
Block Minifloat Arithmetic for Deep

Learning Inference and Training

Philip Leong

Director, Computer Engineering Laboratory

http://phwl.org/talks

Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems

- Novel architectures, applications and design techniques using FPGAs

› Research: reconfigurable computing, radio frequency machine learning

2

Motivation

› CPUs/GPUs designed to support

datatypes of fixed wordlength

- Double, float, long, short, char

› FPGA and ASICs can provide

custom datapaths of arbitrary

wordlength

3

Tradeoff between performance and precision

On-chip

weights

~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

3
0

x

Peak TOPS

~66

~4

~1

~0.3

2
0

0
x

Slide: Xilinx

› So how can we utilize low-precision for inference and training?

Outline

› Block Minifloat

› Time series Prediction

› Transfer Learning

4

2

Block Minifloat
Sean Fox

Motivation

▪ Training has greater efficiency problem than inference!
▪ E.g. 3x more MACs, much higher memory requirements

▪ Specialized number representations have been proposed
▪ Alternatives to FP32/FP16

▪ 4-8 bits for weights, activations and gradients

▪ Cheaper and faster training systems

▪ Focus on Edge (not sure about the Data Center)

Minifloat

▪ Narrow floating-point representation
▪ Our range between 4-8 bits

▪ NaN/Infinity NOT supported

mantissaexponentsign

IEEE754 (FP32)

mes
Minifloat

▪ Pros:
▪ Memory (fewer bits)

▪ Smaller hardware

▪ Cons:
▪ Dynamic Range (exponent

bits)

Block Minifloat

▪ Share exponent bias across blocks of NxN minifloat numbers

▪ Dynamic range (with fewer bits)

▪ Denser dot-products in

hardware

Block Minifloat

▪ Share exponent bias across blocks of NxN minifloat numbers

▪ Dynamic range (with fewer bits)

▪ Denser dot-products in

hardware

▪ Align wtih max exponent

▪ Underflow is tolerated

Block Minifloat

M M M

M M M

M M M

M M M

Minifloat

Fixed BFP

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

E E E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

M E

EEE

Block Minifloat

▪ Kulisch Accumulator: Fixed point accumulator wide enough to

compute error-free sum of floating-point products

▪ Integer-like hardware complexity for exponent <=4 bits

Fused Multiply-Add (FMA) with
Kulisch Accumulation

Implementation Details

▪ Three techniques to reduce data loss:

▪ Gradual underflow, Block Design, Hybrid Formats

▪ Simulate specialized BM hardware on GPU (with FP32)

▪ Apply Block Minifloat to all weights, acts, grads

▪ Our Spectrum of Block Minifloats

Data Loss Experiments

End-to-end GPU Training with BM

• Weight, activation and gradient tensors quantized to BM with stochastic rounding

• Kulisch accumulator ensures our dot products are exact (can use FP CUDA lib directly)

• FP32 used for Kulisch to floating-point conversion, block minifloat alignments, quantization etc.

• Approx 1x floating point operation every N MACs, 5x slowdown

Training Experiments (1)

ResNet18 on ImageNet Validation

Training Experiments (2)

Transformer on IWSLT’14 DE-En dataset

Training Experiments Summary

Training Accuracy

with BM ≈ FP32

RTL Synthesis Results

▪ Designs synthesized at 750MHz with Cadence RTL Compiler

and 28nm cell library

▪ Fused multiply-add (FMA)

▪ 4x4 systolic matrix mutlipliers

BM8 area and

power comparable

to INT8

Model: ResNet-18

Dataset: ImageNet

Imagenet

19

BM units are:

- Smaller

- Consume less

Power

2

Time Series Prediction
Wenjie Zhou

BM Inference and Training

› Previous work used GPU implementations with 28nm ASIC study

› Here we explore FPGA implementation

- NBEATS Inference and Training implementation using 4-bit mixed-precision BM

- BM GEMM array and Training accelerator architecture for NBEATS

21

NBEATS Model

› N-beats: Neural basis

expansion analysis for

interpretable

time series forecasting.

ICLR, 2019

› Achieves state of the art

time series prediction

results

› NN comprises mainly FC

layers with shortcut

connections

Inference Accelerator Architecture

23

GEMM

Vector Addition

GEMM Systolic Architecture

› Each PE performs multiplication and Kulisch accumulation

› Intermediate results are stored in the Kul buffer

› Result transformed to a BM format

24

Accuracy

25

M4 competition dataset

Accuracy of BM8 is similar to FP32

Benchmark M4 dataset

Dataset Yearly, Quarterly, Monthly,

Daily

Training Loss mean absolute percentage

error(MAPE)

Validation Loss symmetric mean absolute

percentage error (sMAPE)

Batch size 1024

Resource Utilisation

26

Area of BM8 is similar to INT8 but smaller than FP16

Inference Performance

27

BM8 performance and power is close to INT8

NBEATS Training Accelerator Architecture

28

Mixed-precision Block Minifloat Training

29

Minifloat

To Fixed

Minifloat

To Fixed

Psum

Accum

>>Ka >>Kb

ebias δ

Normalization

BM MAC unit (PE) BM GEMM array

NBEATS Accuracy (Preliminary)

› Dataset: M4-Yearly, validation loss: SMAPE loss, block size: 64

30

Loss Configuration

weight activation error gradient

BM4(1) 14.471649 BM<2,1> unsigned

BM<0,4>

BM<0,3> BM<0,3>

BM4(2) 14.463654 BM<2,1> unsigned

BM<0,4>

BM<0,3> FP32

BFP8 12.914178 BM<0,7> BM<0,7> BM<0,7> BM<0,7>

BM8 12.939716 BM<2,5> BM<2,5> BM<0,7> BM<0,7>

FP32 12.924581

Transfer Learning
Chuliang Guo

Motivation

› Private and secure

- No personal information uploaded to cloud

› Adapt to changing conditions

- To deal with non-stationary data

› Size, weight, and power (SWaP)

- Converge to a good solution faster through pretraining

Why might we want to do transfer learning at the Edge?

CNN Training Workflow

[1] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

› Back-propagation using SGD

– 3X workload of inference

Fig. 1 CNN training workflow: (1) Conv in forward path, (2) transposed
Conv in backward path, (3) dilated Conv in gradient generation, and (4)
weight update.

Fig. 2 Non-unit stride Conv, transposed Conv, and
dilated Conv [1].

Arbitrary stride Conv (Forward) Transposed Conv (Backward)

Dilated Conv (Gradient Generation)

› Layer-wise CNN blocks

– Unified bm(2,5) representation

- Non-unit stride Conv support

- Simplified mult/add/MAC

- Fused BN&ReLU

› Main blocks

- Unified Conv

- Conv & transposed Conv

- Dilated Conv

- Weight kernel partition

ResNet20/VGG-like accelerator

Fig. 3 Overall architecture of the generic training accelerator for
layer-by-layer processing. BN and ReLU are fused.

› Shortcut addition after BN and ReLu functions (enabling fusing)

› Unified bm(2,5) for activations, weights, errors, and gradients (simpler HW)

› Full precision accuracy with these changes

CIFAR-10 Training from Scratch

Tab. 1 Top-1 accuracy on CIFAR-10 and SVHN.Fig. 4 Modifications to basic building block of ResNet20
and VGG-like.

Transfer learning application

– Channel tiling accelerator

– Updating last several Conv &

FC

• Shortened back-propagation

• Reduced BRAM for

activations

• Faster convergence

Fig. 8 Transfer learning example from CIFAR-100 to CIFAR-10.

Resource and Power

Latency Breakdown

2

Conclusion

▪ Low-precision formats have wide applicability for inference and

training in Edge applications

▪ Doesn’t necessitate accuracy reduction

▪ Faster Training is possible using BM

▪ Fewer bits – important for memory-bound

▪ Narrow exponents – denser MAC in compute-bound

What are the applications?

Summary

40

References

[1] Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone, and David

Boland Philip H.W. Leong. A block minifloat representation for training deep

neural networks. In Proc. of The International Conference on Learning

Representations (ICLR). 2021. URL: bm_iclr21.pdf.

[2] Wenjie Zhou, Haoyan Qi, David Boland, and Philip H.W. Leong. FPGA

implementation of N-BEATS for time series forecasting using block minifloat

arithmetic. In Proc. Asia Pacific Conference on Circuits and Systems (IEEE

APCCAS 2022). 2022. URL: nbeats_apccas22.pdf.

41

http://phwl.org/assets/papers/bm_iclr21.pdf
http://phwl.org/assets/papers/nbeats_apccas22.pdf

Thank you!

Philip Leong (philip.leong@sydney.edu.au)
http://phwl.org/talks

mailto:philip.leong@sydney.edu.au
http://phwl.org/talks

	Default Section
	Slide 1: Block Minifloat Arithmetic for Deep Learning Inference and Training
	Slide 2: Computer Engineering Laboratory
	Slide 3: Motivation
	Slide 4: Outline
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Data Loss Experiments
	Slide 14: End-to-end GPU Training with BM
	Slide 15
	Slide 16: Training Experiments (2)
	Slide 17
	Slide 18
	Slide 19: Imagenet
	Slide 20
	Slide 21: BM Inference and Training
	Slide 22: NBEATS Model
	Slide 23: Inference Accelerator Architecture
	Slide 24: GEMM Systolic Architecture
	Slide 25: Accuracy
	Slide 26: Resource Utilisation
	Slide 27: Inference Performance
	Slide 28: NBEATS Training Accelerator Architecture
	Slide 29: Mixed-precision Block Minifloat Training
	Slide 30: NBEATS Accuracy (Preliminary)
	Slide 31
	Slide 32: Motivation
	Slide 33: CNN Training Workflow
	Slide 34: ResNet20/VGG-like accelerator
	Slide 35: CIFAR-10 Training from Scratch
	Slide 36: Transfer learning application
	Slide 37: Resource and Power
	Slide 38: Latency Breakdown
	Slide 39
	Slide 40: Summary
	Slide 41: References
	Slide 42: Thank you!

