Secure Compute-and-Forward Using Nested Lattice Codes

Navin Kashyap
Department of Electrical Communication Engineering Indian Institute of Science

February 17, 2014

Joint work with Shashank V. and Andrew Thangaraj

Motivation: Physical-Layer Network Coding

Network Coding:

- Multiple sources and destinations connected via intermediate relay nodes
- Source messages belong to \mathbb{F}^{k} for some finite field \mathbb{F}
- Relay nodes compute and forward some function (e.g., a linear combination over \mathbb{F}) of their incoming messages

Wireless Networks:

- All links between nodes are wireless with additive white Gaussian noise (AWGN)
- \mathbb{R} - or \mathbb{C}-valued signals broadcast to all neighbouring nodes
- Superposition of signals received simultaneously at receiver:

$$
\mathbf{y}=\sum_{i=1}^{t} h_{i} \mathbf{x}_{i}+\text { noise },
$$

h_{i} being the fading coefficient of the link from i th transmitter to receiver; h_{i} s are known to receiver

Bidirectional Relay

A useful primitive in physical-layer network coding:

- Nodes A and B have messages X and Y, respectively, which they want to exchange.
- There is no direct link between the two nodes; they can only communicate through an intermediate relay node.
- The messages belong to some finite set \mathbb{G}; to facilitate message exchange, \mathbb{G} is equipped with a suitable addition operation \oplus that makes it a finite Abelian group.

Compute-and-Forward

(a) MAC phase:

- \mathbf{u}, \mathbf{v} are vectors (codewords) in \mathbb{R}^{d}
- $\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} I\right)$
- Equal channel gains:

$$
\mathbf{w}=\mathbf{u}+\mathbf{v}+\mathbf{z}
$$

(+ denotes addition over \mathbb{R})
(b) Broadcast phase:

Compute-and-Forward

(a) MAC phase:

- \mathbf{u}, \mathbf{v} are vectors (codewords) in \mathbb{R}^{d}
- $\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} I\right)$
- Equal channel gains:

$$
\mathbf{w}=\mathbf{u}+\mathbf{v}+\mathbf{z}
$$

(+ denotes addition over \mathbb{R})
(b) Broadcast phase:

The broadcast phase is not relevant to our work.

Reliable Computation of $X \oplus Y$ at the Relay

- Rate: $R=\frac{1}{d} \log _{2}|\mathbb{G}|$
- Power Constraint: $\frac{1}{d}\|\mathbf{u}\|^{2} \leq \mathcal{P}$ and $\frac{1}{d}\|\mathbf{v}\|^{2} \leq \mathcal{P}$

Reliable Computation of $X \oplus Y$ at the Relay

- Rate: $R=\frac{1}{d} \log _{2}|\mathbb{G}|$
- Power Constraint: $\frac{1}{d}\|\mathbf{u}\|^{2} \leq \mathcal{P}$ and $\frac{1}{d}\|\mathbf{v}\|^{2} \leq \mathcal{P}$

Reliable computation of $X \oplus Y$ at the relay is possible (for suitably defined \oplus) at any rate R up to

$$
\frac{1}{2} \log _{2}\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^{2}}\right)
$$

[Narayanan et al. (2007), Nazer \& Gastpar (2007)]

Lattices

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}$ be linearly independent vectors in \mathbb{R}^{d}. The set $\Lambda=\left\{\sum_{i=1}^{d} a_{i} \mathbf{v}_{i}: a_{i} \in \mathbb{Z}\right\}$ is called a (full-rank) lattice.

A lattice in \mathbb{R}^{2}.

Lattices

Define $Q_{\Lambda}(\mathbf{x}):=\arg \min _{\lambda \in \Lambda}\|\mathbf{x}-\lambda\|$.
The fundamental Voronoi region of Λ is defined as

$$
\mathcal{V}(\Lambda):=\left\{\mathbf{y} \in \mathbb{R}^{d}: Q_{\Lambda}(\mathbf{y})=\mathbf{0}\right\}
$$

Figure: Fundamental Voronoi region of Λ.

Nested Lattices

If Λ and Λ_{0} are lattices in \mathbb{R}^{d} with $\Lambda_{0} \subset \Lambda$, then Λ_{0} is said to be nested within Λ, or Λ_{0} is a sublattice of Λ.
Λ is called the fine lattice and Λ_{0} is called the coarse lattice.

Figure: The blue dots indicate the coarse lattice Λ_{0}.

Cosets and Coset Representatives

The cosets of Λ_{0} in Λ form a finite Abelian group $\mathbb{G}=\Lambda / \Lambda_{0}$.

Figure: $\boldsymbol{\lambda}_{i}$ is the coset representative of Λ_{i} within $\mathcal{V}\left(\Lambda_{0}\right)$.

Nested Lattice Codes

Choose a pair of nested lattices $\Lambda_{0} \subset \Lambda$ in \mathbb{R}^{d}.

- Messages: The message set \mathbb{G} is identified with Λ / Λ_{0}. Let $\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{N-1}$ be the elements of Λ / Λ_{0}.
- Codebook: $\mathcal{C}=\Lambda \cap \mathcal{V}\left(\Lambda_{0}\right)=\left\{\boldsymbol{\lambda}_{0}, \boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{N-1}\right\}$.

Nested Lattice Codes

Choose a pair of nested lattices $\Lambda_{0} \subset \Lambda$ in \mathbb{R}^{d}.

- Messages: The message set \mathbb{G} is identified with Λ / Λ_{0}. Let $\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{N-1}$ be the elements of Λ / Λ_{0}.
- Codebook: $\mathcal{C}=\Lambda \cap \mathcal{V}\left(\Lambda_{0}\right)=\left\{\boldsymbol{\lambda}_{0}, \boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{N-1}\right\}$.
- Encoding: Given message Λ_{j}, encoder transmits the coset representative $\boldsymbol{\lambda}_{j}$.

Thus, the coset reps must satisfy the power constraint:

$$
\frac{1}{d}\left\|\boldsymbol{\lambda}_{j}\right\|^{2} \leq \mathcal{P} \quad \text { for all } j
$$

Nested Lattice Codes

Choose a pair of nested lattices $\Lambda_{0} \subset \Lambda$ in \mathbb{R}^{d}.

- Messages: The message set \mathbb{G} is identified with Λ / Λ_{0}. Let $\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{N-1}$ be the elements of Λ / Λ_{0}.
- Codebook: $\mathcal{C}=\Lambda \cap \mathcal{V}\left(\Lambda_{0}\right)=\left\{\boldsymbol{\lambda}_{0}, \boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{N-1}\right\}$.
- Encoding: Given message Λ_{j}, encoder transmits the coset representative $\boldsymbol{\lambda}_{j}$.

Thus, the coset reps must satisfy the power constraint:

$$
\frac{1}{d}\left\|\boldsymbol{\lambda}_{j}\right\|^{2} \leq \mathcal{P} \quad \text { for all } j
$$

- Decoding: The relay receives $\mathbf{w}=\mathbf{u}+\mathbf{v}+\mathbf{z}$.
(1) Let $\tilde{\mathbf{w}}=Q_{\Lambda}(\mathbf{w})$ be the closest point in Λ to \mathbf{w}.
(2) The estimate of $X \oplus Y$ is the coset to which $\tilde{\mathbf{w}}$ belongs.

This is called nearest lattice point decoding.

Achievable Rates

- The rate of the nested lattice code is $R=\frac{1}{d} \log _{2}\left|\Lambda / \Lambda_{0}\right|$.
- By choosing a "good" sequence of nested lattice pairs $\left(\Lambda_{0}^{(d)}, \Lambda^{(d)}\right)$, with $d \rightarrow \infty$, reliable computation of $X \oplus Y$ at the relay is possible at any rate R up to

$$
\frac{1}{2} \log _{2}\left(\frac{\mathcal{P}}{\sigma^{2}}\right) .
$$

- The techniques of "uniform dithering" and "MMSE equalization" at the decoder are used to achieve rates up to

$$
\frac{1}{2} \log _{2}\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^{2}}\right) .
$$

[Narayanan et al. (2007), Nazer \& Gastpar (2007)]

Reliable and Secure Computation of $X \oplus Y$

- X, Y uniformly distributed over some finite Abelian group \mathbb{G}
- \mathbf{u}, \mathbf{v} are vectors (codewords) in \mathbb{R}^{d}
- $\mathbf{z} \in \mathcal{N}\left(0, \sigma^{2}\right.$ I)
- Relay receives $\mathbf{w}=\mathbf{u}+\mathbf{v}+\mathbf{z}$ and must compute $X \oplus Y$.

Reliable and Secure Computation of $X \oplus Y$

- X, Y uniformly distributed over some finite Abelian group \mathbb{G}
- \mathbf{u}, \mathbf{v} are vectors (codewords) in \mathbb{R}^{d}
- $\mathbf{z} \in \mathcal{N}\left(0, \sigma^{2}\right.$ I)
- Relay receives $\mathbf{w}=\mathbf{u}+\mathbf{v}+\mathbf{z}$ and must compute $X \oplus Y$.
- Security Constraint:
- Perfect Secrecy: w $\Perp X$ and $\mathbf{w} \Perp Y$
- Strong Secrecy: $\mathcal{I}(\mathbf{w} ; X) \rightarrow 0$ and $\mathcal{I}(\mathbf{w} ; Y) \rightarrow 0$ as $d \rightarrow \infty$.
- Weak Secrecy: $\frac{1}{d} \mathcal{I}(\mathbf{w} ; X) \rightarrow 0$ and $\frac{1}{d} \mathcal{I}(\mathbf{w} ; Y) \rightarrow 0$ as $d \rightarrow \infty$.

Use as Primitive in Secure Communication Schemes

Multi-hop line network using cooperative jamming:
[He and Yener (2008)]

Phase 1

Phase 2

Phase 3

Phase 4

Use as Primitive in Secure Communication Schemes

Butterfly network:

Phase 1

Phase 2

Nested Lattice Coding for Secure Computation

- Weak secrecy using random binning: He and Yener, Allerton, 2008.
- Strong secrecy using universal hash functions: He and Yener, IEEE Trans. Inf. Theory, Jan 2013.

Reliable and (strongly) secure computation of $X \oplus Y$ at the relay is possible, using nested lattice codes, at any rate R up to

$$
\frac{1}{2} \log _{2}\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^{2}}\right)-1
$$

[He and Yener (2013)]

He-Yener Coding Scheme

Nested lattice codebook
$\mathcal{C} \subset \mathbb{R}^{d}$
 (hash function)

Randomized Encoding: Given message $a \in \mathbb{G}$, a codeword is picked uniformly at random from $\mathbf{g}^{-1}(a)$ and transmitted.

- Each $\mathbf{g}^{-1}(a)$ contains $\sim 2^{d}$ codewords

Randomized Encoders

- Messages X, Y i.i.d. $\sim \operatorname{Unif}(\mathbb{G})$
- Codebook $\mathcal{C} \subset \mathbb{R}^{d}$ is, in general, much larger than \mathbb{G}
- At Node A, given $X=a$, the transmitted codeword $\mathbf{u} \in \mathcal{C}$ is picked according to some prob. distribution $\operatorname{Pr}[\cdot \mid X=a]$; similarly at Node B

Randomized Encoders

- Messages X, Y i.i.d. $\sim \operatorname{Unif}(\mathbb{G})$
- Codebook $\mathcal{C} \subset \mathbb{R}^{d}$ is, in general, much larger than \mathbb{G}
- At Node A, given $X=a$, the transmitted codeword $\mathbf{u} \in \mathcal{C}$ is picked according to some prob. distribution $\operatorname{Pr}[\cdot \mid X=a]$; similarly at Node B
- Rate: $R=\frac{1}{d} \log _{2}|\mathbb{G}|$
- Power Constraint: $\frac{1}{d}\|\mathbf{u}\|^{2} \leq \mathcal{P}$ and $\frac{1}{d}\|\mathbf{v}\|^{2} \leq \mathcal{P}$

Randomized Encoders

- Messages X, Y i.i.d. $\sim \operatorname{Unif}(\mathbb{G})$
- Codebook $\mathcal{C} \subset \mathbb{R}^{d}$ is, in general, much larger than \mathbb{G}
- At Node A, given $X=a$, the transmitted codeword $\mathbf{u} \in \mathcal{C}$ is picked according to some prob. distribution $\operatorname{Pr}[\cdot \mid X=a]$; similarly at Node B
- Rate: $R=\frac{1}{d} \log _{2}|\mathbb{G}|$
- Average Power Constraint: $\frac{1}{d} \mathbb{E}\|\mathbf{u}\|^{2} \leq \mathcal{P}$ and $\frac{1}{d} \mathbb{E}\|\mathbf{v}\|^{2} \leq \mathcal{P}$

Our Main Result

Theorem (Shashank, K. and Thangaraj (2013))

(a) Reliable and perfectly secure computation of $X \oplus Y$ at the relay is possible at any rate R up to

$$
\frac{1}{2} \log _{2}\left(\frac{\mathcal{P}}{\sigma^{2}}\right)-1-\log _{2} e
$$

under an average power constraint.
(b) If perfect secrecy above is relaxed to strong secrecy, then any rate R up to

$$
\frac{1}{2} \log _{2}\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^{2}}\right)-\frac{1}{2} \log _{2}(2 e)
$$

is achievable under an average power constraint.

A Comparison of Achievable Rates

Nazer and Gastpar: $\frac{1}{2} \log _{2}\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^{2}}\right)$
He and Yener: $\frac{1}{2} \log _{2}\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^{2}}\right)-1$

Shashank-K.-Thangaraj:
Perfect: $\frac{1}{2} \log _{2}\left(\frac{\mathcal{P}}{\sigma^{2}}\right)-1-\log _{2} e$
Strong: $\frac{1}{2} \log _{2}\left(\frac{1}{2}+\frac{\mathcal{P}}{\sigma^{2}}\right)-\frac{1}{2} \log _{2}\left(\frac{2}{\underline{\underline{2}}} e\right)$

Our Coding Scheme

Choose a "good" pair of nested lattices $\Lambda_{0} \subset \Lambda$ in \mathbb{R}^{d}.
Choose a "good" probability density $f(\mathbf{x})$ defined on \mathbb{R}^{d}.

- Messages: The message set \mathbb{G} is identified with Λ / Λ_{0}. Let $\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{N-1}$ be the elements of Λ / Λ_{0}.
- Codebook: $\mathcal{C}=\Lambda$
- Randomized Encoding: Given message Λ_{j}, encoder picks a codeword $\mathbf{u} \in \Lambda_{j}$ to be transmitted, according to a prob. distrib. p_{j} defined as follows:

$$
p_{j}(\mathbf{u})= \begin{cases}\frac{1}{Z\left(\Lambda_{j}\right)} f(\mathbf{u}) & \text { if } \mathbf{u} \in \Lambda_{j} \\ 0 & \text { otherwise }\end{cases}
$$

where $Z\left(\Lambda_{j}\right)=\sum_{\mathbf{u} \in \Lambda_{j}} f(\mathbf{u})$.

- Decoding: Nearest lattice point decoding

Major Departures from Previous Coding Schemes

- Codebook \mathcal{C} is countably infinite
- Prob. distributions used for randomization are obtained by sampling a pdf f at lattice points:
e.g., $\left(\Lambda, \Lambda_{0}\right)=(\mathbb{Z}, 2 \mathbb{Z})$ and a Gaussian density f

- pdf f chosen so that $\frac{1}{d} \mathbb{E}\|\mathbf{u}\|^{2} \leq \mathcal{P}$ and $\frac{1}{d} \mathbb{E}\|\mathbf{v}\|^{2} \leq \mathcal{P}$

Secrecy via Choice of f

The choice of pdf f determines the secrecy properties of our coding scheme!

Strong secrecy obtained by choosing f to be an $\mathcal{N}\left(\mathbf{0}, \mathcal{P} I_{d}\right)$ density:

$$
f(\mathbf{x})=\frac{1}{(2 \pi \mathcal{P})^{d / 2}} e^{-\frac{\|x\|^{2}}{2 \mathcal{P}}}
$$

Secrecy via Choice of f

The choice of pdf f determines the secrecy properties of our coding scheme!

Strong secrecy obtained by choosing f to be an $\mathcal{N}\left(\mathbf{0}, \mathcal{P} I_{d}\right)$ density:

$$
f(\mathbf{x})=\frac{1}{(2 \pi \mathcal{P})^{d / 2}} e^{-\frac{\|\times\|^{2}}{2 \mathcal{P}}}
$$

Nested lattice codes with discrete Gaussian distributions were previously proposed for the Gaussian wiretap channel by Ling, Luzzi, Belfiore and Stehlé [ArXiv:1210.6673]

Secrecy via Choice of f

The choice of pdf f determines the secrecy properties of our coding scheme!

Strong secrecy obtained by choosing f to be an $\mathcal{N}\left(\mathbf{0}, \mathcal{P} I_{d}\right)$ density:

$$
f(\mathbf{x})=\frac{1}{(2 \pi \mathcal{P})^{d / 2}} e^{-\frac{\|x\|^{2}}{2 \mathcal{P}}}
$$

Nested lattice codes with discrete Gaussian distributions were previously proposed for the Gaussian wiretap channel by Ling, Luzzi, Belfiore and Stehlé [ArXiv:1210.6673]

Finding an f that yields perfect secrecy is a more interesting story

Noiseless Setting

X, Y i.i.d. Bernoulli(1/2) rvs, $X \oplus Y$ is their modulo-2 sum
Want real-valued rvs U and V such that
(1) $(X, U) \Perp(Y, V)$
(2) $U+V$ determines $X \oplus Y$
(3) $U+V \Perp X$ and $U+V \Perp Y$

Use the nested lattice pair $\left(\Lambda, \Lambda_{0}\right)=(\mathbb{Z}, 2 \mathbb{Z}): \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z}_{2}$.

Randomized Encoding

At Node A:

- If $X=0$, transmit an even integer U picked according to

$$
\operatorname{Pr}[U=k \mid X=0]=p_{0}(k)
$$

for a pmf p_{0} supported within the even integers.

- If $X=1$, transmit an odd integer U picked according to

$$
\operatorname{Pr}[U=k \mid X=1]=p_{1}(k)
$$

for a pmf p_{1} supported within the odd integers.

At Node B:

- If $Y=b$, for $b \in\{0,1\}$, transmit V picked according to p_{b}.

Randomized Encoding

At Node A:

- If $X=0$, transmit an even integer U picked according to

$$
\operatorname{Pr}[U=k \mid X=0]=p_{0}(k)
$$

for a pmf p_{0} supported within the even integers.

- If $X=1$, transmit an odd integer U picked according to

$$
\operatorname{Pr}[U=k \mid X=1]=p_{1}(k)
$$

for a pmf p_{1} supported within the odd integers.
At Node B:

- If $Y=b$, for $b \in\{0,1\}$, transmit V picked according to p_{b}.

$$
\left.\begin{array}{l}
p_{U \mid X=0}=p_{V \mid Y=0}=p_{0} \\
p_{U \mid X=1}=p_{V \mid Y=1}=p_{1}
\end{array}\right\} \quad \Longrightarrow \quad p_{U}=p_{V}=p \triangleq \frac{1}{2}\left(p_{0}+p_{1}\right)
$$

How to Ensure (3) $U+V \Perp X$ and $U+V \Perp Y$?

To satisfy
(3) $U+V \Perp X$ and $U+V \Perp Y$
we need

$$
\operatorname{Pr}[U+V=k \mid X=a]=\operatorname{Pr}[U+V=k]
$$

for all $k \in \mathbb{Z}$ and $a \in\{0,1\}$.

In other words, $p_{U \mid X=a} * p_{V}=p_{U} * p_{V}$ for $a \in\{0,1\}$, i.e.,

$$
p_{0} * p=p_{1} * p=p * p .
$$

(Recall: $\left.p_{U}=p_{V}=p \triangleq \frac{1}{2}\left(p_{0}+p_{1}\right)\right)$

Properties Required of p_{0} and p_{1}

To summarize, we need pmfs p_{0} and p_{1} such that p_{0} is supported within the even integers, p_{1} is supported within the odd integers and

$$
p_{0} * p=p_{1} * p=p * p,
$$

where $p=\frac{1}{2}\left(p_{0}+p_{1}\right)$.

Properties Required of p_{0} and p_{1}

To summarize, we need pmfs p_{0} and p_{1} such that
p_{0} is supported within the even integers,
p_{1} is supported within the odd integers
and

$$
p_{0} * p=p_{1} * p=p * p,
$$

where $p=\frac{1}{2}\left(p_{0}+p_{1}\right)$.

Let $\varphi_{*}(t)=\sum_{k \in \mathbb{Z}} p_{*}(k) e^{i k t}$ be the characteristic function of p_{*}.
We need characteristic functions that satisfy

$$
\varphi_{0} \cdot \varphi=\varphi_{1} \cdot \varphi=\varphi^{2}
$$

with $\varphi=\frac{1}{2}\left(\varphi_{0}+\varphi_{1}\right)$.

Support of p_{0} and p_{1}

It can be shown that

- finitely-supported p_{0} and p_{1} cannot have the required properties;
- in fact, light-tailed pmfs p_{0} and p_{1} cannot have the required properties. [M. Krishnapur]

Proposition

Let f be a pdf on \mathbb{R} whose char. function ψ is supported within $(-\pi / 2, \pi / 2)$, i.e., $\psi(t)=0$ for $|t| \geq \pi / 2$. For any $s \in \mathbb{R}$, define

$$
\psi(t)=\sum_{n=-\infty}^{\infty}(-1)^{s n} \psi(t+n \pi)
$$

Then,
(a) $\Psi(t)$ is the char. function of a pmf p_{s} supported within the set $2 \mathbb{Z}+s=\{2 k+s: k \in \mathbb{Z}\}$, and
(b) for all $u \in 2 \mathbb{Z}+s$, we have $p_{s}(u)=2 f(u)$.

The proof is based upon the Poisson summation formula of Fourier analysis.

$\psi \xrightarrow{\mathcal{F}^{-1}} f(x)=\frac{1}{2 \pi} \int \psi(t) e^{-i x t} d t$
$\varphi_{0} \xrightarrow{\mathcal{F}^{-1}} p_{0}(k)=2 f(k)$ for all even $k \in \mathbb{Z}$ (and 0 otherwise)
$\varphi_{1} \xrightarrow{\mathcal{F}^{-1}} p_{1}(k)=2 f(k)$ for all odd $k \in \mathbb{Z}$ (and 0 otherwise)

$$
\varphi^{2}=\varphi \varphi_{0}=\varphi \varphi_{1}
$$

Coding Scheme for Noiseless Setting

X, Y i.i.d. Bernoulli(1/2) rvs
(1) Start with a pdf f having char. func. ψ supported within $(-\pi / 2, \pi / 2)$.
(2) Let $p_{0}(k)=2 f(k)$ for even $k \in \mathbb{Z}$, and 0 otherwise. Let $p_{1}(k)=2 f(k)$ for odd $k \in \mathbb{Z}$, and 0 otherwise.
(3) If $X=0$ (resp. $Y=0$), choose U (resp. V) according to the pmf p_{0}.
If $X=1$ (resp. $Y=1$), choose U (resp. V) according to the pmf p_{1}.

Coding Scheme for Noiseless Setting

Fact

The resulting \mathbb{Z}-valued rvs U and V have finite second moment iff ψ is twice-differentiable. In this case,

$$
\mathbb{E}\left[U^{2}\right]=\mathbb{E}\left[V^{2}\right]=-\psi^{\prime \prime}(0)
$$

Thus, U and V can satisfy an average power constraint.

Compactly Supported Characteristic Functions

Example: The probability density function

$$
f(x)= \begin{cases}\frac{1}{2 \pi} & \text { if } x=0 \\ \frac{1-\cos x}{\pi x^{2}} & \text { if } x \neq 0\end{cases}
$$

has char. function $\hat{f}(t)=\max \{0,1-|t|\}$, shown below:

Compactly Supported Characteristic Functions

Example: The probability density function

$$
f(x)= \begin{cases}\frac{1}{2 \pi} & \text { if } x=0 \\ \frac{1-\cos x}{\pi x^{2}} & \text { if } x \neq 0\end{cases}
$$

has char. function $\hat{f}(t)=\max \{0,1-|t|\}$, shown below:

The function \hat{f} above is not twice-differentiable. Instead, consider $\psi(t)=\frac{3}{2}(\hat{f} * \hat{f})(t)$, which is supported within $(-2,2)$.

- ψ is the char. function of a pdf
- ψ is twice-differentiable, with $\psi^{\prime \prime}(0)=-3$.

Secure Computation over \mathbb{G}

X, Y i.i.d. rvs unif. distrib. over an Abelian group (\mathbb{G}, \oplus) of size N.
(1) Select a nested lattice pair $\Lambda_{0} \subseteq \Lambda$ in \mathbb{R}^{d} such that $\mathbb{G} \cong \Lambda / \Lambda_{0}$. Let $\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{N-1}$ be the cosets of Λ_{0} in Λ.
(2) Select a pdf $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$with char. func. ψ supported within a ball of radius $2 \pi \rho\left(\Lambda_{0}^{*}\right)$ around the origin, where $\rho\left(\Lambda_{0}^{*}\right)$ is the packing radius of the dual of Λ_{0}.
(3) For $j=0,1, \ldots, N-1$, define

$$
p_{j}(\mathbf{k})=\operatorname{vol}\left(\mathcal{V}\left(\Lambda_{0}\right)\right) f(\mathbf{k}) \text { for } \mathbf{k} \in \Lambda_{j} ; \text { and } 0 \text { otherwise }
$$

Secure Computation over \mathbb{G}

(4) If $X=\Lambda_{j}$ (resp. $\left.Y=\Lambda_{j}\right)$, choose $\mathbf{u} \in \Lambda_{j}$ (resp. $\mathbf{v} \in \Lambda_{j}$) according to the pmf p_{j}.

Fact

The resulting Λ-valued rvs \mathbf{u} and \mathbf{v} have finite second moment iff ψ is twice-differentiable. In this case,

$$
\mathbb{E}\|\mathbf{u}\|^{2}=\mathbb{E}\|\mathbf{v}\|^{2}=-\Delta \psi(\mathbf{0})
$$

where $\Delta=\sum_{j=1}^{d} \partial_{j}^{2}$ denotes the Laplacian operator.

Let j_{k} denote the first positive zero of the Bessel function J_{k}.

Theorem (Ehm, Gneiting and Richards (2004))

If $\psi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is a characteristic function supported within a ball of radius ρ around the origin, then

$$
\begin{equation*}
-\Delta \psi(\mathbf{0}) \geq \frac{4}{\rho^{2}} j_{\frac{d-2}{2}}^{2} \tag{1}
\end{equation*}
$$

with equality iff $\psi(\mathbf{t})$ equals a certain $\psi^{*}(\mathbf{t})$.

Let j_{k} denote the first positive zero of the Bessel function J_{k}.

Theorem (Ehm, Gneiting and Richards (2004))

If $\psi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is a characteristic function supported within a ball of radius ρ around the origin, then

$$
\begin{equation*}
-\Delta \psi(\mathbf{0}) \geq \frac{4}{\rho^{2}} j_{\frac{d-2}{2}}^{2} \tag{1}
\end{equation*}
$$

with equality iff $\psi(\mathbf{t})$ equals a certain $\psi^{*}(\mathbf{t})$.

Therefore, the tightest average power constraint that the Λ-valued rvs \mathbf{u} and \mathbf{v} can satisfy is

$$
\frac{1}{d} \mathbb{E}\|\mathbf{u}\|^{2}=\frac{1}{d} \mathbb{E}\|\mathbf{v}\|^{2} \leq \mathcal{P}\left(\Lambda_{0}\right):=\frac{1}{d \pi^{2} \rho\left(\Lambda_{0}^{*}\right)^{2}} j_{\frac{d-2}{2}}^{2}
$$

Coding Scheme for Noisy Setting

X, Y i.i.d. rvs unif. distrib. over an Abelian group (\mathbb{G}, \oplus) of size N.
Encoding:
As described for secure computation in the noiseless setting
Decoding:
(1) Find the closest lattice point $\boldsymbol{\lambda} \in \Lambda$ to the received vector \mathbf{w}.
(2) Decode to the coset Λ_{j} to which $\boldsymbol{\lambda}$ belongs.

Performance of Coding Scheme

Perfect Secrecy: As noise \mathbf{z} is independent of everything else, we still have

$$
\mathbf{w} \Perp X \text { and } \mathbf{w} \Perp Y
$$

Performance of Coding Scheme

Perfect Secrecy: As noise \mathbf{z} is independent of everything else, we still have

$$
\mathbf{w} \Perp X \text { and } \mathbf{w} \Perp Y
$$

Reliability: There exist "good" nested lattice pairs $\Lambda_{0} \subseteq \Lambda$ in \mathbb{R}^{d} for which the resulting coding schemes

- have rate

$$
R \approx \frac{1}{2} \log _{2}\left(\frac{\bar{\rho}\left(\Lambda_{0}\right)^{2}}{d \sigma^{2}}\right)
$$

where $\bar{\rho}\left(\Lambda_{0}\right)$ is the covering radius of Λ_{0}; and

- compute $X \oplus Y$ within $\mathbb{G}=\Lambda / \Lambda_{0}$ arbitrarily reliably

Performance of Coding Scheme

Perfect Secrecy: As noise \mathbf{z} is independent of everything else, we still have

$$
\mathbf{w} \Perp X \text { and } \mathbf{w} \Perp Y
$$

Reliability: There exist "good" nested lattice pairs $\Lambda_{0} \subseteq \Lambda$ in \mathbb{R}^{d} for which the resulting coding schemes

- have rate

$$
R \approx \frac{1}{2} \log _{2}\left(\frac{\bar{\rho}\left(\Lambda_{0}\right)^{2}}{d \sigma^{2}}\right)
$$

where $\bar{\rho}\left(\Lambda_{0}\right)$ is the covering radius of Λ_{0}; and

- compute $X \oplus Y$ within $\mathbb{G}=\Lambda / \Lambda_{0}$ arbitrarily reliably

Average Power Constraint:

$$
\frac{1}{d} \mathbb{E}\|\mathbf{u}\|^{2}=\frac{1}{d} \mathbb{E}\|\mathbf{v}\|^{2} \leq \mathcal{P}\left(\Lambda_{0}\right):=\frac{1}{d \pi^{2} \rho\left(\Lambda_{0}^{*}\right)^{2}} j_{\frac{d-2}{2}}^{2}
$$

Achievable Rate for Coding Scheme

For sufficiently large d, the coarse lattice Λ_{0} in \mathbb{R}^{d} can be chosen so that

- $\bar{\rho}\left(\Lambda_{0}\right) \approx \frac{1}{2 e} \sqrt{d \mathcal{P}} \quad$ and $\quad \rho\left(\Lambda_{0}^{*}\right) \approx \frac{d}{4 \pi e} \frac{1}{\bar{\rho}\left(\Lambda_{0}\right)}$

Also,

- $j_{\frac{d-2}{2}}=\frac{d}{2}[1+o(1)]$

Theorem (Shashank-K.-Thangaraj (2013))

Reliable and perfectly secure computation of $X \oplus Y$ at the relay is possible (for suitably defined \oplus) at any rate R up to

$$
\frac{1}{2} \log _{2}\left(\frac{\mathcal{P}}{4 e^{2} \sigma^{2}}\right)
$$

under an average power constraint \mathcal{P}.

Achievable Rate for Coding Scheme

For sufficiently large d, the coarse lattice Λ_{0} in \mathbb{R}^{d} can be chosen so that

- $\bar{\rho}\left(\Lambda_{0}\right) \approx \frac{1}{2 e} \sqrt{d \mathcal{P}} \quad$ and $\quad \rho\left(\Lambda_{0}^{*}\right) \approx \frac{d}{4 \pi e} \frac{1}{\bar{\rho}\left(\Lambda_{0}\right)}$

Also,

- $j_{\frac{d-2}{2}}=\frac{d}{2}[1+o(1)]$

Theorem (Shashank-K.-Thangaraj (2013))

Reliable and perfectly secure computation of $X \oplus Y$ at the relay is possible (for suitably defined \oplus) at any rate R up to

$$
\frac{1}{2} \log _{2}\left(\frac{\mathcal{P}}{4 e^{2} \sigma^{2}}\right)
$$

under an average power constraint \mathcal{P}.

Open question: Is this the best one can do?

What Next?

- Higher achievable rates? This question is restricted to coding schemes in which randomization is via pmfs obtained by sampling pdfs at lattice points.
- Converse bounds. No upper bound better than $\frac{1}{2} \log _{2}\left(1+\frac{\mathcal{P}}{\sigma^{2}}\right)$ is known for achievable rates for reliable computation at the relay even without secrecy.
- Low-complexity decoding. Nearest lattice point decoding is computationally hard.

