Index Coding
 - Optimality of Fractional Coloring
 \& Minimal Necessity of Non-Shannon Inequalities

Hua Sun
Center for Pervasive Communications and Computing (CPCC) University of California Irvine

Joint work with Xinping Yi, Syed Jafar, David Gesbert

Index Coding

[Birk, Kol, INFOCOM98]
Bottleneck: the only finite-capacity link

The "antidotes" simply mean that these undesired messages are known to the receivers, a-priori.

Hat Guessing Game

2 players, each has a hat
The hat can be one of 2 colors

Each player sees the other's hat, but not his own
Guess the color of their own simultaneously
Can agree on a strategy before the hats are drawn No communication allowed later on

Maximize the probability everybody guesses correctly
Is seeing independent information helpful?
Can we do better than $\left(\frac{1}{2}\right)^{2}$?
Answer: $\frac{1}{2}$
Strategy: Common belief that both hats have the same color

Index ceodiraganbiew

Solution:

```
Hat colors }\mp@subsup{x}{i}{}\in{0,1
All players assume }\quad\begin{array}{l}{\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{}+\mp@subsup{x}{5}{}+\mp@subsup{x}{5}{}=0}\\{\mp@subsup{x}{4}{}=0}
```

$\operatorname{Prob}($ assumed correct $)=1 / 4$

If assumption is correct,
then everyone guesses their hat color correctly.

Approaches

- Graph Theoretic:
coloring [Birk, Kol, 98]
fractional coloring [Blasiak, Kleinberg, Lubetzky, 10]
local fractional coloring [Shanmugam, Dimakis, Langberg, 13]
(vector) minrank [Bar-Yossef et al, 11] [Lubetzky, Stav, 09] [Jafar, 13]
acyclic outer bound [Bar-Yossef et al, 11] [Tehrani, Dimakis Neely, 12]
graph product [Alon et al, 08] [Blasiak, Kleinberg, Lubetzky, 11] [Arbabjolfaei, Kim, 15]
graph homomorphism [Ebrahimi, Siavoshani, 14]
- Information Theoretic:
network coding:
matroid theory [Rouayheb, Sprintson, Georghiades, 10]
information inequalities [Blasiak, Kleinberg, Lubetzky, 10]
network equivalence [Effros, Rouayheb, Langberg, 14] and others
random coding [Arbabjolfaei, Kim, et al, 14]
rate distortion [Unal, Wagner, 14]
- Optimization:
integer programming [Yu, Neely, 13]
matrix completion [Jaganathan, Thramboulidis, Hassibi et al, 14]
- Interference Alignment
[Hamed, Cadambe, Jafar, 11] [Jafar, 12, 13] [Sun, Jafar, 13]

Solved Classes of Index Coding Problems

- where sum capacity $=1$ [Bar-Yossef et al, 11] [Tehrani, Dimakis Neely, 12]
- half-rate feasible instances [Blasiak, et al, 10] [Jafar, 13]
- alignment graph has no cycles or forks [Jafar, 13]
- alignment graph has no overlapping cycles [Sun, Jafar, 13]
- 5 or fewer messages, unicast [Arbabjolfaei, et al, 14]
- single uniprior instances [Ong, Ho, Lim, 14]
- each message not known at $\leq 2 R \times$ [Unal, Wagner, 14]

When is the simplest coloring scheme optimal?

Difficulty

Needs non-linear coding schemes [Rouayheb et al, 10] [Maleki et al, 12]

Needs non-shannon information inequalities (computer search)[Riis '07, '13]
(matroids) [Blasiak, Kleinberg, Lubetzky, '10, '11]
(by hand, alignment perspective)[Sun, Jafar '13]

How far can we go with only Shannon Inequalities?

Outline

1. Optimality of the Simplest Coloring Scheme
2. Minimal Necessity of Non-Shannon Inequalities
3. Remaining Challenges

Outline

1. Optimality of the Simplest Coloring Scheme

1a. Main Result
1b. Special Case: Convex networks
1c. Proof
2. Minimal Necessity of Non-Shannon Inequalities
3. Remaining Challenges

Fractional Coloring achieves All-unicast Capacity Region if and only if Network Topology is Chordal

Fractional Coloring achieves All-unicast Capacity Region if and only if Network Topology is Chordal

Coloring: (clique cover, TDMA, scheduling, orthogonal access)
Schedule messages that are non-interfering/orthogonal.
Fractional: Allows time sharing.

Fractional Coloring achieves All-unicast Capacity Region if and only if Network Topology is Chordal

Coloring: (clique cover, TDMA, scheduling, orthogonal access)
Schedule messages that are non-interfering/orthogonal.
Fractional: Allows time sharing.

Network Topology: Complement of Antidote Graph
Chordal: All Cycles have Chord
All Unicast: Each Tx has a message for each Rx Include arbitrary subset of the 17 messages
Capacity Region: Includes symmetric/sum capacity

Outline

1. Optimality of the Simplest Coloring Scheme

1a. Main Result
1b. Special Case: Convex networks
1c. Proof
2. Minimal Necessity of Non-Shannon Inequalities
3. Remaining Challenges

One-dimensional Convex Cellular Topologies
(index coding problem)
[Maleki, Jafar '13]

One-dimensional Convex Cellular Topologies
(index coding problem)

Each link can carry an independent desired message
Scheduling is IT optimal for symmetric capacity, sum capacity and capacity region

Illustrating Example

Sum capacity $=2$
$\left(D_{2}, W_{2}\right) \geq D_{3}$
Acyclic outer bound $\left\{\begin{array}{l}R_{1}+R_{2}+R_{3} \leq 1 \\ R_{4}+R_{5} \leq 1\end{array}\left(D_{2}, W_{2}, W_{3}\right) \geq D_{1}\right.$
Symmetric capacity $=1 / 3$
Capacity region:
set of all acyclic outer bounds $=$ convex hull of all TDMA points

Two-dimensional Convex Cellular Topologies
Fact: 2-dim convex networks are not chordal.

Fact: Scheduling is not optimal.

Conjecture: Scheduling is still close to optimal.

Outline

1. Optimality of the Simplest Coloring Scheme

1a. Main Result
1b. Special Case: Convex networks
1c. Proof
2. Minimal Necessity of Non-Shannon Inequalities
3. Remaining Challenges

Fractional Coloring achieves All-unicast Capacity Region if and only if Network Topology is Chordal Sufficiency: Chordal \rightarrow Coloring is optimal

Fractional Coloring achieves All-unicast Capacity Region if and only if Network Topology is Chordal
Necessity: Not chordal \rightarrow Coloring is sub-optimal

For the cyclic sub-network,
\exists a rate tuple that is not achievable by coloring.

Outline

1. Optimality of the Simplest Coloring Scheme

1a. Main Result
1b. Special Case: Convex networks
1c. Proof
2. Minimal Necessity of Non-Shannon Inequalities

2a. An Interference Alignment Perspective

2b. The Simplest Hard Problem
3. Remaining Challenges

Index Coding - Interference Alignment Perspective

Index Coding - Interference Alignment Perspective

Index Coding - Interference Alignment Perspective

Interference Alignment Perspective

Interference Alignment Perspective

$$
\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}: 2 \times 1 \text { vectors }
$$

Interference Alignment Conditions:

1) Interferers should align as much as possible
2) Desired signal must not align with interference

Alignment graph (solid black edges) Conflict graph (dashed red edges)

Connected components of alignment graph are alignment sets
There is no internal conflict.
Assign a 2×1 vector to each alignment set
Achieved Rate $=1 / 2$ per user

Interference Alignment Perspective

$\mathbf{S}=\mathbf{V}_{1} x_{1}+\mathbf{V}_{3} x_{2}+\mathbf{V}_{2} x_{3}+\mathbf{V}_{2} x_{4}+\mathbf{V}_{1} x_{5}$

$\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}: 2 \times 1$ vectors

$$
\begin{array}{r}
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
S(1)=x_{1}+x_{2}+x_{5} \\
S(2)=x_{2}+x_{3} \text { to } x_{4}
\end{array}
$$

Hat Guessing View

Two colors for each message

$$
S(1)=x_{1}+x_{2}+x_{5}
$$

Outline

1. Optimality of the Simplest Coloring Scheme

1a. Main Result
1b. Special Case: Convex networks
1c. Proof
2. Minimal Necessity of Non-Shannon Inequalities

2a. An Interference Alignment Perspective
2b. The Simplest Hard Problem
3. Remaining Challenges

Non-Shannon Inequalities

	IT Capacity	Linear Capacity
	Entropy Space (random variables)	Vector Space (subspaces)
	Information Inequalities \quad C	Linear Rank Inequalities
≤ 3	Polymatroidal Axioms non-negativeness of Shannon information measurements)	Polymatroidal Axioms (non-negativeness of Shannon information measurements)
	Non-Shannon-type Information Inequality [Zhang,Yeung,TIT98] Infinite many [Matus, ISIT2007] Open	Ingleton Inequalities [Ingleton, 71]
$=5$	Open	24 more inequalities [Dougherty,Freiling,Zeger, 10]
>5	Open	Open

Simplest Example (for non-Shannon needed)
(from alignment perspective)
by hand, from scratch
[Sun, Jafar, 13]

For receiver 11
$5 d / 2 \leq 1$
$d \leq 2 / 5$
$2 / 5$ is the best bound possible through Shannon inequalities

Can be tightened to $11 / 28$ with
Zhang-Yeung non-Shannon inequality

Simplest Example

Vector Space Interpretation

$0=2 / 5$: rate constraint
$\ldots=3 / 5$: interference constraint
$\mathcal{L}=4 / 5$: submodularity constraint
Above three satisfy all polymatroidal constraints.
For example, $(2,3)+(3,4) \geq(2,3,4)+3$?

$$
\begin{aligned}
& \Leftarrow|-|+|-|\geq|\triangle|+|0| \\
& \Leftarrow 3 / 5+3 / 5 \geq 4 / 5+2 / 5
\end{aligned}
$$

a, b, c, d, e :
$1 / 5$-size generic space
Overlap of 3 and $4=|0|+|0|-|-|$

$$
=1 / 5
$$

Simplest Example

Vector Space Interpretation
Vector Space used by $W_{i}: \mathbf{V}_{i}$

$$
\begin{aligned}
\operatorname{dim}\left(\mathbf{V}_{2} \cap \mathbf{V}_{5}\right) \geq & \operatorname{dim}\left(\mathbf{V}_{2} \cap\left(\mathbf{V}_{3} \cap \mathbf{V}_{4}\right)\right)+\operatorname{dim}\left(\mathbf{V}_{5} \cap\left(\mathbf{V}_{3} \cap \mathbf{V}_{4}\right)\right)-\operatorname{dim}\left(\mathbf{V}_{3} \cap \mathbf{V}_{4}\right) \\
\geq & \operatorname{dim}\left(\mathbf{V}_{2} \cap \mathbf{V}_{3}\right)+\operatorname{dim}\left(\mathbf{V}_{2} \cap \mathbf{V}_{4}\right)-\operatorname{dim}\left(\mathbf{V}_{2} \cap\left(\mathbf{V}_{3}, \mathbf{V}_{4}\right)\right) \\
& +\operatorname{dim}\left(\mathbf{V}_{5} \cap \mathbf{V}_{3}\right)+\operatorname{dim}\left(\mathbf{V}_{5} \cap \mathbf{V}_{4}\right)-\operatorname{dim}\left(\mathbf{V}_{5} \cap\left(\mathbf{V}_{3}, \mathbf{V}_{4}\right)\right)-\operatorname{dim}\left(\mathbf{V}_{3}, \mathbf{V}_{4}\right)
\end{aligned}
$$

$\Rightarrow \quad \operatorname{dim}\left(\mathbf{V}_{2}, \mathbf{V}_{3}\right)+\operatorname{dim}\left(\mathbf{V}_{2}, \mathbf{V}_{4}\right)+\operatorname{dim}\left(\mathbf{V}_{3}, \mathbf{V}_{4}\right)+\operatorname{dim}\left(\mathbf{V}_{3}, \mathbf{V}_{5}\right)+\operatorname{dim}\left(\mathbf{V}_{4}, \mathbf{V}_{5}\right)$

$$
\geq \operatorname{dim}\left(\mathbf{V}_{3}\right)+\operatorname{dim}\left(\mathbf{V}_{4}\right)+\operatorname{dim}\left(\mathbf{V}_{2}, \mathbf{V}_{5}\right)+\operatorname{dim}\left(\mathbf{V}_{2}, \mathbf{V}_{3}, \mathbf{V}_{4}\right)+\operatorname{dim}\left(\mathbf{V}_{3}, \mathbf{V}_{4}, \mathbf{V}_{5}\right)
$$

$$
\Rightarrow 5 \times \frac{3}{5} \geq 4 \times \frac{2}{5}+2 \times \frac{4}{5}
$$

Ingleton inequality

$$
\Rightarrow \frac{15}{5} \geq \frac{16}{5}, \text { contradiction! }
$$

```

\section*{Simplest Example}

Linear Capacity (=5/13)
\(\mathbf{v}_{1}, \ldots, \mathbf{v}_{18}\) : Generic \(13 \times 1\) random vectors
\(\mathbf{V}_{7}, \ldots, \mathbf{V}_{11}\) : Generic \(13 \times 5\) random matrices
\[
\begin{gathered}
\mathbf{v}_{2}=\left[\mathbf{v}_{1,3,6,9,10}\right] \\
\mathbf{v}_{1}=\left[\mathbf{v}_{1,2,3,4,5}\right] \\
\mathbf{v}_{3}=\left[\mathbf{v}_{2,4,4,14,11,12}\right]
\end{gathered}
\]
(7) \(\mathbf{V}_{7}\)
(8) \(\mathbf{V}_{8}\)
(9) \(\mathbf{V}_{9}\)
(10) \(\mathbf{V}_{10}\)
(11) \(\mathbf{V}_{11}\)

\section*{No Simpler Example}
solved all cases with 6 or fewer edges in each alignment set

(b)

(c)

(d) \(\quad \mathbf{V}_{5}=\left[\mathbf{V}_{1} \mathbf{Q}_{5}, \mathbf{V}_{3} \mathbf{Q}_{6}\right]\)
\[
\Delta=2,3
\]

\[
\mathbf{V}_{4}=\left[\mathbf{V}_{2} \mathbf{Q}_{4}, \mathbf{v}_{\Delta+2}\right]
\]
(e)

(f)

\section*{Simplest Example for groupcast}
[Sun, Jafar, 13]


Open: Simplest unicast example with min number of messages

\section*{Outline}
1. Optimality of the Simplest Coloring Scheme

1a. Main Result
1b. Special Case: Convex networks
1c. Proof
2. Minimal Necessity of Non-Shannon Inequalities

2a. An Interference Alignment Perspective
2b. The Simplest Hard Problem
3. Remaining Challenges

\section*{Open Problem 1: Compute best linear rate?}

Best linear rate \(=\) vector minrank
Can also be stated as alignment constraints.

Multi-Letter in essence.
No bound on the number of symbol extension needed.

Open Problem 2: Separate encoding
\[
s=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}
\]


Non-shannon needed?
Non-Linear needed?
Relates to the DoF of Gaussian networks.

Thanks!


\section*{References}
[Birk, Kol, INFOCOM98] Y. Birk and T. Kol, "Informed-source coding-on-demand (ISCOD) over broadcast channels," in IEEE INFOCOM'98, vol. 3, 1998, pp. 1257-1264.
[Rouayheb et. al] [Effros, Rouayheb, Langberg, 14] M. Effros, S. El Rouayheb, and M. Langberg, "An Equivalence between Network Coding and Index Coding," ArXiv:1211.6660, Nov. 2012.
[Mazumdar, 14] A. Mazumdar, "Storage capacity of repairable networks," arXiv:1408.4862, Aug. 2014.
[Shanmugam, Dimakis, 14] K. Shanmugam and A. G. Dimakis, "Bounding multiple unicasts through index coding and locally repairable codes," arXiv:1402.3895, Feb. 2014.
[Maddah-Ali, Niesen, 12] M. Maddah-Ali and U. Niesen, "Fundamental limits of caching," IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.
[Soren, Riis, NetCod06] S. Riis, "Information flows, graphs and their guessing numbers," The Electronic Journal of Combinatorics, vol. 14, no. 1, p. R44, 2007.
[Jafar, 13] S. A. Jafar, "Topological interference management through index coding," IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 529-568, Jan. 2014

\section*{References}
[Jafar, 12] S. A. Jafar, "Elements of cellutar blind interference alignment - aligned frequency reuse, wireless index coding and interference diversity," ArXiv:1203.2384, March 2012.
[Blasiak, Kleinberg, Lubetzky, 10] A. Blasiak, R. Kleinberg, and E. Lubetzky, "Broadcasting with side information: Bounding and approximating the broadcast rate," IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 5811- 5823, 2013.
[Shanmugam, Dimakis, Langberg, 13] K. Shanmugam, A. Dimakis, and M. Langberg, "Local Graph Coloring and Index Coding," ArXiv:1301.5359, Jan. 2013.
[Bar-Yossef et al, 11] Z. Bar-Yossef and Y. Birk and T. S. Jayram and T. Kol, "Index Coding With Side Information," IEEE Trans. on Information Theory, vol. 57, no. 3, pp. 1479 - 1494, March 2011.
[Lubetzky, Stav, 09] E. Lubetzky and U. Stav, "Non-linear index coding outperforming the Linear optimum," IEEE Trans. Inf. Theory, vol. 55, no. 8, pp. \(3544-3551\), Aug. 2009.
[Neely, Tehrani, Zhang, 12] M. J. Neely, A. S. Tehrani, and Z. Zhang, "Dynamic index coding for wireless broadcast networks," IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7525-7540, Nov. 2013.

\section*{References}
[Alon et al, 08] N. Alon, A. Hasidim, E. Lubetzky, U. Stav, and A. Weinstein, "Broadcasting with side information," ArXiv:0806.3246, Jun. 2008.
[Blasiak, Kleinberg, Lubetzky, 11] A. Blasiak, R. Kleinberg, and E. Lubetzky, "Lexicographic products and the power of non-linear network coding," ArXiv:1108.2489, Aug. 2011.
[Arbabjolfaei, Kim, 15] F. Arbabjolfaei and Y. Kim, "Structural Properties of Index Coding Capacity Using Fractional Graph Theory," ArXiv:1504.06761, April, 2015.
[Arbabjolfaei, Kim, 15] F. Arbabjolfaei and Y. Kim, "On Critical Index Coding Problems," ArXiv:1504.06760, April, 2015.
[Ebrahimi, Siavoshani, 14] J. Ebrahimi and M. Siavoshani, "Linear Index Coding via Graph Homomorphism," ArXiv:1410.1371, Oct. 2014.
[Rouayheb, Sprintson, Georghiades, 10] S. Rouayheb, A. Sprintson, and C. Georghiades, "On the Index Coding Problem and Its Relation to Network Coding and Matroid Theory," IEEE Transactions on Information Theory, vol. 56, no. 7, pp. 3187-3195, July 2010.

\section*{References}
[Arbabjolfaei, Kim, et. al, 14] F. Arbabjolfaei, B. Bandemer, Y. Kim, E. Sasoglu, and L. Wang, "On the Capacity Region for Index Coding," ArXiv:1302.1601, Feb. 2014.
[Unal, Wagner, 14] S. Unal and A. B. Wagner, "A rate-distortion approach to index coding," in Inf. Theory and Applications Workshop (ITA), 2014, pp. 1-5.
[Yu, Neely, 13] H. Yu and M. Neely, "Duality Codes and the Integrality Gap Bound for Index Coding ," ArXiv:1307.2295 , July, 2013.
[Jaganathan, Thramboulidis, Hassib, 14] Babak Hassib (online slides), "Topological Interference Alignment in Wireless Networks."
[Hamed, Cadambe, Jafar, 11] H. Maleki, V. Cadambe, and S. Jafar, "Index coding - an interference alignment perspective," ISIT 2012, Preprint of Full Paper available at ArXiv:1205.1483, 2012.
[Sun, Jafar, 13] H. Sun and S. A. Jafar, "Index coding capacity: How far can one go with only Shannon inequalities?" arXiv:1303.7000, Mar. 2013.
[Ong, Ho, Lim, 14] L. Ong, C. K. Ho, and F. Lim, "The singleuniprior index-coding problem: The single-sender case and the multisender extension," arXiv:1412.1520, Dec. 2014.

\section*{References}
[Riis, '07, '14] R. Baber, D. Christofides, A. N. Dang, S. Riis, and E. R. Vaughan, "Multiple unicasts, graph guessing games, and nonshannon inequalities," in International Symposium on Network Coding (NetCod), 2013, pp. 1-6
[Maleki, Jafar, '13] H. Maleki and S. A. Jafar, "Optimality of orthogonal access for onedimensional convex cellular networks," IEEE communications letters, vol. 17, no. 9, pp. 1770-1773, Sept. 2013.
[Tahmasbi, Shahrasbi, Gohari, '14] M. Tahmasbi, A. Shahrasbi, and A. Gohari, "Critical graphs in index coding," in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, Jul. 2014, pp. 281-285..```

