2.5 Informational Divergence
Definition 2.28 The informational divergence between two probability distributions p and q on a common alphabet \mathcal{X} is defined as

$$D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},$$

where E_p denotes expectation with respect to p.

...
Definition 2.28 The informational divergence between two probability distributions p and q on a common alphabet \mathcal{X} is defined as

$$D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},$$

where E_p denotes expectation with respect to p.

- Convention:
Definition 2.28 The informational divergence between two probability distributions p and q on a common alphabet \mathcal{X} is defined as

$$D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},$$

where E_p denotes expectation with respect to p.

- Convention:
 1. Summation is over S_p, i.e., $\sum_{x \in S_p}$
Definition 2.28 The informational divergence between two probability distributions p and q on a common alphabet \mathcal{X} is defined as

$$D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},$$

where E_p denotes expectation with respect to p.

- Convention:
 1. Summation is over S_p, i.e., $\sum_{x \in S_p}$
Definition 2.28 The informational divergence between two probability distributions \(p \) and \(q \) on a common alphabet \(\mathcal{X} \) is defined as

\[
D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},
\]

where \(E_p \) denotes expectation with respect to \(p \).

- Convention:
 1. Summation is over \(S_p \), i.e., \(\sum_{x \in S_p} \).
Definition 2.28 The informational divergence between two probability distributions \(p \) and \(q \) on a common alphabet \(\mathcal{X} \) is defined as

\[
D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},
\]

where \(E_p \) denotes expectation with respect to \(p \).

- Convention:
 1. Summation is over \(S_p \), i.e., \(\sum_{x \in S_p} \)
 2. \(c \log \frac{c}{0} = \infty \) for \(c > 0 \)
Definition 2.28 The informational divergence between two probability distributions p and q on a common alphabet \mathcal{X} is defined as

$$D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},$$

where E_p denotes expectation with respect to p.

- Convention:

 1. Summation is over S_p, i.e., $\sum_{x \in S_p}$
 2. $c \log \frac{c}{0} = \infty$ for $c > 0$
 3. If $D(p\|q) < \infty$, then $p(x) > 0 \Rightarrow q(x) > 0$, or $S_p \subset S_q$.

• $D(p\|q)$ measures the "distance" between p and q.
• $D(p\|q)$ is not symmetrical in p and q, so $D(p\|q)$ is not a true metric.
• $D(p\|q)$ does not satisfy the triangular inequality.
• Also called relative entropy or the Kullback-Leibler distance.
Definition 2.28 The informational divergence between two probability distributions p and q on a common alphabet \mathcal{X} is defined as

$$D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},$$

where E_p denotes expectation with respect to p.

- Convention:
 1. Summation is over S_p, i.e., $\sum_{x \in S_p}$
 2. $c \log \frac{c}{0} = \infty$ for $c > 0$
 3. If $D(p\|q) < \infty$, then $p(x) > 0 \Rightarrow q(x) > 0$, or $S_p \subset S_q$.

- $D(p\|q)$ measures the “distance” between p and q.
Definition 2.28 The informational divergence between two probability distributions \(p \) and \(q \) on a common alphabet \(\mathcal{X} \) is defined as

\[
D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},
\]

where \(E_p \) denotes expectation with respect to \(p \).

- Convention:
 1. Summation is over \(S_p \), i.e., \(\sum_{x \in S_p} \)
 2. \(c \log \frac{c}{0} = \infty \) for \(c > 0 \)
 3. If \(D(p\|q) < \infty \), then \(p(x) > 0 \Rightarrow q(x) > 0 \), or \(S_p \subset S_q \).
- \(D(p\|q) \) measures the “distance” between \(p \) and \(q \).
- \(D(p\|q) \) is not symmetrical in \(p \) and \(q \), so \(D(\cdot\|\cdot) \) is not a true metric.
Definition 2.28 The informational divergence between two probability distributions p and q on a common alphabet \mathcal{X} is defined as

$$D(p||q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},$$

where E_p denotes expectation with respect to p.

- **Convention:**
 1. Summation is over \mathcal{S}_p, i.e., $\sum_{x \in \mathcal{S}_p} p(x)$
 2. $c \log \frac{c}{0} = \infty$ for $c > 0$
 3. If $D(p||q) < \infty$, then $p(x) > 0 \Rightarrow q(x) > 0$, or $\mathcal{S}_p \subset \mathcal{S}_q.$

- $D(p||q)$ measures the “distance” between p and q.

- $D(p||q)$ is not symmetrical in p and q, so $D(\cdot||\cdot)$ is not a true metric.

- $D(\cdot||\cdot)$ does not satisfy the triangular inequality.
Definition 2.28 The informational divergence between two probability distributions p and q on a common alphabet \mathcal{X} is defined as

$$D(p\|q) = \sum_x p(x) \log \frac{p(x)}{q(x)} = E_p \log \frac{p(X)}{q(X)},$$

where E_p denotes expectation with respect to p.

- Convention:
 1. Summation is over S_p, i.e., $\sum_{x \in S_p}$
 2. $c \log \frac{c}{0} = \infty$ for $c > 0$
 3. If $D(p\|q) < \infty$, then $p(x) > 0 \Rightarrow q(x) > 0$, or $S_p \subset S_q$.
- $D(p\|q)$ measures the “distance” between p and q.
- $D(p\|q)$ is not symmetrical in p and q, so $D(\cdot \| \cdot)$ is not a true metric.
- $D(\cdot \| \cdot)$ does not satisfy the triangular inequality.
- Also called relative entropy or the Kullback-Leibler distance.
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.
\ln a \leq a - 1
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1$.
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

\[\ln a \leq a - 1 \]

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

\[\ln a \geq 1 - \frac{1}{a} \]

with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,
\[
 \ln a \leq a - 1
\]
with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,
\[
 \ln a \geq 1 - \frac{1}{a}
\]
with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then
Lemma 2.29 (Fundamental Inequality) For any $a > 0,$

$$\ln a \leq a - 1$$

with equality if and only if $a = 1.$

Corollary 2.30 For any $a > 0,$

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1.$

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0.$ Then

$$\ln \frac{1}{b} \leq \frac{1}{b} - 1$$
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then

$$\ln \frac{1}{b} \leq \frac{1}{b} - 1$$

$$- \ln b \leq \frac{1}{b} - 1$$
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,\[\ln a \leq a - 1\]
with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,\[\ln a \geq 1 - \frac{1}{a}\]
with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then
\[
\ln \frac{1}{b} \leq \frac{1}{b} - 1 \\
- \ln b \leq \frac{1}{b} - 1 \\
\ln b \geq 1 - \frac{1}{b}
\]
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then

$$\ln \frac{1}{b} \leq \frac{1}{b} - 1$$

$$-\ln b \leq \frac{1}{b} - 1$$

$$\ln b \geq 1 - \frac{1}{b}$$
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then

$$\ln \frac{1}{b} \leq \frac{1}{b} - 1$$

$$-\ln b \leq \frac{1}{b} - 1$$

$$\ln b \geq 1 - \frac{1}{b}$$

Equality holds if and only if $\frac{1}{b} = a = 1$, or $b = 1$.
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then

$$\ln \frac{1}{b} \leq \frac{1}{b} - 1$$

$$-\ln b \leq \frac{1}{b} - 1$$

$$\ln b \geq 1 - \frac{1}{b}$$

Equality holds if and only if $\frac{1}{b} = a = 1$, or $b = 1$.
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,

$$\ln a \leq a - 1$$

with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,

$$\ln a \geq 1 - \frac{1}{a}$$

with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then

$$\ln \frac{1}{b} \leq \frac{1}{b} - 1$$

$$-\ln b \leq \frac{1}{b} - 1$$

$$\ln b \geq 1 - \frac{1}{b}$$

Equality holds if and only if $\frac{1}{b} = a = 1$, or $b = 1$.
Lemma 2.29 (Fundamental Inequality) For any $a > 0$,
\[\ln a \leq a - 1 \]
with equality if and only if $a = 1$.

Corollary 2.30 For any $a > 0$,
\[\ln a \geq 1 - \frac{1}{a} \]
with equality if and only if $a = 1$.

Proof Let $a = \frac{1}{b}$ in the fundamental inequality, where $b > 0$. Then
\[\ln \frac{1}{b} \leq \frac{1}{b} - 1 \]
\[-\ln b \leq \frac{1}{b} - 1 \]
\[\ln b \geq 1 - \frac{1}{b} \]
Equality holds if and only if $\frac{1}{b} = a = 1$, or $b = 1$.
Theorem 2.31 (Divergence Inequality) For any two probability distributions p and q on a common alphabet \mathcal{X},

$$D(p\|q) \geq 0$$

with equality if and only if $p = q$.
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \quad (1) \]

with equality if and only if \(p = q \).

Proof
Theorem 2.31 (Divergence Inequality)

\[D(p||q) \geq 0 \quad (1) \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] \hspace{1cm} (1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(\mathcal{S}_p = \mathcal{S}_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in \mathcal{S}_p} p(x) \log \frac{p(x)}{q(x)}
\]
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \]

(1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(\mathcal{S}_p = \mathcal{S}_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in \mathcal{S}_p} p(x) \log \frac{p(x)}{q(x)}
\]
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] \hspace{1cm} (1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

3. For equality to hold in (2), we see from Corollary 2.30 that this is the case if and only if

\[
p(x) = q(x) \text{ for all } x \in S_p.
\]

This proves the theorem.

Corollary 2.30

For any \(a > 0 \),

\[
\ln a \leq 1 \quad \text{with equality if and only if } a = 1.
\]
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] \hspace{1cm} (1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

Corollary 2.30
For any \(a > 0 \),

\[\ln a \geq 1 \] \hspace{1cm} (2)

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \]

(1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] (1)

with equality if and only if \(p = q \).

\textbf{Proof}

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)} = (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] \hspace{1cm} (1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)}\right)
\] \hspace{1cm} (2)

Corollary 2.30 For any \(a > 0 \),

\[\ln a \geq 1 - \frac{1}{a} \]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] \hspace{1cm} (1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= \left(\log e \right) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq \left(\log e \right) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right)
\] \hspace{1cm} (2)

Corollary 2.30 For any \(a > 0 \),

\[\ln a \geq 1 - \frac{1}{a} \]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \quad (1) \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \quad (2)
\]

Corollary 2.30 For any \(a > 0 \),

\[\ln a \geq 1 - \frac{1}{a} \]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] \hspace{1cm} (1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \left(\frac{p(x)}{q(x)} \right)
\]

 \[= (\log e) \sum_{x \in S_p} p(x) \ln \left(\frac{p(x)}{q(x)} \right) \]

 \[\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \]

 \hspace{1cm} (2)

Corollary 2.30 For any \(a > 0 \),

\[\ln a \geq 1 - \frac{1}{a} \]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \quad (1) \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \quad (2)
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_p} q(x) \right]
\]

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \quad (1) \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(\mathcal{S}_p = \mathcal{S}_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in \mathcal{S}_p} p(x) \log \frac{p(x)}{q(x)} \\
= (\log e) \sum_{x \in \mathcal{S}_p} p(x) \ln \frac{p(x)}{q(x)} \\
\geq (\log e) \sum_{x \in \mathcal{S}_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \quad (2) \\
= (\log e) \left[\sum_{x \in \mathcal{S}_p} p(x) - \sum_{x \in \mathcal{S}_p} q(x) \right]
\]

Corollary 2.30 For any \(a > 0 \),

\[\ln a \geq 1 - \frac{1}{a} \]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \quad (1) \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \quad (2)
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_p} q(x) \right]
\]

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \quad (1) \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \quad (2)
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_p} q(x) \right]
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_q} q(x) \right]
\]

Corollary 2.30 For any \(a > 0 \),

\[\ln a \geq 1 - \frac{1}{a} \]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] \hspace{1cm} (1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)}\right) \quad (2)
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_p} q(x) \right]
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_q} q(x) \right]
\]

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[
D(p\|q) \geq 0 \tag{1}
\]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(\mathcal{S}_p = \mathcal{S}_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in \mathcal{S}_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in \mathcal{S}_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in \mathcal{S}_p} \left(1 - \frac{q(x)}{p(x)} \right) \tag{2}
\]

\[
= (\log e) \left[\sum_{x \in \mathcal{S}_p} p(x) - \sum_{x \in \mathcal{S}_p} q(x) \right]
\]

\[
= (\log e) \left[\sum_{x \in \mathcal{S}_p} p(x) - \sum_{x \in \mathcal{S}_q} q(x) \right]
\]

\[
= (\log e) [1 - 1]
\]

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \tag{1} \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \tag{2}
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_p} q(x) \right]
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_q} q(x) \right]
\]

\[
= (\log e)[1 - 1]
\]

\[
= 0.
\]

Corollary 2.30 For any \(a > 0 \),

\[\ln a \geq 1 - \frac{1}{a} \]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \]

(1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(\mathcal{S}_p = \mathcal{S}_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in \mathcal{S}_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in \mathcal{S}_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in \mathcal{S}_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right)
\]

(2)

\[
= (\log e) \left[\sum_{x \in \mathcal{S}_p} p(x) - \sum_{x \in \mathcal{S}_p} q(x) \right]
\]

\[
= (\log e) \left[\sum_{x \in \mathcal{S}_p} p(x) - \sum_{x \in \mathcal{S}_q} q(x) \right]
\]

\[
= (\log e)[1 - 1]
\]

\[
= 0.
\]

This proves (1).

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \quad (1) \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \quad (2)
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_p} q(x) \right]
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_q} q(x) \right]
\]

\[
= (\log e)[1 - 1]
\]

\[
= 0.
\]

This proves (1).

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \]
(1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \quad (2)
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_p} q(x) \right]
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_q} q(x) \right]
\]

\[
= (\log e)[1 - 1]
\]

\[
= 0.
\]

This proves (1).

3. For equality to hold in (2), we see from Corollary 2.30 that this is the case if and only if

\[
\frac{p(x)}{q(x)} = 1 \text{ or } p(x) = q(x) \quad \text{for all } x \in S_p.
\]

This proves the theorem.

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] \hspace{1cm} (1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)} \]

\[\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \] \hspace{1cm} (2)

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_p} q(x) \right]
\]

\[= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_q} q(x) \right]
\]

\[= (\log e)[1 - 1]
\]

\[= 0. \]

This proves (1).

3. For equality to hold in (2), we see from Corollary 2.30 that this is the case if and only if

\[
\frac{p(x)}{q(x)} = 1 \text{ or } p(x) = q(x) \quad \text{for all } x \in S_p.
\]

This proves the theorem.

Corollary 2.30 For any \(a > 0 \),

\[\ln a \geq 1 - \frac{1}{a} \]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \] \hspace{1cm} (1)

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)}
\]

\[
\geq (\log e) \sum_{x \in S_p} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \tag{2}
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_p} q(x) \right]
\]

\[
= (\log e) \left[\sum_{x \in S_p} p(x) - \sum_{x \in S_q} q(x) \right]
\]

\[
= (\log e)[1 - 1]
\]

\[
= 0.
\]

This proves (1).

3. For equality to hold in (2), we see from Corollary 2.30 that this is the case if and only if

\[
\frac{p(x)}{q(x)} = 1 \text{ or } p(x) = q(x) \text{ for all } x \in S_p.
\]

This proves the theorem.

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.31 (Divergence Inequality)

\[D(p\|q) \geq 0 \quad (1) \]

with equality if and only if \(p = q \).

Proof

1. For simplicity, assume \(S_p = S_q \). For a proof without this assumption, see the textbook.

2. Consider

\[
D(p\|q) = \sum_{x \in S_p} p(x) \log \frac{p(x)}{q(x)}
\]

\[
= (\log e) \sum_{x \in S_p} p(x) \ln \frac{p(x)}{q(x)} \geq (\log e) \sum_{x \in S_P} p(x) \left(1 - \frac{q(x)}{p(x)} \right) \quad (2)
\]

\[
= (\log e) \left[\sum_{x \in S_P} p(x) - \sum_{x \in S_P} q(x) \right]
\]

\[
= (\log e) \left[\sum_{x \in S_P} p(x) - \sum_{x \in S_q} q(x) \right]
\]

\[
= (\log e)[1 - 1]
\]

\[
= 0.
\]

This proves (1).

3. For equality to hold in (2), we see from Corollary 2.30 that this is the case if and only if

\[
\frac{p(x)}{q(x)} = 1 \text{ or } p(x) = q(x) \quad \text{for all } x \in S_p.
\]

This proves the theorem.

Corollary 2.30 For any \(a > 0 \),

\[
\ln a \geq 1 - \frac{1}{a}
\]

with equality if and only if \(a = 1 \).
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i}$$

with the convention that $\log \frac{a_i}{0} = \infty$. Moreover, equality holds if and only if $\frac{a_i}{b_i} = constant$ for all i.
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i}$$

with the convention that $\log \frac{a_i}{0} = \infty$. Moreover, equality holds if and only if $\frac{a_i}{b_i} = constant$ for all i.

Example:

$$a_1 \log \frac{a_1}{b_1} + a_2 \log \frac{a_2}{b_2} \geq (a_1 + a_2) \log \frac{a_1 + a_2}{b_1 + b_2}.$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i}
$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$, \[\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i\right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1) \] Moreover, equality holds if and only if $\frac{a_i}{b_i}$ = constant for all i.

Proof
1. Let $a'_i = a_i / \sum_j a_j$ and $b'_i = b_i / \sum_j b_j$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = constant$ for all i.

Proof

1. Let $a'_i = a_i / \sum_j a_j$ and $b'_i = b_i / \sum_j b_j$. Then \{a'_i\} and \{b'_i\} are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i}
$$

(1)

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a_i' = a_i / \sum_j a_j$ and $b_i' = b_i / \sum_j b_j$. Then $\{a_i'\}$ and $\{b_i'\}$ are probability distributions.

2. Using the divergence inequality, we have

$$
0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'}
$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = constant$ for all i.

Proof

1. Let $a'_i = a_i / \sum_j a_j$ and $b'_i = b_i / \sum_j b_j$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers \(a_1, a_2, \ldots \) and nonnegative numbers \(b_1, b_2, \ldots \) such that \(\sum_i a_i < \infty \) and \(0 < \sum_i b_i < \infty \),

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
\]

Moreover, equality holds if and only if \(\frac{a_i}{b_i} = \text{constant} \) for all \(i \).

Proof
1. Let \(a_i' = \frac{a_i}{\sum_j a_j} \) and \(b_i' = \frac{b_i}{\sum_j b_j} \). Then \(\{a_i'\} \) and \(\{b_i'\} \) are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'} = \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j}
\]
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j}$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i}$ is constant for all i.

Proof

1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then \{a'\} and \{b'\} are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j}$$

The theorem is proved.
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $a_i b_i = \text{constant}$ for all i.

Proof

1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j}$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers \(a_1, a_2, \cdots\) and nonnegative numbers \(b_1, b_2, \cdots\) such that \(\sum_i a_i < \infty\) and \(0 < \sum_i b_i < \infty\),

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
\]

Moreover, equality holds if and only if \(\frac{a_i}{b_i} = \text{constant}\) for all \(i\).

Proof

1. Let \(a_i' = \frac{a_i}{\sum_j a_j}\) and \(b_i' = \frac{b_i}{\sum_j b_j}\). Then \(\{a_i'\}\) and \(\{b_i'\}\) are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'} = \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}
\]
Theorem 2.32 (Log-Sum Inequality) For positive numbers \(a_1, a_2, \ldots \) and nonnegative numbers \(b_1, b_2, \ldots \) such that \(\sum_i a_i < \infty \) and \(0 < \sum_i b_i < \infty \),

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
\]

Moreover, equality holds if and only if \(\frac{a_i}{b_i} = \text{constant} \) for all \(i \).

Proof
1. Let \(a'_i = \frac{a_i}{\sum_j a_j} \) and \(b'_i = \frac{b_i}{\sum_j b_j} \). Then \(\{a'_i\} \) and \(\{b'_i\} \) are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i} = \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}
\]
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$, \[
abla_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
\]
Moreover, equality holds if and only if $\frac{a_i}{b_i}$ = constant for all i.

Proof

1. Let $a_i' = \frac{a_i}{\sum_j a_j}$ and $b_i' = \frac{b_i}{\sum_j b_j}$. Then \{a_i'\} and \{b_i'\} are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'} = \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j}$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers \(a_1, a_2, \ldots \) and nonnegative numbers \(b_1, b_2, \ldots \) such that \(\sum_i a_i < \infty \) and \(0 < \sum_i b_i < \infty \),

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)
\]

Moreover, equality holds if and only if \(\frac{a_i}{b_i} = \text{constant} \) for all \(i \).

Proof
1. Let \(a'_i = \frac{a_i}{\sum_j a_j} \) and \(b'_i = \frac{b_i}{\sum_j b_j} \). Then \(\{a'_i\} \) and \(\{b'_i\} \) are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i} = \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i}{\sum_j a_j} / \frac{b_i}{\sum_j b_j}
\]
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i} \leq \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof
1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i}{\sum_j a_j} \frac{\sum_j a_j}{\sum_j a_i} \frac{a_i}{\sum_j b_j} \frac{b_i}{\sum_j b_i}$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i}
$$

(1)

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then \{a'_i\} and \{b'_i\} are probability distributions.

2. Using the divergence inequality, we have

$$
0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i} = \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}
$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i}$$ \hspace{1cm} (1)

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a_i' = \frac{a_i}{\sum_j a_j}$ and $b_i' = \frac{b_i}{\sum_j b_j}$. Then $\{a_i'\}$ and $\{b_i'\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i}{\sum_j a_j}$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i}{\sum_j a_j} \frac{a_i}{\sum_j a_j} \frac{b_i}{\sum_j b_j}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{\sum_j a_j} \frac{b_i}{\sum_j b_j} \right]$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i}$ = constant for all i.

Proof
1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i} = \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j} = \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j} \right]$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers \(a_1, a_2, \ldots\) and nonnegative numbers \(b_1, b_2, \ldots\) such that \(\sum_i a_i < \infty\) and \(0 < \sum_i b_i < \infty\),

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i}
\]

(1)

Moreover, equality holds if and only if \(\frac{a_i}{b_i} = \text{constant}\) for all \(i\).

Proof
1. Let \(a_i' = \frac{a_i}{\sum_j a_j}\) and \(b_i' = \frac{b_i}{\sum_j b_j}\). Then \(\{a_i'\}\) and \(\{b_i'\}\) are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'}
\]

\[
= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i}{\sum_j a_j} \frac{1}{b_i} \frac{1}{\sum_j b_j}
\]

\[
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{\sum_j a_j} \right]
\]

The theorem is proved.
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof
1. Let $a_i' = \frac{a_i}{\sum_j a_j}$ and $b_i' = \frac{b_i}{\sum_j b_j}$. Then $\{a_i'\}$ and $\{b_i'\}$ are probability distributions.
2. Using the divergence inequality, we have

$$0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i}$ = constant for all i.

Proof
1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i \frac{a_i}{b_i} \log \left(\frac{a_i}{\sum_j a_j} \right) \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \cdots and nonnegative numbers b_1, b_2, \cdots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof
1. Let $a_i' = \frac{a_i}{\sum_j a_j}$ and $b_i' = \frac{b_i}{\sum_j b_j}$. Then $\{a_i'\}$ and $\{b_i'\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_i}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i \frac{a_i}{b_i} \log \frac{a_i/\sum_j a_j}{\sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a_i' = \frac{a_i}{\sum_j a_j}$ and $b_i' = \frac{b_i}{\sum_j b_j}$. Then $\{a_i'\}$ and $\{b_i'\}$ are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'} = \sum_i a_i \log \left(\frac{a_i / \sum_j a_j}{b_i / \sum_j b_j} \right) = \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j} \right] = \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]
\]
Theorem 2.32 (Log-Sum Inequality) For positive numbers \(a_1, a_2, \ldots\) and nonnegative numbers \(b_1, b_2, \ldots\) such that \(\sum_i a_i < \infty\) and \(0 < \sum_i b_i < \infty\),

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
\]

Moreover, equality holds if and only if \(\frac{a_i}{b_i} = \text{constant}\) for all \(i\).

Proof
1. Let \(a'_i = a_i / \sum_j a_j \) and \(b'_i = b_i / \sum_j b_j\). Then \(\{a'_i\}\) and \(\{b'_i\}\) are probability distributions.
2. Using the divergence inequality, we have

\[
0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}
= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i / \sum_j b_j} \right]
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]
\]
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a_i' = a_i / \sum_j a_j$ and $b_i' = b_i / \sum_j b_j$. Then \{a_i'\} and \{b_i'\} are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]$$

The theorem is proved.
Theorem 2.32 (Log-Sum Inequality) For positive numbers \(a_1, a_2, \ldots\) and nonnegative numbers \(b_1, b_2, \ldots\) such that \(\sum_i a_i < \infty\) and \(0 < \sum_i b_i < \infty\),

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i}
\]

Moreover, equality holds if and only if \(\frac{a_i}{b_i} = \text{constant}\) for all \(i\).

Proof

1. Let \(a'_i = a_i / \sum_j a_j\) and \(b'_i = b_i / \sum_j b_j\). Then \(\{a'_i\}\) and \(\{b'_i\}\) are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}
\]

\[
= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}
\]

\[
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j} \right]
\]

\[
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]
\]

\[
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],
\]
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof
1. Let $a'_i = a_i / \sum_j a_j$ and $b'_i = b_i / \sum_j b_j$. Then \{a'_i\} and \{b'_i\} are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],$$

The theorem is proved.
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then \{a'_i\} and \{b'_i\} are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i} \\
= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j} \\
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right] \\
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right] \\
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],
\]
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
\]

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a'_i = \frac{a_i}{\sum_j a_j}$ and $b'_i = \frac{b_i}{\sum_j b_j}$. Then \{a'_i\} and \{b'_i\} are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i} = \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j} = \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right] = \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],
\]

which implies (1).
Theorem 2.32 (Log-Sum Inequality) For positive numbers \(a_1, a_2, \ldots\) and nonnegative numbers \(b_1, b_2, \ldots\) such that \(\sum_i a_i < \infty\) and \(0 < \sum_i b_i < \infty\),

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
\]

Moreover, equality holds if and only if \(\frac{a_i}{b_i} = \text{constant}\) for all \(i\).

Proof
1. Let \(a'_i = a_i / \sum_j a_j\) and \(b'_i = b_i / \sum_j b_j\). Then \(\{a'_i\}\) and \(\{b'_i\}\) are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}
= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j} \right]
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]
= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],
\]

which implies (1).
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a'_i = a_i / \sum_j a_j$ and $b'_i = b_i / \sum_j b_j$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/ \sum_j a_j}{b_i/ \sum_j b_j}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],$$

which implies (1).

3. Equality holds if and only if for all i,

$$a'_i = b'_i \text{ or } \frac{a_i}{b_i} = \text{constant}.$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$, the inequality

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $a_i = constant$ for all i.

Proof
1. Let $a_i' = a_i / \sum_j a_j$ and $b_i' = b_i / \sum_j b_j$. Then $\{a_i'\}$ and $\{b_i'\}$ are probability distributions.
2. Using the divergence inequality, we have

$$0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],$$

which implies (1).
Theorem 2.32 (Log-Sum Inequality) For positive numbers \(a_1, a_2, \ldots\) and nonnegative numbers \(b_1, b_2, \ldots\) such that \(\sum_i a_i < \infty\) and \(0 < \sum_i b_i < \infty\),

\[
\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}
\]

Moreover, equality holds if and only if \(a_i = constant\) for all \(i\).

Proof

1. Let \(a'_i = a_i / \sum_j a_j\) and \(b'_i = b_i / \sum_j b_j\). Then \(\{a'_i\}\) and \(\{b'_i\}\) are probability distributions.

2. Using the divergence inequality, we have

\[
0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i} = \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j} = \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j} \right] = \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right] = \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],
\]

which implies (1).

3. Equality holds if and only if for all \(i\),

\[
\frac{a'_i}{b'_i} = \text{constant} \quad \text{or} \quad \frac{a_i}{b_i} = \text{constant}.
\]

The theorem is proved.
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \tag{1}$$

Moreover, equality holds if and only if $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof
1. Let $a_i' = a_i / \sum_j a_j$ and $b_i' = b_i / \sum_j b_j$. Then \{a_i'\} and \{b_i'\} are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a_i' \log \frac{a_i'}{b_i'}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i / \sum_j a_j}{b_i / \sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],$$

which implies (1).

3. Equality holds if and only if for all i,

$$a_i' = b_i' \quad \text{or} \quad \frac{a_i}{b_i} = \text{constant}.$$
Theorem 2.32 (Log-Sum Inequality) For positive numbers a_1, a_2, \ldots and nonnegative numbers b_1, b_2, \ldots such that $\sum_i a_i < \infty$ and $0 < \sum_i b_i < \infty$,

$$\sum_i a_i \log \frac{a_i}{b_i} \geq \left(\sum_i a_i \right) \log \frac{\sum_i a_i}{\sum_i b_i} \quad (1)$$

Moreover, equality holds if and only if $a_i = b_i$ or $\frac{a_i}{b_i} = \text{constant}$ for all i.

Proof

1. Let $a'_i = a_i / \sum_j a_j$ and $b'_i = b_i / \sum_j b_j$. Then $\{a'_i\}$ and $\{b'_i\}$ are probability distributions.

2. Using the divergence inequality, we have

$$0 \leq \sum_i a'_i \log \frac{a'_i}{b'_i}$$

$$= \sum_i \frac{a_i}{\sum_j a_j} \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j}$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i/\sum_j a_j}{b_i/\sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \sum_i a_i \log \frac{\sum_j a_j}{\sum_j b_j} \right]$$

$$= \frac{1}{\sum_j a_j} \left[\sum_i a_i \log \frac{a_i}{b_i} - \left(\sum_i a_i \right) \log \frac{\sum_j a_j}{\sum_j b_j} \right],$$

which implies (1).

3. Equality holds if and only if for all i, $a'_i = b'_i$ or $\frac{a_i}{b_i} = \text{constant}$.

The theorem is proved.
Divergence Inequality vs Log-Sum Inequality

- The divergence inequality implies the log-sum inequality.
Divergence Inequality vs Log-Sum Inequality

- The divergence inequality implies the log-sum inequality.
- The log-sum inequality also implies the divergence inequality. (Exercise)
Divergence Inequality vs Log-Sum Inequality

- The divergence inequality implies the log-sum inequality.
- The log-sum inequality also implies the divergence inequality. \textit{(Exercise)}
- The two inequalities are equivalent.
Theorem 2.33 (Pinsker’s Inequality)

\[D(p\|q) \geq \frac{1}{2\ln 2} V^2(p, q). \]
Theorem 2.33 (Pinsker’s Inequality)

\[D(p\|q) \geq \frac{1}{2 \ln 2} V^2(p, q). \]

- If \(D(p\|q) \) or \(D(q\|p) \) is small, then so is \(V(p, q) = V(q, p) \).

• See Problems 23 and 24 for details.
Theorem 2.33 (Pinsker’s Inequality)

\[D(p\|q) \geq \frac{1}{2\ln 2} V^2(p, q). \]

• If \(D(p\|q) \) or \(D(q\|p) \) is small, then so is \(V(p, q) = V(q, p) \).

• For a sequence of probability distributions \(q_k \), as \(k \to \infty \), if \(D(p\|q_k) \to 0 \) or \(D(q_k\|p) \to 0 \), then \(V(p, q_k) = V(q_k, p) \to 0 \).
Theorem 2.33 (Pinsker’s Inequality)

\[D(p\|q) \geq \frac{1}{2 \ln 2} V^2(p, q). \]

• If \(D(p\|q) \) or \(D(q\|p) \) is small, then so is \(V(p, q) = V(q, p) \).

• For a sequence of probability distributions \(q_k \), as \(k \to \infty \), if \(D(p\|q_k) \to 0 \) or \(D(q_k\|p) \to 0 \), then \(V(p, q_k) = V(q_k, p) \to 0 \).

• That is, “convergence in divergence” is a stronger notion than “convergence in variational distance.”

• See Problems 23 and 24 for details.
Theorem 2.33 (Pinsker’s Inequality)

\[D(p\|q) \geq \frac{1}{2\ln 2} V^2(p, q). \]

- If \(D(p\|q) \) or \(D(q\|p) \) is small, then so is \(V(p, q) = V(q, p) \).

- For a sequence of probability distributions \(q_k \), as \(k \to \infty \), if \(D(p\|q_k) \to 0 \) or \(D(q_k\|p) \to 0 \), then \(V(p, q_k) = V(q_k, p) \to 0 \).

- That is, “convergence in divergence” is a stronger notion than “convergence in variational distance.”

- See Problems 23 and 24 for details.