Convex Optimization

Stephen Boyd

Electrical Engineering Computer Science Management Science and Engineering Institute for Computational Mathematics & Engineering Stanford University

> CUHK Sept. 15 2017

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Outline

Mathematical Optimization

- **Convex Optimization**
- Examples
- Real-Time Embedded Optimization
- Large-Scale Distributed Optimization
- Summary

Optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & g_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

- $x \in \mathbf{R}^n$ is (vector) variable to be chosen
- ▶ *f*⁰ is the *objective function*, to be minimized
- f_1, \ldots, f_m are the inequality constraint functions
- g_1, \ldots, g_p are the equality constraint functions
- variations: maximize objective, multiple objectives, ...

Mathematical Optimization

Finding good (or best) actions

x represents some action, e.g.,

- trades in a portfolio
- airplane control surface deflections
- schedule or assignment
- resource allocation
- transmitted signal
- constraints limit actions or impose conditions on outcome
- the smaller the objective $f_0(x)$, the better
 - total cost (or negative profit)
 - deviation from desired or target outcome
 - risk
 - fuel use

Engineering design

- x represents a design (of a circuit, device, structure, ...)
- constraints come from
 - manufacturing process
 - performance requirements
- objective $f_0(x)$ is combination of cost, weight, power, ...

Finding good models

- x represents the parameters in a model
- constraints impose requirements on model parameters (*e.g.*, nonnegativity)
- objective f₀(x) is the prediction error on some observed data (and possibly a term that penalizes model complexity)

Inversion

- x is something we want to estimate/reconstruct, given some measurement y
- constraints come from prior knowledge about x
- objective f₀(x) measures deviation between predicted and actual measurements

Worst-case analysis (pessimization)

- variables are actions or parameters out of our control (and possibly under the control of an adversary)
- constraints limit the possible values of the parameters
- minimizing $-f_0(x)$ finds worst possible parameter values
- if the worst possible value of $f_0(x)$ is tolerable, you're OK
- it's good to know what the worst possible scenario can be

Optimization-based models

- model an entity as taking actions that solve an optimization problem
 - ▶ an individual makes choices that maximize expected utility
 - an organism acts to maximize its reproductive success
 - reaction rates in a cell maximize growth
 - currents in a circuit minimize total power

Optimization-based models

- model an entity as taking actions that solve an optimization problem
 - ▶ an individual makes choices that maximize expected utility
 - an organism acts to maximize its reproductive success
 - reaction rates in a cell maximize growth
 - currents in a circuit minimize total power
- (except the last) these are very crude models
- and yet, they often work very well

Summary

summary: optimization arises *everywhere*

Summary

summary: optimization arises *everywhere*

the bad news: most optimization problems are *intractable i.e.*, we cannot solve them

Summary

summary: optimization arises *everywhere*

the bad news: most optimization problems are *intractable i.e.*, we cannot solve them

an exception: convex optimization problems are tractable i.e., we (generally) can solve them

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Convex Optimization

Convex optimization

convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

- variable $x \in \mathbf{R}^n$
- equality constraints are linear
- f_0, \ldots, f_m are **convex**: for $\theta \in [0, 1]$,

$$f_i(heta x + (1- heta)y) \leq heta f_i(x) + (1- heta)f_i(y)$$

i.e., *f_i* have nonnegative (upward) curvature

Convex Optimization

beautiful, nearly complete theory

duality, optimality conditions,

- beautiful, nearly complete theory
 - duality, optimality conditions, ...
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity

- beautiful, nearly complete theory
 - duality, optimality conditions, ...
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity
- conceptual unification of many methods

- beautiful, nearly complete theory
 - duality, optimality conditions, ...
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity
- conceptual unification of many methods

lots of applications (many more than previously thought)

Convex Optimization

Application areas

- machine learning, statistics
- finance
- supply chain, revenue management, advertising
- control
- signal and image processing, vision
- networking
- circuit design
- combinatorial optimization
- quantum mechanics
- flux-based analysis

Convex Optimization

The approach

- try to formulate your optimization problem as convex
- ▶ if you succeed, you can (usually) solve it (numerically)

The approach

- try to formulate your optimization problem as convex
- ▶ if you succeed, you can (usually) solve it (numerically)
- some tricks:
 - change of variables
 - approximation of true objective, constraints
 - relaxation: ignore terms or constraints you can't handle

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Radiation treatment planning

- ▶ radiation beams with intensities x_j are directed at patient
- radiation dose y_i received in voxel i
- y = Ax
- $A \in \mathbf{R}^{m \times n}$ comes from beam geometry, physics
- ▶ goal is to choose *x* to deliver prescribed radiation dose *d_i*
 - $d_i = 0$ for non-tumor voxels
 - $d_i > 0$ for tumor voxels
- y = d not possible, so we'll need to compromise
- typical problem has $n = 10^3$ beams, $m = 10^6$ voxels

Radiation treatment planning via convex optimization

minimize
$$\sum_{i} f_i(y_i)$$

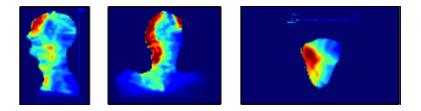
subject to $x \ge 0$, $y = Ax$

- ▶ variables $x \in \mathbf{R}^n$, $y \in \mathbf{R}^m$
- objective terms are

$$f_i(y_i) = w_i^{\mathrm{over}}(y_i - d_i)_+ + w_i^{\mathrm{under}}(d_i - y_i)_+$$

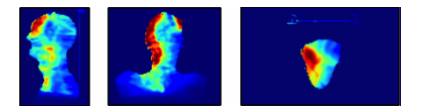
- w_i^{over} and w_i^{under} are positive weights
- ► *i.e.*, we charge linearly for over- and under-dosing
- a convex optimization problem

Example



- ▶ real patient case with n = 360 beams, m = 360000 voxels
- optimization-based plan essentially the same as plan used

Example



- ▶ real patient case with n = 360 beams, m = 360000 voxels
- optimization-based plan essentially the same as plan used
- (but we computed the plan in a few seconds, not many hours)

Image in-painting

- guess pixel values in obscured/corrupted parts of image
- ► total variation in-painting: choose pixel values x_{ij} ∈ R³ to minimize total variation

$$\mathsf{TV}(x) = \sum_{ij} \left\| \left[egin{array}{c} x_{i+1,j} - x_{ij} \ x_{i,j+1} - x_{ij} \end{array}
ight]
ight\|_2$$

a convex problem

Example

512×512 color image ($n \approx 800000$ variables)

Original

Corrupted

Lorem ipsum dolor sit amet, adipiscing elit, sed diam now euismod tineidum ut laoreet magna aliquam erat volutpat enim ad minim veniam, quis exerci tation ullamcorper sus lobortis nisl ut aliquip ex ea o consequat. Duis autem vel eu dolor in hendrerit in vulputa esse molestie consequat, vel i dolore eu feugiat nulla facilis

Example

Recovered

Support vector machine

• goal: predict a Boolean outcome from a set of n features

• e.g., spam filter, fraud detection, customer purchase

Support vector machine

▶ goal: predict a Boolean outcome from a set of *n* features

- e.g., spam filter, fraud detection, customer purchase
- data (a_i, b_i) , $i = 1, \ldots, m$

▶ $a_i \in \mathbf{R}^n$ feature vectors; $b_i \in \{-1, 1\}$ Boolean outcomes

• linear predictor: $\hat{b} = \operatorname{sign}(w^T a - v)$

• $w \in \mathbf{R}^n$ is weight vector; $v \in \mathbf{R}$ is threshold

Support vector machine

goal: predict a Boolean outcome from a set of n features
e.g., spam filter, fraud detection, customer purchase
data (a_i, b_i), i = 1,..., m
a_i ∈ Rⁿ feature vectors; b_i ∈ {-1,1} Boolean outcomes
linear predictor: b̂ = sign(w^Ta - v)
w ∈ Rⁿ is weight vector; v ∈ R is threshold

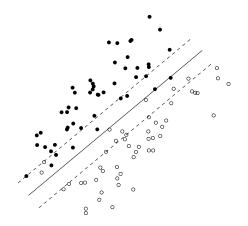
SVM: choose w, v to minimize (convex) objective

$$(1/m)\sum_{i=1}^{m} (1-b_i(w^Ta_i-v))_+ + (\lambda/2)||w||_2^2$$

where $\lambda > 0$ is parameter

SVM

$$w^{T}z - v = 0$$
 (solid); $|w^{T}z - v| = 1$ (dashed)



Sparsity via ℓ_1 regularization

• adding ℓ_1 -norm regularization

$$\lambda \|x\|_1 = \lambda (|x_1| + |x_2| + \dots + |x_n|)$$

to objective results in sparse x

• $\lambda > 0$ controls trade-off of sparsity versus main objective

preserves convexity, hence tractability

- used for many years, in many fields
 - sparse design
 - ▶ feature selection in machine learning (lasso, SVM, ...)
 - total variation reconstruction in signal processing
 - compressed sensing

Lasso

• regression problem with ℓ_1 regularization:

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$

with $A \in \mathbf{R}^{m \times n}$

• useful even when $n \gg m$ (!!); does feature selection

Lasso

• regression problem with ℓ_1 regularization:

minimize
$$(1/2) \|Ax - b\|_2^2 + \lambda \|x\|_1$$

with $A \in \mathbf{R}^{m \times n}$

- useful even when $n \gg m$ (!!); does feature selection
- *cf.* ℓ_2 regularization ('ridge regression'):

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_2^2$$

Lasso

• regression problem with ℓ_1 regularization:

minimize
$$(1/2) \|Ax - b\|_2^2 + \lambda \|x\|_1$$

with $A \in \mathbf{R}^{m \times n}$

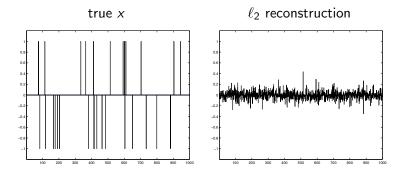
- useful even when $n \gg m$ (!!); does feature selection
- *cf.* ℓ_2 regularization ('ridge regression'):

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_2^2$$

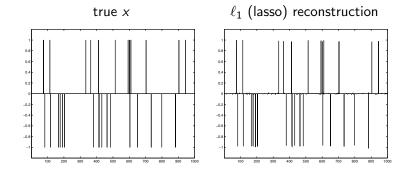
lasso, ridge regression have same computational cost

Example

- m = 200 examples, n = 1000 features
- examples are noisy linear measurements of true x
- true x is sparse (30 nonzeros)



Example



State of the art — Medium scale solvers

- 1000s–10000s variables, constraints
- reliably solved by interior-point methods on single machine
- exploit problem sparsity
- not quite a technology, but getting there

State of the art — Modeling languages

- ▶ (new) high level language support for convex optimization
 - describe problem in high level language
 - description is automatically transformed to cone problem
 - solved by standard solver, transformed back to original form

State of the art — Modeling languages

- ▶ (new) high level language support for convex optimization
 - describe problem in high level language
 - description is automatically transformed to cone problem
 - solved by standard solver, transformed back to original form

- enables rapid prototyping (for small and medium problems)
- ideal for teaching (can do a lot with short scripts)

CVX

- ▶ parser/solver written in Matlab (M. Grant, 2005)
- SVM: minimize

$$(1/m)\sum_{i=1}^{m} (1-b_i(w^Ta_i-v))_+ + (\lambda/2)||w||_2^2$$

CVX specification:

```
cvx_begin
    variables w(n) v % weight, offset
    L=(1/m)*sum(pos(1-b.*(A*w-v))); % avg. loss
    minimize (L+(lambda/2)*sum_square(w))
cvx_end
```

CVXPY

- parser/solver written in Python (S. Diamond, 2013)
- ► SVM: minimize

$$(1/m)\sum_{i=1}^{m} (1-b_i(w^Ta_i-v))_+ + (\lambda/2)||w||_2^2$$

CVXPY specification:

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Real-Time Embedded Optimization

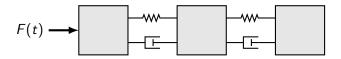
Real-time embedded optimization

- in many applications, need to solve the same problem repeatedly with different data
 - control: update actions as sensor signals, goals change
 - finance: rebalance portfolio as prices, predictions change
- requires extreme solver reliability, hard real-time execution
- used now when solve times are measured in minutes, hours
 - supply chain, chemical process control, trading

Real-time embedded optimization

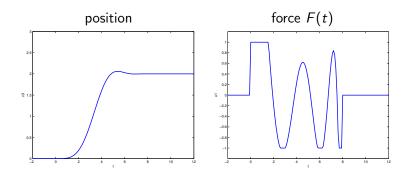
- in many applications, need to solve the same problem repeatedly with different data
 - control: update actions as sensor signals, goals change
 - finance: rebalance portfolio as prices, predictions change
- requires extreme solver reliability, hard real-time execution
- used now when solve times are measured in minutes, hours
 - supply chain, chemical process control, trading
- (using new techniques) can be used for applications with solve times measured in milliseconds or microseconds

Example — Positioning



- force F(t) moves object, modeled as 3 masses
 (2 vibration modes)
- ▶ goal: move object to commanded position as quickly as possible, with |F(t)| ≤ 1
- reduces to a (quasi-) convex problem

Optimal force profile



Real-Time Embedded Optimization

CVXGEN code generator

- handles small, medium size problems transformable to QP (J. Mattingley, 2010)
- accepts high-level problem family description
- uses primal-dual interior-point method
- generates flat library-free C source

CVXGEN code generator

- handles small, medium size problems transformable to QP (J. Mattingley, 2010)
- accepts high-level problem family description
- uses primal-dual interior-point method
- generates flat library-free C source

▶ typical speed-up over general solver: 100–1000×

CVXGEN example specification — SVM

```
dimensions
 m = 50 % training examples
 n = 10 % dimensions
end
parameters
  a[i] (n), i = 1..m % features
 b[i], i = 1..m % outcomes
  lambda positive
end
variables
 w (n) % weights
  v % offset
end
minimize
  (1/m)*sum[i = 1..m](pos(1 - b[i]*(w'*a[i] - v))) +
    (lambda/2)*quad(w)
end
```

Real-Time Embedded Optimization

CVXGEN sample solve times

problem	SVM	Positioning
variables	61	590
constraints	100	742
CVXPY, Xeon	113 ms	97 ms
CVXGEN, Xeon	0.2 ms	2.0 ms

Real-Time Embedded Optimization

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Large-Scale Distributed Optimization

Large-scale distributed optimization

large-scale optimization problems arise in many applications

- machine learning/statistics with huge datasets
- dynamic optimization on large-scale networks
- image, video processing

Large-scale distributed optimization

Iarge-scale optimization problems arise in many applications

- machine learning/statistics with huge datasets
- dynamic optimization on large-scale networks
- image, video processing
- we'll use distributed optimization
 - split variables/constraints/objective terms among a set of agents/processors/devices
 - agents coordinate to solve large problem, by passing relatively small messages
 - can target modern large-scale computing platforms
 - Iong history, going back to 1950s

Consensus optimization

• want to solve problem with N objective terms

minimize
$$\sum_{i=1}^{N} f_i(x)$$

e.g., f_i is the loss function for *i*th block of training data

consensus form:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $x_i - z = 0$

- x_i are local variables
- z is the global variable
- $x_i z = 0$ are **consistency** or **consensus** constraints

Consensus optimization via ADMM

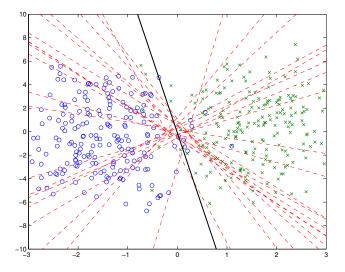
with $\overline{x}^k = (1/N) \sum_{i=1}^N x_i^k$ (average over local variables)

$$\begin{aligned} x_i^{k+1} &:= \arg \min_{x_i} \left(f_i(x_i) + (\rho/2) \| x_i - \overline{x}^k + u_i^k \|_2^2 \right) \\ u_i^{k+1} &:= u_i^k + (x_i^{k+1} - \overline{x}^{k+1}) \end{aligned}$$

- ▶ get **global** minimum, under very general conditions
- ► *u^k* is running sum of inconsistencies (PI control)
- minimizations carried out independently and in parallel
- coordination is via averaging of local variables x_i

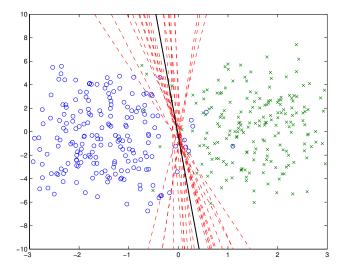
- baby problem with n = 2, m = 400 to illustrate
- examples split into N = 20 groups, in worst possible way:
 each group contains only positive or negative examples

Iteration 1



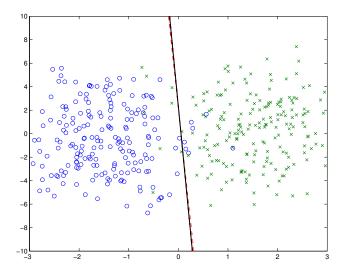
Large-Scale Distributed Optimization

Iteration 5



Large-Scale Distributed Optimization

Iteration 40



Large-Scale Distributed Optimization

Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Summary

Summary

- convex optimization problems arise in many applications
- convex optimization problems can be solved effectively
 - small problems at microsecond/millisecond time scales
 - medium-scale problems using general purpose methods
 - arbitrary-scale problems using distributed optimization
- high level language support makes prototyping easy

References

many researchers have worked on the topics covered

- Convex Optimization (Boyd & Vandenberghe)
- CVX: Matlab software for disciplined convex programming (Grant & Boyd)
- CVXPY: A Pyhton-embedded modeling language for convex optimization (Diamond & Boyd)
- CVXGEN: A code generator for embedded convex optimization (Mattingley & Boyd)
- Distributed optimization and statistical learning via the alternating direction method of multipliers (Boyd, Parikh, Chu, Peleato, & Eckstein)

all available (with code) from stanford.edu/~boyd

Summary