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Optimization problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

gi (x) = 0, i = 1, . . . , p

I x ∈ Rn is (vector) variable to be chosen

I f0 is the objective function, to be minimized

I f1, . . . , fm are the inequality constraint functions

I g1, . . . , gp are the equality constraint functions

I variations: maximize objective, multiple objectives, . . .
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Finding good (or best) actions

I x represents some action, e.g.,
I trades in a portfolio
I airplane control surface deflections
I schedule or assignment
I resource allocation
I transmitted signal

I constraints limit actions or impose conditions on outcome
I the smaller the objective f0(x), the better

I total cost (or negative profit)
I deviation from desired or target outcome
I risk
I fuel use
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Engineering design

I x represents a design (of a circuit, device, structure, . . . )
I constraints come from

I manufacturing process
I performance requirements

I objective f0(x) is combination of cost, weight, power, . . .
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Finding good models

I x represents the parameters in a model

I constraints impose requirements on model parameters
(e.g., nonnegativity)

I objective f0(x) is the prediction error on some observed data
(and possibly a term that penalizes model complexity)
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Inversion

I x is something we want to estimate/reconstruct, given
some measurement y

I constraints come from prior knowledge about x

I objective f0(x) measures deviation between predicted and
actual measurements
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Worst-case analysis (pessimization)

I variables are actions or parameters out of our control
(and possibly under the control of an adversary)

I constraints limit the possible values of the parameters

I minimizing −f0(x) finds worst possible parameter values

I if the worst possible value of f0(x) is tolerable, you’re OK

I it’s good to know what the worst possible scenario can be
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Optimization-based models

I model an entity as taking actions that solve an optimization
problem

I an individual makes choices that maximize expected utility
I an organism acts to maximize its reproductive success
I reaction rates in a cell maximize growth
I currents in a circuit minimize total power

I (except the last) these are very crude models

I and yet, they often work very well
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Summary

I summary: optimization arises everywhere

I the bad news: most optimization problems are intractable
i.e., we cannot solve them

I an exception: convex optimization problems are tractable
i.e., we (generally) can solve them
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Convex optimization

convex optimization problem:

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

I variable x ∈ Rn

I equality constraints are linear

I f0, . . . , fm are convex: for θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., fi have nonnegative (upward) curvature
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Why

I beautiful, nearly complete theory
I duality, optimality conditions, . . .

I effective algorithms, methods (in theory and practice)
I get global solution (and optimality certificate)
I polynomial complexity

I conceptual unification of many methods

I lots of applications (many more than previously thought)
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Application areas

I machine learning, statistics

I finance

I supply chain, revenue management, advertising

I control

I signal and image processing, vision

I networking

I circuit design

I combinatorial optimization

I quantum mechanics

I flux-based analysis
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The approach

I try to formulate your optimization problem as convex

I if you succeed, you can (usually) solve it (numerically)

I some tricks:
I change of variables
I approximation of true objective, constraints
I relaxation: ignore terms or constraints you can’t handle

Convex Optimization 16



The approach

I try to formulate your optimization problem as convex

I if you succeed, you can (usually) solve it (numerically)

I some tricks:
I change of variables
I approximation of true objective, constraints
I relaxation: ignore terms or constraints you can’t handle

Convex Optimization 16



Outline

Mathematical Optimization

Convex Optimization

Examples

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Examples 17



Radiation treatment planning

I radiation beams with intensities xj are directed at patient

I radiation dose yi received in voxel i

I y = Ax

I A ∈ Rm×n comes from beam geometry, physics
I goal is to choose x to deliver prescribed radiation dose di

I di = 0 for non-tumor voxels
I di > 0 for tumor voxels

I y = d not possible, so we’ll need to compromise

I typical problem has n = 103 beams, m = 106 voxels
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Radiation treatment planning via convex optimization

minimize
∑

i fi (yi )
subject to x ≥ 0, y = Ax

I variables x ∈ Rn, y ∈ Rm

I objective terms are

fi (yi ) = wover
i (yi − di )+ + wunder

i (di − yi )+

I wover
i and wunder

i are positive weights

I i.e., we charge linearly for over- and under-dosing

I a convex optimization problem
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Example

I real patient case with n = 360 beams, m = 360000 voxels

I optimization-based plan essentially the same as plan used

I (but we computed the plan in a few seconds, not many
hours)

Examples 20



Example

I real patient case with n = 360 beams, m = 360000 voxels

I optimization-based plan essentially the same as plan used

I (but we computed the plan in a few seconds, not many
hours)

Examples 20



Image in-painting

I guess pixel values in obscured/corrupted parts of image

I total variation in-painting: choose pixel values xij ∈ R3 to
minimize total variation

TV(x) =
∑
ij

∥∥∥∥[ xi+1,j − xij
xi ,j+1 − xij

]∥∥∥∥
2

I a convex problem
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Example

512× 512 color image (n ≈ 800000 variables)

Original Corrupted
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Example

Original Recovered
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Support vector machine

I goal: predict a Boolean outcome from a set of n features
I e.g., spam filter, fraud detection, customer purchase

I data (ai , bi ), i = 1, . . . ,m
I ai ∈ Rn feature vectors; bi ∈ {−1, 1} Boolean outcomes

I linear predictor: b̂ = sign(wTa− v)
I w ∈ Rn is weight vector; v ∈ R is threshold

I SVM: choose w , v to minimize (convex) objective

(1/m)
m∑
i=1

(
1− bi (w

Tai − v)
)
+

+ (λ/2)‖w‖22

where λ > 0 is parameter
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SVM

wT z − v = 0 (solid); |wT z − v | = 1 (dashed)
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Sparsity via `1 regularization

I adding `1-norm regularization

λ‖x‖1 = λ(|x1|+ |x2|+ · · ·+ |xn|)

to objective results in sparse x

I λ > 0 controls trade-off of sparsity versus main objective

I preserves convexity, hence tractability

I used for many years, in many fields
I sparse design
I feature selection in machine learning (lasso, SVM, . . . )
I total variation reconstruction in signal processing
I compressed sensing
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Lasso

I regression problem with `1 regularization:

minimize (1/2)‖Ax − b‖22 + λ‖x‖1

with A ∈ Rm×n

I useful even when n� m (!!); does feature selection

I cf. `2 regularization (‘ridge regression’):

minimize (1/2)‖Ax − b‖22 + λ‖x‖22

I lasso, ridge regression have same computational cost
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Example

I m = 200 examples, n = 1000 features

I examples are noisy linear measurements of true x

I true x is sparse (30 nonzeros)

true x `2 reconstruction
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Example

true x `1 (lasso) reconstruction
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State of the art — Medium scale solvers

I 1000s–10000s variables, constraints

I reliably solved by interior-point methods on single machine

I exploit problem sparsity

I not quite a technology, but getting there
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State of the art — Modeling languages

I (new) high level language support for convex optimization
I describe problem in high level language
I description is automatically transformed to cone problem
I solved by standard solver, transformed back to original form

I enables rapid prototyping (for small and medium problems)

I ideal for teaching (can do a lot with short scripts)
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CVX

I parser/solver written in Matlab (M. Grant, 2005)

I SVM: minimize

(1/m)
m∑
i=1

(
1− bi (w

Tai − v)
)
+

+ (λ/2)‖w‖22

I CVX specification:

cvx begin

variables w(n) v % weight, offset

L=(1/m)*sum(pos(1-b.*(A*w-v))); % avg. loss

minimize (L+(lambda/2)*sum square(w))

cvx end
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CVXPY

I parser/solver written in Python (S. Diamond, 2013)

I SVM: minimize

(1/m)
m∑
i=1

(
1− bi (w

Tai − v)
)
+

+ (λ/2)‖w‖22

I CVXPY specification:

w = Variable(n); v = Variable() # weight, offset

losses = pos(1-mul elemwise(b, A*w-v))

L = (1/m)*sum entries(losses) # avg. loss

obj = Minimize(L+(lambda/2)*sum squares(w))

Problem(obj).solve()
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Real-time embedded optimization

I in many applications, need to solve the same problem
repeatedly with different data

I control: update actions as sensor signals, goals change
I finance: rebalance portfolio as prices, predictions change

I requires extreme solver reliability, hard real-time execution

I used now when solve times are measured in minutes, hours
I supply chain, chemical process control, trading

I (using new techniques) can be used for applications with
solve times measured in milliseconds or microseconds
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Example — Positioning

F (t)

I force F (t) moves object, modeled as 3 masses
(2 vibration modes)

I goal: move object to commanded position as quickly as
possible, with |F (t)| ≤ 1

I reduces to a (quasi-) convex problem
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Optimal force profile

position force F (t)
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CVXGEN code generator

I handles small, medium size problems transformable to QP
(J. Mattingley, 2010)

I accepts high-level problem family description

I uses primal-dual interior-point method

I generates flat library-free C source

I typical speed-up over general solver: 100–1000×
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CVXGEN example specification — SVM

dimensions

m = 50 % training examples

n = 10 % dimensions

end

parameters

a[i] (n), i = 1..m % features

b[i], i = 1..m % outcomes

lambda positive

end

variables

w (n) % weights

v % offset

end

minimize

(1/m)*sum[i = 1..m](pos(1 - b[i]*(w’*a[i] − v))) +

(lambda/2)*quad(w)

end
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CVXGEN sample solve times

problem SVM Positioning

variables 61 590

constraints 100 742

CVXPY, Xeon 113 ms 97 ms

CVXGEN, Xeon 0.2 ms 2.0 ms
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Large-scale distributed optimization

I large-scale optimization problems arise in many applications

I machine learning/statistics with huge datasets
I dynamic optimization on large-scale networks
I image, video processing

I we’ll use distributed optimization
I split variables/constraints/objective terms among a set of

agents/processors/devices
I agents coordinate to solve large problem, by passing

relatively small messages
I can target modern large-scale computing platforms
I long history, going back to 1950s
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Consensus optimization

I want to solve problem with N objective terms

minimize
∑N

i=1 fi (x)

e.g., fi is the loss function for ith block of training data

I consensus form:

minimize
∑N

i=1 fi (xi )
subject to xi − z = 0

I xi are local variables
I z is the global variable
I xi − z = 0 are consistency or consensus constraints

Large-Scale Distributed Optimization 43



Consensus optimization via ADMM

with xk = (1/N)
∑N

i=1 x
k
i (average over local variables)

xk+1
i := argmin

xi

(
fi (xi ) + (ρ/2)‖xi − xk + uki ‖22

)
uk+1
i := uki + (xk+1

i − xk+1)

I get global minimum, under very general conditions

I uk is running sum of inconsistencies (PI control)

I minimizations carried out independently and in parallel

I coordination is via averaging of local variables xi
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Example — Consensus SVM

I baby problem with n = 2, m = 400 to illustrate

I examples split into N = 20 groups, in worst possible way:
each group contains only positive or negative examples
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Iteration 1
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Iteration 5
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Iteration 40
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Summary

I convex optimization problems arise in many applications

I convex optimization problems can be solved effectively
I small problems at microsecond/millisecond time scales
I medium-scale problems using general purpose methods
I arbitrary-scale problems using distributed optimization

I high level language support makes prototyping easy
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