strong AEP, we have

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$
Proposition 6.5 For any $x \in \mathcal{X}^n$, if $x \in T^n[X]^{\delta}$, then $x \in W^n[X]^{\eta}$, where $\eta \to 0$ as $\delta \to 0$.

Proof
1. If $x \in T^n[X]^{\delta}$, by Property 1 of strong AEP, we have

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n[X]^{\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$
Proposition 6.5 For any $x \in X^n$, if $x \in T^n_{[X]\delta}$, then $x \in W^n_{[X]\eta}$, where $\eta \to 0$ as $\delta \to 0$.

Proof
1. If $x \in T^n_{[X]\delta}$, by Property 1 of strong AEP, we have

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

2. This is equivalent to

$$H(X) - \eta \leq -\frac{1}{n} \log p(x) \leq H(X) + \eta,$$

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$
Proposition 6.5 For any $x \in X^n$, if $x \in T^n_{[X] \delta}$, then $x \in W^n_{[X] \eta}$, where $\eta \to 0$ as $\delta \to 0$.

Proof
1. If $x \in T^n_{[X] \delta}$, by Property 1 of strong AEP, we have

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

2. This is equivalent to

$$H(X) - \eta \leq - \frac{1}{n} \log p(x) \leq H(X) + \eta,$$

where $\eta \to 0$ as $\delta \to 0$ as asserted by the strong AEP.

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$
Proposition 6.5 For any $x \in \mathcal{X}^n$, if $x \in T_n^{[X]\delta}$, then $x \in W_n^{[X]\eta}$, where $\eta \to 0$ as $\delta \to 0$.

Proof
1. If $x \in T_n^{[X]\delta}$, by Property 1 of strong AEP, we have

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

2. This is equivalent to

$$H(X) - \eta \leq -\frac{1}{n} \log p(x) \leq H(X) + \eta,$$

where $\eta \to 0$ as $\delta \to 0$ as asserted by the strong AEP.

3. Then $x \in W_n^{[X]\eta}$ by Definition 5.2. The proposition is proved.

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T_n^{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$
Proposition 6.5 For any $x \in X^n$, if $x \in T^n_{[X]\delta}$, then $x \in W^n_{[X]\eta}$, where $\eta \to 0$ as $\delta \to 0$.

Proof
1. If $x \in T^n_{[X]\delta}$, by Property 1 of strong AEP, we have

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

2. This is equivalent to

$$H(X) - \eta \leq -\frac{1}{n} \log p(x) \leq H(X) + \eta,$$

where $\eta \to 0$ as $\delta \to 0$ as asserted by the strong AEP.

3. Then $x \in W^n_{[X]\eta}$ by Definition 5.2. The proposition is proved.

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Definition 5.2 The weakly typical set $W^n_{[X]\varepsilon}$ with respect to $p(x)$ is the set of sequences $x = (x_1, x_2, \ldots, x_n) \in X^n$ such that

$$H(X) - \varepsilon \leq -\frac{1}{n} \log p(x) \leq H(X) + \varepsilon,$$
Weak Typicality $\not\Rightarrow$ Strong Typicality
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, p(1) = 0.25, p(2) = 0.25.$$
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence x of length n and let

\[q(x) = n^{-1}N(x; x) \]

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

This can be satisfied by choosing $q(i) = p(i)$ for all i.

Alternatively, we can choose $q(0) = 0.5$, $q(1) = 0.5$, $q(2) = 0.5$.

With such a choice of $\{q(i)\}$, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies empirical entropy $\approx H(X)$, but obviously not strongly typical with respect to p, because $p \not\approx q$.

Weak Typicality \nRightarrow Strong Typicality
1. Consider X with distribution p such that

$$p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$\frac{1}{n} \log p(x) = \frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]$$

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose $q(0) = 0.5, q(1) = 0.25, q(2) = 0.25$.

5. With such a choice of $\{q(i)\}$, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies empirical entropy $\approx H(X)$, but obviously not strongly typical with respect to p, because $p \not\approx q$.

Weak Typicality $\not\Rightarrow$ Strong Typicality
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that
\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence x of length n and let
\[q(x) = n^{-1} N(x; x) \]
be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:
\[
\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]

\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$
be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$-\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

4. Alternatively, we can choose $q(0) = 0.5, q(1) = 0.25, q(2) = 0.25$.

5. With such a choice of $\{q(i)\}$, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies $\text{empirical entropy} \approx H(X)$, but obviously not strongly typical with respect to p, because $p \not\approx q$. Weak Typicality $\not\Rightarrow$ Strong Typicality
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]

\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= - \frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose $q(0) = 0.5, q(1) = 0.5, q(2) = 0.25$.

5. With such a choice of $\{q(i)\}$, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies $H(X)$, but obviously not strongly typical with respect to p.

Weak Typicality $\not\Rightarrow$ Strong Typicality
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \; p(1) = 0.25, \; p(2) = 0.25.$$

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= - \frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$
Weak Typicality \nrightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25. \]

2. Consider a sequence x of length n and let

\[q(x) = n^{-1} N(x; x) \]

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]

\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= - \frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]
\]

\[
= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
\]
1. Consider X with distribution p such that

$$p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= - \frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

4. Alternatively, we can choose $q(0) = 0.5, q(1) = 0.25, q(2) = 0.25$.

With such a choice of $\{q(i)\}$, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies empirical entropy $\Rightarrow H(X)$, but obviously not strongly typical with respect to p, because $p \not\Rightarrow q$.

Weak Typicality $\not\Rightarrow$ Strong Typicality
1. Consider X with distribution p such that
 \[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence x of length n and let
 \[q(x) = n^{-1} N(x; x) \]
 be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

 \[
 \frac{1}{n} \log p(x) \text{ (empirical entropy)}
 \]
 \[
 = \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
 \]
 \[
 = \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
 \]
 \[
 = - \frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]
 \]
 \[
 = - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
 \]
 \[
 = -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1)
 \]

4. Alternatively, we can choose $q(0) = 0.5, q(1) = 0.25, q(2) = 0.25$.

With such a choice of $\{q(i)\}$, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies empirical entropy $\approx H(X)$, but obviously not strongly typical with respect to p, because $p \not\approx q$.

Weak Typicality $\not\Rightarrow$ Strong Typicality
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25.$$

2. Consider a sequence \mathbf{x} of length n and let

$$q(x) = n^{-1} N(x; \mathbf{x})$$
be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$-\frac{1}{n} \log p(\mathbf{x}) \quad (\text{empirical entropy})$$

$$= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= -\frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right]$$

$$= -\frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1)$$

$$\approx H(X)$$
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$-\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= -\frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= -\frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

$$\approx H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

4. Alternatively, we can choose $q(0) = 0.5$, $q(1) = 0.25$, $q(2) = 0.25$.

5. With such a choice of $\{q(i)\}$, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies $\text{empirical entropy} \approx H(X)$, but obviously not strongly typical with respect to p, because $p \neq q$. Weak Typicality \nRightarrow Strong Typicality.
Weak Typicality \not\Rightarrow Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$

2. Consider a sequence \mathbf{x} of length n and let $q(x) = n^{-1} N(x; \mathbf{x})$ be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$- \frac{1}{n} \log p(\mathbf{x}) \quad \text{(empirical entropy)}$$

$$= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= - \frac{1}{n} [N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2)]$$

$$= - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

$$\approx \ H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25.$$ \hfill (1)

$$\approx \ H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25.$$ \hfill (2)
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$-\frac{1}{n} \log p(x)$$

(3)

(1) and (2)

(4)

$$= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

(5)

$$= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

(6)

$$= -\frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

(7)

$$= -\frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

(8)

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

(9)

$$\approx H(X)$$

(10)

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

(11)

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25.$$
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \; p(1) = 0.25, \; p(2) = 0.25. \]

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
-\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]

\[
= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= -\frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]
\]

\[
= -\frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
\]

\[
= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1)
\]

\[
\approx H(X)
\]

\[
= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad (2)
\]
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25. \]

2. Consider a sequence x of length n and let

\[q(x) = n^{-1} N(x; x) \]

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]

\[
= \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= \frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]
\]

\[
= \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
\]

\[
= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1)
\]

\[
\approx H(X)
\]

\[
= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad (2)
\]
1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$

2. Consider a sequence x of length n and let
$q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= - \frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

$$\approx H(X)$$

$$= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad (2)$$
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25. \]

2. Consider a sequence \mathbf{x} of length n and let

\[q(x) = n^{-1} N(x; \mathbf{x}) \] be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[\frac{1}{n} \log p(\mathbf{x}) \quad (\text{empirical entropy}) \]

\[= \frac{1}{n} \log \prod_{k=1}^{n} p(x_k) \]

\[= \frac{1}{n} \sum_{k=1}^{n} \log p(x_k) \]

\[= - \frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right] \]

\[= - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2) \]

\[\approx - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1) \]

\[\approx H(X) \]

\[= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25 \]

\[= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad (2) \]
Weak Typicality \n\n1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= - \frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1)$$

$$\approx H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad (2)$$
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25.$$

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= - \frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad \text{(1)}$$

$$\approx H(X)$$

$$= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= - (0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad \text{(2)}$$
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$-\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= -\frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= -\frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad \quad (1)$$

$$\approx H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5 \log 0.5 - 0.25 \log 0.25 - 0.25 \log 0.25). \quad \quad (2)$$

This can be satisfied by choosing $q(i) = p(i)$ for all i.

Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \; p(1) = 0.25, \; p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= - \frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

$$\approx H(X)$$

$$= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25.$$

(1)

(2)

This can be satisfied by choosing $q(i) = p(i)$ for all i.
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

 \[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence \mathbf{x} of length n and let
 \[q(x) = n^{-1} N(x; \mathbf{x}) \]
 be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

 \[\frac{1}{n} \log p(\mathbf{x}) \quad (\text{empirical entropy}) \]

 \[= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k) \]

 \[= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k) \]

 \[= - \frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right] \]

 \[= - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2) \]

 \[= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \]

 \[\approx H(\mathbf{X}) \]

 \[= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25 \]

 \[= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \]

 \[\text{This can be satisfied by choosing } q(i) = p(i) \text{ for all } i. \]
1. Consider X with distribution p such that

\[p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25. \]

2. Consider a sequence \mathbf{x} of length n and let

\[q(x) = n^{-1} N(x; \mathbf{x}) \]

be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
\frac{1}{n} \log p(\mathbf{x}) \quad \text{(empirical entropy)}
\]

\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= - \frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right]
\]

\[
= - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)
\]

\[
\approx -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25
\]

\[
= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= - (0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25.
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i.
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$

2. Consider a sequence \mathbf{x} of length n and let

$$q(x) = n^{-1} N(x; \mathbf{x})$$

be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$-\frac{1}{n} \log p(\mathbf{x}) \quad \text{(empirical entropy)}$$

$$= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= -\frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right]$$

$$= -\frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

$$\approx H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad \text{(2)}$$

This can be satisfied by choosing $q(i) = p(i)$ for all i.
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \; p(1) = 0.25, \; p(2) = 0.25. \]

2. Consider a sequence x of length n and let

\[q(x) = n^{-1} N(x; x) \]

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]

\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= - \frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]
\]

\[
= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
\]

\[
= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad \text{(1)}
\]

\[
\approx H(X)
\]

\[
= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad \text{(2)}
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i.
Weak Typicality \Rightarrow Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$-\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= -\frac{1}{n} [n(0; x) \log p(0) + n(1; x) \log p(1) + n(2; x) \log p(2)]$$

$$= -\frac{n(0; x)}{n} \log p(0) - \frac{n(1; x)}{n} \log p(1) - \frac{n(2; x)}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

$$\approx H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25.$$ \hspace{1cm} (1)

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose

$$q(0) = 0, \quad q(1) = 0, \quad q(2) = 0.$$

5. With such a choice of $\{q(i)\}$, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies empirical entropy $\approx H(X)$, but obviously not strongly typical with respect to p, because $p \neq q$.

Weak Typicality \nRightarrow Strong Typicality
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

$$p(0) = 0.5, \; p(1) = 0.25, \; p(2) = 0.25.$$

2. Consider a sequence \mathbf{x} of length n and let

$$q(x) = n^{-1} N(x; \mathbf{x})$$

be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$-\frac{1}{n} \log p(\mathbf{x}) \quad (\text{empirical entropy})$$

$$= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= -\frac{1}{n} [N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2)]$$

$$= -\frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

$$\approx H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25.$$ (1) (2)

This can be satisfied by choosing $q(i) = p(i)$ for all i.

Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence x of length n and let $q(x) = n^{-1}N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[-\frac{1}{n} \log p(x) \quad \text{(empirical entropy)} \]

\[= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k) \]

\[= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k) \]

\[= -\frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)] \]

\[= -\frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2) \]

\[= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad \text{(1)} \]

\[\approx H(X) \]

\[= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25 \]

\[= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad \text{(2)} \]

This can be satisfied by choosing $q(i) = p(i)$ for all i.

1. Consider X with distribution p such that

$$p(0) = 0.5, \ p(1) = 0.25, \ p(2) = 0.25.$$

2. Consider a sequence x of length n and let

$$q(x) = n^{-1} N(x; x)$$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= - \frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

$$\approx H(X)$$

$$= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= - (0.5 \log 0.5 - 0.25 \log 0.25 - 0.25 \log 0.25).$$

(1)

(2)

This can be satisfied by choosing $q(i) = p(i)$ for all i.

Weak Typicality \iff Strong Typicality

Weak Typicality \neq Strong Typicality
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence \mathbf{x} of length n and let

\[q(x) = n^{-1} N(x; \mathbf{x}) \]

be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[-\frac{1}{n} \log p(\mathbf{x}) \] (empirical entropy)

\[
= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k) \\
= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k) \\
= -\frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right] \\
= -\frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2) \\
= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \\
\approx \quad H(X) \\
= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25 \\
= - (0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \]

This can be satisfied by choosing $q(i) = p(i)$ for all i.
Weak Typicality ⇔ Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
-\frac{1}{n} \log p(x) \quad (\text{empirical entropy})
\]

\[
= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= -\frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]
\]

\[
= -\frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
\]

\[
= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1)
\]

\[
\approx H(X)
\]

\[
= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad (2)
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i.

Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

 $p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25$

2. Consider a sequence \mathbf{x} of length n and let $q(x) = n^{-1} N(x; \mathbf{x})$ be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

 \[
 - \frac{1}{n} \log p(\mathbf{x}) \quad \text{(empirical entropy)}
 \]

 \[
 = - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
 \]

 \[
 = - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
 \]

 \[
 = - \frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right]
 \]

 \[
 = - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)
 \]

 \[
 = -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25
 \]

 \[
 \approx H(X)
 \]

 \[
 = -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
 \]

 \[
 = -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25.
 \]

 (1)

 (2)

This can be satisfied by choosing $q(i) = p(i)$ for all i.
1. Consider X with distribution p such that

$$p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25.$$

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$-\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= -\frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]$$

$$= -\frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$

$$\approx H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad (1)$$

This can be satisfied by choosing $q(i) = p(i)$ for all i.

Weak Typicality \nRightarrow Strong Typicality
1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence \mathbf{x} of length n and let

\[q(x) = n^{-1} N(x; \mathbf{x}) \]

be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
- \frac{1}{n} \log p(\mathbf{x}) \quad \text{(empirical entropy)}
\]

\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= - \frac{1}{n} [N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2)]
\]

\[
= - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)
\]

\[
= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad \text{(1)}
\]

\[
\approx H(X)
\]

\[
= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad \text{(2)}
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i.

Weak Typicality \nRightarrow Strong Typicality
Weak Typicality $\not\Rightarrow$ Strong Typicality

1. Consider X with distribution p such that

$$ p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25 $$

2. Consider a sequence x of length n and let

$$ q(x) = n^{-1} N(x; x) $$

be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$ \frac{1}{n} \log p(x) \quad \text{(empirical entropy)} $$

$$ = -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k) $$

$$ = -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k) $$

$$ = -\frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)] $$

$$ = -\frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2) $$

$$ = -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 $$

$$ \approx H(X) $$

$$ = -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25 $$

$$ = -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25 $$

(1)

(2)

This can be satisfied by choosing $q(i) = p(i)$ for all i.
1. Consider X with distribution p such that
\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence \mathbf{x} of length n and let
\[q(x) = n^{-1} N(x; \mathbf{x}) \]
be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:
\[
- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]
\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]
\[
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]
\[
= - \frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right]
\]
\[
= - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)
\]
\[
= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad \text{(1)}
\]
\[
\approx H(X)
\]
\[
= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]
\[
= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25 \quad \text{(2)}
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose

\[q(0) = 0.5, \quad q(1) = 0.25, \quad q(2) = 0.25. \]
1. Consider X with distribution p such that $p(0) = 0.5$, $p(1) = 0.25$, $p(2) = 0.25$.

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= \frac{1}{n} \log p(x_1) + \frac{1}{n} \log p(x_2) + \frac{1}{n} \log p(x_3)$$

$$= \frac{1}{n} [N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2)]$$

$$= \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1)$$

$$\approx H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25 \quad (2)$$

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose $q(0) = 0.5$, $q(1) = 0.5$, $q(2) = 0$.

Weak Typicality $\not\Rightarrow$ Strong Typicality
1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence \mathbf{x} of length n and let

\[q(x) = n^{-1} N(x; \mathbf{x}) \]

be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
\frac{1}{n} \log p(\mathbf{x}) \quad (\text{empirical entropy})
\]

\[
= \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= \frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right]
\]

\[
= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1)
\]

\[
\approx H(X)
\]

\[
= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25. \quad (2)
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose

\[q(0) = 0.5, \quad q(1) = 0.5, \quad q(2) = 0. \]
1. Consider X with distribution p such that $p(0) = 0.5$, $p(1) = 0.25$, $p(2) = 0.25$.

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}$$

$$= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)$$

$$= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)$$

$$= - \frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]$$

$$= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)$$

$$= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25$$ \hspace{1cm} (1)

$$\approx H(X)$$

$$= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25$$

$$= -[0.5 \log 0.5 - 0.25 \log 0.25 - 0.25 \log 0.25]$$ \hspace{1cm} (2)

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose $q(0) = 0.5$, $q(1) = 0.5$, $q(2) = 0$.

Weak Typicality \nRightarrow Strong Typicality
1. Consider X with distribution p such that $p(0) = 0.5$, $p(1) = 0.25$, $p(2) = 0.25$.

2. Consider a sequence \mathbf{x} of length n and let $q(x) = n^{-1}N(x; \mathbf{x})$ be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

$$
- \frac{1}{n} \log p(\mathbf{x}) \quad \text{(empirical entropy)}
$$

$$
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
$$

$$
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
$$

$$
= - \frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right]
$$

$$
= - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)
$$

$$
= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25
$$

$$
\approx H(X)
$$

$$
= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
$$

$$
= - (0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25
$$

(1) \quad (2)

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose $q(0) = 0.5$, $q(1) = 0.5$, $q(2) = 0$.

Weak Typicality \Rightarrow Strong Typicality
1. Consider X with distribution p such that $p(0) = 0.5$, $p(1) = 0.25$, $p(2) = 0.25$.

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

 \[
 \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
 \]

 \[
 = \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
 \]

 \[
 = \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
 \]

 \[
 = \frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]
 \]

 \[
 = - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
 \]

 \[
 = -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad (1)
 \]

 \[
 \approx H(X)
 \]

 \[
 = -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
 \]

 \[
 = -(0.5 \log 0.5 - 0.25 \log 0.25 - 0.25 \log 0.25) \quad (2)
 \]

 This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose $q(0) = 0.5$, $q(1) = 0.5$, $q(2) = 0$.

\[Weak Typicality \not\Rightarrow Strong Typicality \]
1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence \mathbf{x} of length n and let

\[q(x) = n^{-1} N(x; \mathbf{x}) \]

be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
- \frac{1}{n} \log p(\mathbf{x}) \quad \text{(empirical entropy)}
\]

\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= - \frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right]
\]

\[
= - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)
\]

\[
= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25
\]

\[
\approx H(X)
\]

\[
= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= - (0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i. 4. Alternatively, we can choose

\[q(0) = 0.5, \quad q(1) = 0.5, \quad q(2) = 0. \]
1. Consider \(X \) with distribution \(p \) such that
\[
p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25.
\]

2. Consider a sequence \(x \) of length \(n \) and let
\[
q(x) = n^{-1} N(x; x)\]
be the relative frequency of occurrence of symbol \(x \) in \(x, x = 0, 1, 2. \)

3. In order for the sequence \(x \) to be weakly typical, we need the empirical entropy to be close to \(H(X) \):
\[
-\frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]
\[
= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]
\[
= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]
\[
= -\frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]
\]
\[
= -\frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
\]
\[
= -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad \text{(1)}
\]
\[
= p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25 \quad \text{(2)}
\]

This can be satisfied by choosing \(q(i) = p(i) \) for all \(i \).

4. Alternatively, we can choose
\[
q(0) = 0.5, \quad q(1) = 0.5, \quad q(2) = 0.
\]

5. With such a choice of \(\{q(i)\} \), the sequence \(x \) is weakly typical with respect to \(p \) because (1) and (2) are evaluated to the same value which implies

Weak Typicality \(\nRightarrow \) Strong Typicality

Weak Typicality \(\nRightarrow \) Strong Typicality
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
- \frac{1}{n} \log p(x) \quad \text{(empirical entropy)}
\]

\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= - \frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]
\]

\[
= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
\]

\[
= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25
\]

\[
\approx H(X)
\]

\[
= - (0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25
\]

4. Alternatively, we can choose

\[q(0) = 0.5, \quad q(1) = 0.5, \quad q(2) = 0. \]

5. With such a choice of \{q(i)\}, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies

\[\text{empirical entropy} \approx H(X), \]

This can be satisfied by choosing $q(i) = p(i)$ for all i.
Weak Typicality \nRightarrow Strong Typicality

1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence x of length n and let $q(x) = n^{-1} N(x; x)$ be the relative frequency of occurrence of symbol x in x, $x = 0, 1, 2$.

3. In order for the sequence x to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
\frac{1}{n} \log p(x) \quad \text{ (empirical entropy)}
\]

\[
= - \frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= - \frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= - \frac{1}{n} \left[N(0; x) \log p(0) + N(1; x) \log p(1) + N(2; x) \log p(2) \right]
\]

\[
= - \frac{N(0; x)}{n} \log p(0) - \frac{N(1; x)}{n} \log p(1) - \frac{N(2; x)}{n} \log p(2)
\]

\[
\approx -q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25 \quad \text{(1)}
\]

\[
\approx H(X)
\]

\[
= -p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25 \quad \text{(2)}
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose

\[q(0) = 0.5, \quad q(1) = 0.5, \quad q(2) = 0. \]

5. With such a choice of $\{q(i)\}$, the sequence x is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies

\[\text{empirical entropy} \approx H(X) , \]

but obviously not strongly typical with respect to p.

\[\text{Weak Typicality} \nRightarrow \text{Strong Typicality} \]
1. Consider X with distribution p such that

\[p(0) = 0.5, \quad p(1) = 0.25, \quad p(2) = 0.25. \]

2. Consider a sequence \mathbf{x} of length n and let $q(\mathbf{x}) = n^{-1} N(x; \mathbf{x})$ be the relative frequency of occurrence of symbol x in \mathbf{x}, $x = 0, 1, 2$.

3. In order for the sequence \mathbf{x} to be weakly typical, we need the empirical entropy to be close to $H(X)$:

\[
-\frac{1}{n} \log p(\mathbf{x}) \quad \text{(empirical entropy)}
\]

\[
= -\frac{1}{n} \log \prod_{k=1}^{n} p(x_k)
\]

\[
= -\frac{1}{n} \sum_{k=1}^{n} \log p(x_k)
\]

\[
= -\frac{1}{n} \left[N(0; \mathbf{x}) \log p(0) + N(1; \mathbf{x}) \log p(1) + N(2; \mathbf{x}) \log p(2) \right]
\]

\[
= - \frac{N(0; \mathbf{x})}{n} \log p(0) - \frac{N(1; \mathbf{x})}{n} \log p(1) - \frac{N(2; \mathbf{x})}{n} \log p(2)
\]

\[
= - q(0) \log 0.5 - q(1) \log 0.25 - q(2) \log 0.25
\]

\[
\approx H(X)
\]

\[
= - p(0) \log 0.5 - p(1) \log 0.25 - p(2) \log 0.25
\]

\[
= -(0.5) \log 0.5 - (0.25) \log 0.25 - (0.25) \log 0.25.
\]

This can be satisfied by choosing $q(i) = p(i)$ for all i.

4. Alternatively, we can choose

\[q(0) = 0.5, \quad q(1) = 0.5, \quad q(2) = 0. \]

5. With such a choice of $\{q(i)\}$, the sequence \mathbf{x} is weakly typical with respect to p because (1) and (2) are evaluated to the same value which implies

\[
\text{empirical entropy} \approx H(X),
\]

but obviously not strongly typical with respect to p, because

\[p \not\approx q. \]