Block Minifloat Arithmetic for Deep Learning Inference and Training

Philip Leong Director, Computer Engineering Laboratory http://phwl.org/talks

Computer Engineering Laboratory

- Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using FPGAs
- > Research: reconfigurable computing, radio frequency machine learning

Motivation

Tradeoff between performance and precision

- CPUs/GPUs designed to support datatypes of fixed wordlength
 - Double, float, long, short, char
- FPGA and ASICs can provide custom datapaths of arbitrary wordlength

Precision	Peak TOPS		On-chip weights		
1b	~66	\wedge	~70 M		
8b	~4		~10 M 🖊		
16b	~1	00 00	~5 M	30x	
32b	~0.3		~2 M		

Slide: Xilinx

> So how can we utilize low-precision for inference and training?

- > Block Minifloat
- > Time series Prediction
- > Transfer Learning

Sean Fox

2

Motivation

- Training has greater efficiency problem than inference!
 - E.g. 3x more MACs, much higher memory requirements
- Specialized number representations have been proposed
 - Alternatives to FP32/FP16
 - 4-8 bits for weights, activations and gradients
 - Cheaper and faster training systems
 - Focus on Edge (not sure about the Data Center)

Minifloat

- Narrow floating-point representation
 - Our range between 4-8 bits
 - NaN/Infinity NOT supported

- Pros:
 - Memory (fewer bits)
 - Smaller hardware

- Cons:
 - Dynamic Range (exponent bits)

Share exponent bias across blocks of NxN minifloat numbers

- Dynamic range (with fewer bits)
- Denser dot-products in hardware

Share exponent bias across blocks of NxN minifloat numbers

- Align wtih **max** exponent
- Underflow is tolerated

Fixed

Minifloat

BFP

Block Minifloat

- Kulisch Accumulator: Fixed point accumulator wide enough to compute error-free sum of floating-point products
- Integer-like hardware complexity for exponent <=4 bits</p>

Implementation Details

- Three techniques to reduce data loss:
 - Gradual underflow, Block Design, Hybrid Formats
- Simulate specialized BM hardware on GPU (with FP32)
 - Apply Block Minifloat to all weights, acts, grads
- Our Spectrum of Block Minifloats

BM8 (ours)	(2,5)/(4,3)
BM7 (ours)	(2,4)/(4,2)
BM6 (ours)	(2,3)/(3,2)
BM5 (ours)	(2,2)/(3,1)
BM5-log (ours)	(4,0)/(4,0)
BM4 (ours)	(2,1)/(3,0)
BM4-log (ours)	(3,0)/(3,0)

Data Loss Experiments

(a) Validation Accuracy: Training with denormal numbers on ImageNet

(b) HW (left axis) vs Range (right axis): Selecting the block size

(c) Minifloat scaling by varying the exponent base

End-to-end GPU Training with BM

- Weight, activation and gradient tensors quantized to BM with stochastic rounding
- Kulisch accumulator ensures our dot products are exact (can use FP CUDA lib directly)
- FP32 used for Kulisch to floating-point conversion, block minifloat alignments, quantization etc.
- Approx 1x floating point operation every N MACs, 5x slowdown

Training Experiments (1)

Scheme	BFP (ours)	BM (ours)	∇
6-bit	67.0	69.0	+2.0
8-bit	69.2	69.8	+0.6

ResNet18 on ImageNet Validation

Training Experiments (2)

Training Experiments Summary

Model (Dataset) [Metric]	FP32	BM8	
AlexNet (ImageNet)	56.0	56.2	
EfficientNet-b0 (small ImageNet)	62.6	61.8	
LSTM (PTB)[Val ppl.]	84.7	87.33	
Transformer-base (IWSLT)[BLEU]	32.3	31.8	T
SSD-Lite (MbNetV2) (VOC)[mAP]	68.6	68.0	with BM \approx FP32

RTL Synthesis Results

- Designs synthesized at 750MHz with Cadence RTL Compiler and 28nm cell library
 - Fused multiply-add (FMA)
 - 4x4 systolic matrix mutlipliers

Component	$\begin{array}{c} {\rm Area} \\ (\mu m^2) \end{array}$	Power (μW)
FP32	4782	10051
FP8 (w/ FP16 add)	829	1429
INT8 (w/ INT32 add)	417	1269
BM8	391	1141
BM6	200	624
INT8 (4x4 systolic)	7005	20253
FP8 (4x4 systolic)	18201	56202
BM8 (4x4 systolic)	6976	18765

BM8 area and power comparable to INT8

Imagenet

BM units are:

- Smaller
- Consume less
 Power

Time Series Prediction

Wenjie Zhou

2

- > Previous work used GPU implementations with 28nm ASIC study
- > Here we explore FPGA implementation
 - NBEATS Inference and Training implementation using 4-bit mixed-precision BM
 - BM GEMM array and Training accelerator architecture for NBEATS

NBEATS Model

 N-beats: Neural basis expansion analysis for interpretable time series forecasting. ICLR, 2019

THE UNIVERSITY OF

- Achieves state of the art time series prediction results
- NN comprises mainly FC layers with shortcut connections

Inference Accelerator Architecture

Vector Addition

GEMM

GEMM Systolic Architecture

- > Each PE performs multiplication and Kulisch accumulation
- > Intermediate results are stored in the Kul buffer
- > Result transformed to a BM format

Accuracy

M4 competition dataset

Benchmark	M4 dataset
Dataset	Yearly, Quarterly, Monthly, Daily
Training Loss	mean absolute percentage error(MAPE)
Validation Loss	symmetric mean absolute percentage error (sMAPE)
Batch size	1024

$$MAPE = \frac{1}{H} \sum_{i=1}^{H} \frac{|l_i - p_i|}{|l_i|}$$

$$SMAPE = \frac{200}{H} \sum_{i=1}^{H} \frac{|l_i - p_i|}{|l_i| + |p_i|}$$
(5)

where l_i is the label in time step *i*, and p_i is the prediction in time step *i*.

Accuracy of BM8 is similar to FP32

Area of BM8 is similar to INT8 but smaller than FP16

Inference Performance

BM8 performance and power is close to INT8

NBEATS Training Accelerator Architecture

THE UNIVERSITY OF

BM MAC unit (PE)

NBEATS Accuracy (Preliminary)

> Dataset: M4-Yearly, validation loss: SMAPE loss, block size: 64

	Loss	Configuration				
		weight	activation	error	gradient	
BM4(1)	14.471649	BM<2,1>	unsigned BM<0,4>	BM<0,3>	BM<0,3>	
BM4(2)	14.463654	BM<2,1>	unsigned BM<0,4>	BM<0,3>	FP32	
BFP8	12.914178	BM<0,7>	BM<0,7>	BM<0,7>	BM<0,7>	
BM8	12.939716	BM<2,5>	BM<2,5>	BM<0,7>	BM<0,7>	
FP32	12.924581					

Transfer Learning

Chuliang Guo

Motivation

Why might we want to do transfer learning at the Edge?

- > Private and secure
 - No personal information uploaded to cloud
- > Adapt to changing conditions
 - To deal with non-stationary data
- > Size, weight, and power (SWaP)
 - Converge to a good solution faster through pretraining

CNN Training Workflow

Back-propagation using SGD

THE UNIVERSITY OF

- 3X workload of inference

Arbitrary stride Conv (Forward)

Dilated Conv (Gradient Generation)

Fig. 2 Non-unit stride Conv, transposed Conv, and dilated Conv [1].

Fig. 1 CNN training workflow: (1) Conv in forward path, (2) transposed Conv in backward path, (3) dilated Conv in gradient generation, and (4) weight update.

[1] Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

ResNet20/VGG-like accelerator

- Layer-wise CNN blocks
 - Unified bm(2,5) representation
 - Non-unit stride Conv support
 - Simplified mult/add/MAC
 - Fused BN&ReLU
- > Main blocks
 - Unified Conv
 - Conv & transposed Conv
 - Dilated Conv
 - Weight kernel partition

Fig. 3 Overall architecture of the generic training accelerator for layer-by-layer processing. BN and ReLU are fused.

- Shortcut addition after BN and ReLu functions (enabling fusing)
- > Unified bm(2,5) for activations, weights, errors, and gradients (simpler HW)
- > Full precision accuracy with these changes

Fig. 4 Modifications to basic building block of ResNet20 and VGG-like.

Tab. 1 Top-1 accuracy on CIFAR-10 and SVHN.

Model	Precision (FP/BP)	CIFAR-10 Acc	SVHN Acc
	FP32	86.64%	92.45%
VCC like	BFP8	85.65%	92.07%
vGG-like	bm(2,5)/bm(4,3)	86.52%	92.51%
	bm(2,5)	86.54%	92.55%
	FP32	90.27%	94.98%
DecNet20	BFP8	87.52%	90.37%
Resinet20	bm(2,5)/bm(4,3)	89.46%	95.51%
200	bm(2,5)	89.87%	95.60%

0.5

0

10

20

iterations

30

40

50

Transfer learning application

Channel tiling accelerator Source dataset Source labels Conv Updating last several Conv & airplane automobile FC FC ship Shortened back-propagation truck CIFAR-100 Pre-train model Reduced BRAM for parameters activations Target dataset Target labels Conv beaver Faster convergence **Fine-tuning** dolphin FC 3.5 tank software- fp32 tractor 3 software + channel tiling- fp32 hardware-bm(2,5) CIFAR-10 ResNet20 training loss 1.5 1.5 1 Frozen hardware + transferred- bm(2,5)

Fig. 8 Transfer learning example from CIFAR-100 to CIFAR-10.

TABLE III

RESOURCE UTILISATION OF AND POWER THE RESNET20 ACCELERATOR (WITH THE STATIC POWER OF 30W).

	CLB	LUT	DSP	BRAM	Vivado(W)	PPS(W)
Full update	28824	166502	686	1171	8.714	35
6 Conv+FC	25589	161129	685	671	7.725	34
2 Conv+FC	21340	129453	621	571	6.779	34

TABLE IV

RESOURCE UTILISATION AND POWER OF THE VGG-LIKE ACCELERATOR (WITH THE STATIC POWER OF 30W).

	CLB	LUT	DSP	BRAM	Vivado(W)	PPS(W)
Full update	20688	119086	614	505	6.824	34
3 Conv+FC	20489	119740	613	325	6.499	34

Latency Breakdown

THE UNIVERSITY OF

Conclusion

2

- Low-precision formats have wide applicability for inference and training in Edge applications
 - Doesn't necessitate accuracy reduction
- Faster Training is possible using BM
 - Fewer bits important for memory-bound
 - Narrow exponents denser MAC in compute-bound

What are the applications?

[1] Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone, and David Boland Philip H.W. Leong. A block minifloat representation for training deep neural networks. In *Proc. of The International Conference on Learning Representations (ICLR)*. 2021. URL: <u>bm_iclr21.pdf</u>.

[2] Wenjie Zhou, Haoyan Qi, David Boland, and Philip H.W. Leong. FPGA implementation of N-BEATS for time series forecasting using block minifloat arithmetic. In *Proc. Asia Pacific Conference on Circuits and Systems (IEEE APCCAS 2022)*. 2022. URL: <u>nbeats_apccas22.pdf</u>.

THE UNIVERSITY OF SYDNEY Philip Leong (philip.leong@sydney.edu.au) http://phwl.org/talks