Secure Compute-and-Forward Using Nested Lattice Codes

Navin Kashyap

Department of Electrical Communication Engineering Indian Institute of Science

February 17, 2014

Joint work with Shashank V. and Andrew Thangaraj

1/40

Network Coding:

- Multiple sources and destinations connected via intermediate relay nodes
- \bullet Source messages belong to \mathbb{F}^k for some finite field $\mathbb F$
- Relay nodes compute and forward some function (e.g., a linear combination over $\mathbb F)$ of their incoming messages

Wireless Networks:

- All links between nodes are wireless with additive white Gaussian noise (AWGN)
- $\bullet~\mathbb{R}\mathchar`-$ or $\mathbb{C}\mathchar`-valued$ signals broadcast to all neighbouring nodes
- Superposition of signals received simultaneously at receiver:

$$\mathbf{y} = \sum_{i=1}^t h_i \mathbf{x}_i + \text{ noise},$$

 h_i being the fading coefficient of the link from *i*th transmitter to receiver; h_i s are known to receiver

Bidirectional Relay

A useful primitive in physical-layer network coding:

- Nodes A and B have messages X and Y, respectively, which they want to exchange.
- There is no direct link between the two nodes; they can only communicate through an intermediate relay node.
- The messages belong to some finite set G; to facilitate message exchange, G is equipped with a suitable addition operation ⊕ that makes it a finite Abelian group.

(a) MAC phase:

(b) Broadcast phase:

 u, v are vectors (codewords) in ℝ^d

• $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Equal channel gains:

 $\mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{z}$

 $(+ \text{ denotes addition over } \mathbb{R})$

(a) MAC phase:

(b) Broadcast phase:

- **u**, **v** are vectors (codewords) in \mathbb{R}^d
- $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
- Equal channel gains:

 $\mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{z}$ (+ denotes addition over \mathbb{R}) The broadcast phase is not relevant to our work.

Reliable Computation of $X \oplus Y$ at the Relay

- Rate: $R = \frac{1}{d} \log_2 |\mathbb{G}|$
- Power Constraint: $\frac{1}{d} \|\mathbf{u}\|^2 \leq \mathcal{P}$ and $\frac{1}{d} \|\mathbf{v}\|^2 \leq \mathcal{P}$

Reliable Computation of $X \oplus Y$ at the Relay

• Rate:
$$R = \frac{1}{d} \log_2 |\mathbb{G}|$$

• Power Constraint: $\frac{1}{d} \| \mathbf{u} \|^2 \leq \mathcal{P}$ and $\frac{1}{d} \| \mathbf{v} \|^2 \leq \mathcal{P}$

Reliable computation of $X \oplus Y$ at the relay is possible (for suitably defined \oplus) at any rate R up to

$$\frac{1}{2}\log_2\left(\frac{1}{2} + \frac{\mathcal{P}}{\sigma^2}\right)$$

[Narayanan et al. (2007), Nazer & Gastpar (2007)]

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Lattices

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$ be linearly independent vectors in \mathbb{R}^d . The set $\Lambda = \{\sum_{i=1}^d a_i \mathbf{v}_i : a_i \in \mathbb{Z}\}$ is called a (full-rank) lattice.

Lattices

Define $Q_{\Lambda}(\mathbf{x}) := \arg \min_{\lambda \in \Lambda} \|\mathbf{x} - \lambda\|$.

The fundamental Voronoi region of Λ is defined as

 $\mathcal{V}(\Lambda) := \{\mathbf{y} \in \mathbb{R}^d : Q_{\Lambda}(\mathbf{y}) = \mathbf{0}\}$

Figure: Fundamental Voronoi region of Λ .

Nested Lattices

If Λ and Λ_0 are lattices in \mathbb{R}^d with $\Lambda_0 \subset \Lambda$, then Λ_0 is said to be nested within Λ , or Λ_0 is a sublattice of Λ .

 Λ is called the fine lattice and Λ_0 is called the coarse lattice.

Figure: The blue dots indicate the coarse lattice Λ_0 .

Cosets and Coset Representatives

The cosets of Λ_0 in Λ form a finite Abelian group $\mathbb{G} = \Lambda / \Lambda_0$.

Figure: λ_i is the coset representative of Λ_i within $\mathcal{V}(\Lambda_0)$.

<ロ><回><一><一><一><一><一><一</td>9/40

Nested Lattice Codes

Choose a pair of nested lattices $\Lambda_0 \subset \Lambda$ in \mathbb{R}^d .

- Messages: The message set \mathbb{G} is identified with Λ/Λ_0 . Let $\Lambda_0, \Lambda_1, \dots, \Lambda_{N-1}$ be the elements of Λ/Λ_0 .
- Codebook: $C = \Lambda \cap \mathcal{V}(\Lambda_0) = \{\lambda_0, \lambda_1, \dots, \lambda_{N-1}\}.$

Nested Lattice Codes

Choose a pair of nested lattices $\Lambda_0 \subset \Lambda$ in \mathbb{R}^d .

- Messages: The message set \mathbb{G} is identified with Λ/Λ_0 . Let $\Lambda_0, \Lambda_1, \dots, \Lambda_{N-1}$ be the elements of Λ/Λ_0 .
- Codebook: $C = \Lambda \cap \mathcal{V}(\Lambda_0) = \{\lambda_0, \lambda_1, \dots, \lambda_{N-1}\}.$
- Encoding: Given message Λ_j, encoder transmits the coset representative λ_j.

Thus, the coset reps must satisfy the power constraint:

$$rac{1}{d} \| oldsymbol{\lambda}_j \|^2 \leq \mathcal{P}$$
 for all j

Nested Lattice Codes

Choose a pair of nested lattices $\Lambda_0 \subset \Lambda$ in \mathbb{R}^d .

- Messages: The message set \mathbb{G} is identified with Λ/Λ_0 . Let $\Lambda_0, \Lambda_1, \dots, \Lambda_{N-1}$ be the elements of Λ/Λ_0 .
- Codebook: $C = \Lambda \cap \mathcal{V}(\Lambda_0) = \{\lambda_0, \lambda_1, \dots, \lambda_{N-1}\}.$
- Encoding: Given message Λ_j, encoder transmits the coset representative λ_j.

Thus, the coset reps must satisfy the power constraint:

 $rac{1}{d} \| oldsymbol{\lambda}_j \|^2 \leq \mathcal{P} \quad ext{for all } j$

• Decoding: The relay receives $\mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{z}$.

1 Let $\tilde{\mathbf{w}} = Q_{\Lambda}(\mathbf{w})$ be the closest point in Λ to \mathbf{w} .

2 The estimate of $X \oplus Y$ is the coset to which $\tilde{\mathbf{w}}$ belongs. This is called nearest lattice point decoding.

Achievable Rates

- The rate of the nested lattice code is $R = \frac{1}{d} \log_2 |\Lambda/\Lambda_0|$.
- By choosing a "good" sequence of nested lattice pairs $(\Lambda_0^{(d)}, \Lambda^{(d)})$, with $d \to \infty$, reliable computation of $X \oplus Y$ at the relay is possible at any rate R up to

$$\frac{1}{2}\log_2\left(\frac{\mathcal{P}}{\sigma^2}\right).$$

• The techniques of "uniform dithering" and "MMSE equalization" at the decoder are used to achieve rates up to

$$\frac{1}{2}\log_2\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^2}\right).$$

[Narayanan et al. (2007), Nazer & Gastpar (2007)]

Reliable and Secure Computation of $X \oplus Y$

- X, Y uniformly distributed over some finite Abelian group G
- \mathbf{u}, \mathbf{v} are vectors (codewords) in \mathbb{R}^d
- $z \in \mathcal{N}(0, \sigma^2 I)$
- Relay receives $\mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{z}$ and must compute $X \oplus Y$.

Reliable and Secure Computation of $X \oplus Y$

- X, Y uniformly distributed over some finite Abelian group G
- \mathbf{u}, \mathbf{v} are vectors (codewords) in \mathbb{R}^d
- $\mathbf{z} \in \mathcal{N}(\mathbf{0}, \sigma^2 I)$
- Relay receives $\mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{z}$ and must compute $X \oplus Y$.
- Security Constraint:
 - Perfect Secrecy: $\mathbf{w} \perp \!\!\!\perp X$ and $\mathbf{w} \perp \!\!\!\perp Y$
 - Strong Secrecy: $\mathcal{I}(\mathbf{w}; X) \to 0$ and $\mathcal{I}(\mathbf{w}; Y) \to 0$ as $d \to \infty$.
 - Weak Secrecy: $\frac{1}{d}\mathcal{I}(\mathbf{w}; X) \to 0$ and $\frac{1}{d}\mathcal{I}(\mathbf{w}; Y) \to 0$ as $d \to \infty$.

Multi-hop line network using cooperative jamming: [He and Yener (2008)]

Butterfly network:

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 14 / 40

Nested Lattice Coding for Secure Computation

- Weak secrecy using random binning: He and Yener, Allerton, 2008.
- Strong secrecy using universal hash functions: He and Yener, IEEE Trans. Inf. Theory, Jan 2013.

Reliable and (strongly) secure computation of $X \oplus Y$ at the relay is possible, using nested lattice codes, at any rate R up to

$$\frac{1}{2}\log_2\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^2}\right)-1$$

[He and Yener (2013)]

He-Yener Coding Scheme

Randomized Encoding: Given message $a \in \mathbb{G}$, a codeword is picked uniformly at random from $g^{-1}(a)$ and transmitted.

• Each $\mathbf{g}^{-1}(a)$ contains $\sim 2^d$ codewords

・ロット (雪) (日) (日) (日)

Randomized Encoders

- Messages X, Y i.i.d. ∼ Unif(𝔅)
- Codebook $\mathcal{C} \subset \mathbb{R}^d$ is, in general, much larger than \mathbb{G}
- At Node A, given X = a, the transmitted codeword u ∈ C is picked according to some prob. distribution Pr[· |X = a]; similarly at Node B

Randomized Encoders

- Messages X, Y i.i.d. ∼ Unif(𝔅)
- Codebook $\mathcal{C} \subset \mathbb{R}^d$ is, in general, much larger than \mathbb{G}
- At Node A, given X = a, the transmitted codeword u ∈ C is picked according to some prob. distribution Pr[· |X = a]; similarly at Node B
- Rate: $R = \frac{1}{d} \log_2 |\mathbb{G}|$
- Power Constraint: $\frac{1}{d} \|\mathbf{u}\|^2 \leq \mathcal{P}$ and $\frac{1}{d} \|\mathbf{v}\|^2 \leq \mathcal{P}$

Randomized Encoders

- Messages X, Y i.i.d. ∼ Unif(𝔅)
- Codebook $\mathcal{C} \subset \mathbb{R}^d$ is, in general, much larger than \mathbb{G}
- At Node A, given X = a, the transmitted codeword u ∈ C is picked according to some prob. distribution Pr[· |X = a]; similarly at Node B
- Rate: $R = \frac{1}{d} \log_2 |\mathbb{G}|$
- Average Power Constraint: $\frac{1}{d}\mathbb{E}\|\mathbf{u}\|^2 \leq \mathcal{P}$ and $\frac{1}{d}\mathbb{E}\|\mathbf{v}\|^2 \leq \mathcal{P}$

Theorem (Shashank, K. and Thangaraj (2013))

(a) Reliable and perfectly secure computation of $X \oplus Y$ at the relay is possible at any rate R up to

$$\frac{1}{2}\log_2\left(\frac{\mathcal{P}}{\sigma^2}\right) - 1 - \log_2 e$$

under an average power constraint.

(b) If perfect secrecy above is relaxed to strong secrecy, then any rate *R* up to

$$\frac{1}{2}\log_2\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^2}\right)-\frac{1}{2}\log_2(2e)$$

is achievable under an average power constraint.

A Comparison of Achievable Rates

Nazer and Gastpar: $\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{\mathcal{P}}{\sigma^2} \right)$ He and Yener: $\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{\mathcal{P}}{\sigma^2} \right) - 1$ Shashank-K.-Thangaraj: Perfect: $\frac{1}{2} \log_2 \left(\frac{\mathcal{P}}{\sigma^2}\right) - 1 - \log_2 e$ Strong: $\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{\mathcal{P}}{\sigma^2}\right) - \frac{1}{2} \log_2 \left(\frac{2}{2}e\right)$

Our Coding Scheme

Choose a "good" pair of nested lattices $\Lambda_0 \subset \Lambda$ in \mathbb{R}^d . Choose a "good" probability density $f(\mathbf{x})$ defined on \mathbb{R}^d .

- Messages: The message set \mathbb{G} is identified with Λ/Λ_0 . Let $\Lambda_0, \Lambda_1, \dots, \Lambda_{N-1}$ be the elements of Λ/Λ_0 .
- Codebook: $C = \Lambda$
- Randomized Encoding: Given message Λ_j, encoder picks a codeword u ∈ Λ_j to be transmitted, according to a prob. distrib. p_j defined as follows:

$$p_j(\mathbf{u}) = egin{cases} rac{1}{Z(\Lambda_j)} f(\mathbf{u}) & ext{ if } \mathbf{u} \in \Lambda_j \ 0 & ext{ otherwise } \end{cases}$$

where $Z(\Lambda_j) = \sum_{\mathbf{u} \in \Lambda_j} f(\mathbf{u})$.

Decoding: Nearest lattice point decoding

Major Departures from Previous Coding Schemes

- \bullet Codebook ${\mathcal C}$ is countably infinite
- Prob. distributions used for randomization are obtained by sampling a pdf *f* at lattice points:

e.g., $(\Lambda, \Lambda_0) = (\mathbb{Z}, 2\mathbb{Z})$ and a Gaussian density f

• pdf f chosen so that $\frac{1}{d}\mathbb{E}\|\mathbf{u}\|^2 \leq \mathcal{P}$ and $\frac{1}{d}\mathbb{E}\|\mathbf{v}\|^2 \leq \mathcal{P}$

The choice of pdf f determines the secrecy properties of our coding scheme!

Strong secrecy obtained by choosing *f* to be an $\mathcal{N}(\mathbf{0}, \mathcal{P} I_d)$ density:

$$f(\mathbf{x}) = \frac{1}{\left(2\pi\mathcal{P}\right)^{d/2}} e^{-\frac{\|\mathbf{x}\|^2}{2\mathcal{P}}}$$

The choice of pdf f determines the secrecy properties of our coding scheme!

Strong secrecy obtained by choosing f to be an $\mathcal{N}(\mathbf{0}, \mathcal{P} I_d)$ density:

$$f(\mathbf{x}) = \frac{1}{\left(2\pi\mathcal{P}\right)^{d/2}} e^{-\frac{\|\mathbf{x}\|^2}{2\mathcal{P}}}$$

Nested lattice codes with discrete Gaussian distributions were previously proposed for the Gaussian wiretap channel by Ling, Luzzi, Belfiore and Stehlé [ArXiv:1210.6673] The choice of pdf f determines the secrecy properties of our coding scheme!

Strong secrecy obtained by choosing f to be an $\mathcal{N}(\mathbf{0}, \mathcal{P} I_d)$ density:

$$f(\mathbf{x}) = \frac{1}{\left(2\pi\mathcal{P}\right)^{d/2}} e^{-\frac{\|\mathbf{x}\|^2}{2\mathcal{P}}}$$

Nested lattice codes with discrete Gaussian distributions were previously proposed for the Gaussian wiretap channel by Ling, Luzzi, Belfiore and Stehlé [ArXiv:1210.6673]

Finding an f that yields perfect secrecy is a more interesting story

Noiseless Setting

X, Y i.i.d. Bernoulli(1/2) rvs, $X \oplus Y$ is their modulo-2 sum Want real-valued rvs U and V such that (1) $(X, U) \perp (Y, V)$ (2) U + V determines $X \oplus Y$ (3) $U + V \perp X$ and $U + V \perp Y$

Use the nested lattice pair $(\Lambda, \Lambda_0) = (\mathbb{Z}, 2\mathbb{Z})$: $\mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}_2$.

Randomized Encoding

At Node A:

• If X = 0, transmit an even integer U picked according to

$$\Pr[U=k \mid X=0] = p_0(k)$$

for a pmf p_0 supported within the even integers.

• If X = 1, transmit an odd integer U picked according to $\Pr[U = k \mid X = 1] = p_1(k)$

for a pmf p_1 supported within the odd integers.

At Node B:

• If Y = b, for $b \in \{0, 1\}$, transmit V picked according to p_b .

Randomized Encoding

At Node A:

• If X = 0, transmit an even integer U picked according to

$$\Pr[U=k \mid X=0] = p_0(k)$$

for a pmf p_0 supported within the even integers.

• If X = 1, transmit an odd integer U picked according to $Pr[U = k \mid X = 1] = p_1(k)$

for a pmf p_1 supported within the odd integers.

At Node B:

• If Y = b, for $b \in \{0, 1\}$, transmit V picked according to p_b .

$$p_{U|X=0} = p_{V|Y=0} = p_0 p_{U|X=1} = p_{V|Y=1} = p_1$$
 $\implies p_U = p_V = p \triangleq \frac{1}{2}(p_0 + p_1)$

How to Ensure (3) $U + V \perp X$ and $U + V \perp Y$?

To satisfy (3) $U + V \perp X$ and $U + V \perp Y$ we need $\Pr[U + V = k \mid X = a] = \Pr[U + V = k]$ for all $k \in \mathbb{Z}$ and $a \in \{0, 1\}$.

In other words, $p_{U|X=a} * p_V = p_U * p_V$ for $a \in \{0, 1\}$, i.e.,

 $p_0 * p = p_1 * p = p * p$.

25 / 40

(Recall: $p_U = p_V = p \triangleq \frac{1}{2}(p_0 + p_1))$

To summarize, we need pmfs p_0 and p_1 such that p_0 is supported within the even integers, p_1 is supported within the odd integers and

 $p_0*p=p_1*p=p*p,$

where $p = \frac{1}{2}(p_0 + p_1)$.

To summarize, we need pmfs p_0 and p_1 such that p_0 is supported within the even integers, p_1 is supported within the odd integers and

$$p_0*p=p_1*p=p*p,$$

where $p = \frac{1}{2}(p_0 + p_1)$.

Let $\varphi_*(t) = \sum_{k \in \mathbb{Z}} p_*(k) e^{ikt}$ be the characteristic function of p_* . We need characteristic functions that satisfy

 $\varphi_0 \cdot \varphi = \varphi_1 \cdot \varphi = \varphi^2,$

with $\varphi = \frac{1}{2}(\varphi_0 + \varphi_1)$.

It can be shown that

- finitely-supported p₀ and p₁ cannot have the required properties;
- in fact, light-tailed pmfs p₀ and p₁ cannot have the required properties. [M. Krishnapur]

Proposition

Let f be a pdf on \mathbb{R} whose char. function ψ is supported within $(-\pi/2, \pi/2)$, i.e., $\psi(t) = 0$ for $|t| \ge \pi/2$. For any $s \in \mathbb{R}$, define

$$\Psi(t) = \sum_{n=-\infty}^{\infty} (-1)^{sn} \psi(t+n\pi).$$

Then,

(a) Ψ(t) is the char. function of a pmf p_s supported within the set 2ℤ + s = {2k + s : k ∈ ℤ}, and
(b) for all u ∈ 2ℤ + s, we have p_s(u) = 2f(u).

The proof is based upon the Poisson summation formula of Fourier analysis.

The Basic Construction

The Basic Construction

<ロ > < 団 > < 邑 > < 三 > < 三 > 三 の Q (0 30 / 40

The Basic Construction

 $\varphi^2 = \varphi \varphi_0 = \varphi \varphi_1$

<ロト < 団ト < 巨ト < 巨ト < 巨ト < 巨 > 巨 の Q (30 / 40)

Coding Scheme for Noiseless Setting

X, Y i.i.d. Bernoulli(1/2) rvs

- Start with a pdf f having char. func. ψ supported within $(-\pi/2, \pi/2)$.
- ② Let $p_0(k) = 2f(k)$ for even $k \in \mathbb{Z}$, and 0 otherwise. Let $p_1(k) = 2f(k)$ for odd $k \in \mathbb{Z}$, and 0 otherwise.
- If X = 0 (resp. Y = 0), choose U (resp. V) according to the pmf p₀.
 If X = 1 (resp. Y = 1), choose U (resp. V) according to the pmf p₁.

Coding Scheme for Noiseless Setting

Fact

The resulting \mathbb{Z} -valued rvs U and V have finite second moment iff ψ is twice-differentiable. In this case,

$$\mathbb{E}[U^2] = \mathbb{E}[V^2] = -\psi''(0)$$

Thus, U and V can satisfy an average power constraint.

Compactly Supported Characteristic Functions

Example: The probability density function

$$f(x) = \begin{cases} \frac{1}{2\pi} & \text{if } x = 0\\ \frac{1 - \cos x}{\pi x^2} & \text{if } x \neq 0 \end{cases}$$

has char. function $\hat{f}(t) = \max\{0, 1 - |t|\}$, shown below:

Compactly Supported Characteristic Functions

Example: The probability density function

$$f(x) = \begin{cases} \frac{1}{2\pi} & \text{if } x = 0\\ \frac{1 - \cos x}{\pi x^2} & \text{if } x \neq 0 \end{cases}$$

has char. function $\hat{f}(t) = \max\{0, 1 - |t|\}$, shown below:

The function \hat{f} above is not twice-differentiable. Instead, consider $\psi(t) = \frac{3}{2}(\hat{f} * \hat{f})(t)$, which is supported within (-2, 2).

- ψ is the char. function of a pdf
- ψ is twice-differentiable, with $\psi''(0) = -3$.

Secure Computation over $\ensuremath{\mathbb{G}}$

X, Y i.i.d. rvs unif. distrib. over an Abelian group (\mathbb{G}, \oplus) of size N.

- Select a nested lattice pair $\Lambda_0 \subseteq \Lambda$ in \mathbb{R}^d such that $\mathbb{G} \cong \Lambda/\Lambda_0$. Let $\Lambda_0, \Lambda_1, \ldots, \Lambda_{N-1}$ be the cosets of Λ_0 in Λ .
- Select a pdf $f : \mathbb{R}^d \to \mathbb{R}_+$ with char. func. ψ supported within a ball of radius $2\pi\rho(\Lambda_0^*)$ around the origin, where $\rho(\Lambda_0^*)$ is the packing radius of the dual of Λ_0 .

• For
$$j = 0, 1, ..., N - 1$$
, define

 $p_j(\mathbf{k}) = \operatorname{vol}(\mathcal{V}(\Lambda_0)) f(\mathbf{k})$ for $\mathbf{k} \in \Lambda_j$; and 0 otherwise

Secure Computation over $\ensuremath{\mathbb{G}}$

• If $X = \Lambda_j$ (resp. $Y = \Lambda_j$), choose $\mathbf{u} \in \Lambda_j$ (resp. $\mathbf{v} \in \Lambda_j$) according to the pmf p_j .

Fact

The resulting Λ -valued rvs **u** and **v** have finite second moment iff ψ is twice-differentiable. In this case,

 $\mathbb{E}\|\mathbf{u}\|^2 = \mathbb{E}\|\mathbf{v}\|^2 = -\Delta\psi(\mathbf{0}),$

where $\Delta = \sum_{i=1}^{d} \partial_i^2$ denotes the Laplacian operator.

35 / 40

The EGR Theorem

Let j_k denote the first positive zero of the Bessel function J_k .

Theorem (Ehm, Gneiting and Richards (2004))

If $\psi : \mathbb{R}^d \to \mathbb{C}$ is a characteristic function supported within a ball of radius ρ around the origin, then

$$-\Delta\psi(\mathbf{0})\geq rac{4}{
ho^2}j_{rac{d-2}{2}}^2$$
 (1)

with equality iff $\psi(\mathbf{t})$ equals a certain $\psi^*(\mathbf{t})$.

The EGR Theorem

Let j_k denote the first positive zero of the Bessel function J_k .

Theorem (Ehm, Gneiting and Richards (2004))

If $\psi : \mathbb{R}^d \to \mathbb{C}$ is a characteristic function supported within a ball of radius ρ around the origin, then

$$-\Delta\psi(\mathbf{0}) \ge \frac{4}{\rho^2} j_{\frac{d-2}{2}}^2 \tag{1}$$

with equality iff $\psi(\mathbf{t})$ equals a certain $\psi^*(\mathbf{t})$.

Therefore, the *tightest* average power constraint that the Λ -valued rvs **u** and **v** can satisfy is

$$\frac{1}{d}\mathbb{E}\|\mathbf{u}\|^2 = \frac{1}{d}\mathbb{E}\|\mathbf{v}\|^2 \leq \mathcal{P}(\Lambda_0) := \frac{1}{d\,\pi^2\,\rho(\Lambda_0^*)^2}j_{\frac{d-2}{2}}^2$$

Coding Scheme for Noisy Setting

X, Y i.i.d. rvs unif. distrib. over an Abelian group (\mathbb{G}, \oplus) of size N. Encoding:

As described for secure computation in the noiseless setting

Decoding:

- **(**) Find the closest lattice point $\lambda \in \Lambda$ to the received vector **w**.
- **2** Decode to the coset Λ_j to which λ belongs.

Performance of Coding Scheme

Perfect Secrecy: As noise z is independent of everything else, we still have

 $\mathbf{w} \perp \!\!\!\perp X$ and $\mathbf{w} \perp \!\!\!\perp Y$

Performance of Coding Scheme

Perfect Secrecy: As noise z is independent of everything else, we still have

 $\mathbf{w} \perp \!\!\!\perp X$ and $\mathbf{w} \perp \!\!\!\perp Y$

Reliability: There exist "good" nested lattice pairs $\Lambda_0 \subseteq \Lambda$ in \mathbb{R}^d for which the resulting coding schemes

have rate

$$R \approx rac{1}{2}\log_2\left(rac{\overline{
ho}(\Lambda_0)^2}{d\sigma^2}
ight),$$

where $\overline{\rho}(\Lambda_0)$ is the covering radius of Λ_0 ; and

• compute $X \oplus Y$ within $\mathbb{G} = \Lambda / \Lambda_0$ arbitrarily reliably

Performance of Coding Scheme

Perfect Secrecy: As noise z is independent of everything else, we still have

 $\mathbf{w} \perp \!\!\!\perp X$ and $\mathbf{w} \perp \!\!\!\perp Y$

Reliability: There exist "good" nested lattice pairs $\Lambda_0 \subseteq \Lambda$ in \mathbb{R}^d for which the resulting coding schemes

have rate

$$R \approx rac{1}{2}\log_2\left(rac{\overline{
ho}(\Lambda_0)^2}{d\sigma^2}
ight),$$

where $\overline{\rho}(\Lambda_0)$ is the covering radius of Λ_0 ; and

• compute $X \oplus Y$ within $\mathbb{G} = \Lambda / \Lambda_0$ arbitrarily reliably

Average Power Constraint:

$$\frac{1}{d}\mathbb{E}\|\mathbf{u}\|^2 = \frac{1}{d}\mathbb{E}\|\mathbf{v}\|^2 \le \mathcal{P}(\Lambda_0) := \frac{1}{d \,\pi^2 \,\rho(\Lambda_0^*)^2} j_{\frac{d-2}{2}}^2$$

38 / 40

Achievable Rate for Coding Scheme

For sufficiently large d, the coarse lattice Λ_0 in \mathbb{R}^d can be chosen so that

•
$$\overline{\rho}(\Lambda_0) \approx \frac{1}{2e} \sqrt{d\mathcal{P}}$$
 and $\rho(\Lambda_0^*) \approx \frac{d}{4\pi e} \frac{1}{\overline{\rho}(\Lambda_0)}$

Also,

• $j_{\frac{d-2}{2}} = \frac{d}{2} \left[1 + o(1) \right]$

Theorem (Shashank-K.-Thangaraj (2013))

Reliable and perfectly secure computation of $X \oplus Y$ at the relay is possible (for suitably defined \oplus) at any rate R up to

$$\frac{1}{2}\log_2\left(\frac{\mathcal{P}}{4e^2\sigma^2}\right)$$

under an average power constraint \mathcal{P} .

Achievable Rate for Coding Scheme

For sufficiently large d, the coarse lattice Λ_0 in \mathbb{R}^d can be chosen so that

•
$$\overline{\rho}(\Lambda_0) \approx \frac{1}{2e} \sqrt{d\mathcal{P}}$$
 and $\rho(\Lambda_0^*) \approx \frac{d}{4\pi e} \frac{1}{\overline{\rho}(\Lambda_0)}$

Also,

• $j_{\frac{d-2}{2}} = \frac{d}{2} \left[1 + o(1) \right]$

Theorem (Shashank-K.-Thangaraj (2013))

Reliable and perfectly secure computation of $X \oplus Y$ at the relay is possible (for suitably defined \oplus) at any rate R up to

$$\frac{1}{2}\log_2\left(\frac{\mathcal{P}}{4e^2\sigma^2}\right)$$

under an average power constraint \mathcal{P} .

Open question: Is this the best one can do?

- Higher achievable rates? This question is restricted to coding schemes in which randomization is via pmfs obtained by sampling pdfs at lattice points.
- Converse bounds. No upper bound better than $\frac{1}{2}\log_2\left(1+\frac{\mathcal{P}}{\sigma^2}\right)$ is known for achievable rates for reliable computation at the relay *even without secrecy*.
- Low-complexity decoding. Nearest lattice point decoding is computationally hard.