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Background

(I)Ordinary Codes for Point to Point Arbitrarily Varying Channel
(AVC)

• 1960 Blackwell-Breiman-Thomasian: introduced the model
and determined capacity of random correlated codes Cr(W)

• 1978 Ahlswede: Capacities of random and deterministic codes
may be different;
elimination technique ⇒
Capacity of deterministic codes C̄(W) = Cr(W) or 0

• 1985 Ericson: a sufficient condition (symmetrizable) for
C̄(W) = 0

• 1988 Csiszar-Narayan: also necessary,
to prove coding theorem without using elimination technique
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Background

(II)List Decoding for Point to Point Arbitrarily Varying Channel
(AVC)

• 1990 Pinsker conjectured, 1991 Ahlswede-C. proved: All
R < Cr(W) are achievable by deterministic list code of a
constant list size(list size depending on Cr(W)−R).

• The capacity of deterministic list codes = 0 or Cr(W), as
elimination technique works for list codes too. Thus to have
the capacity of deterministic list codes, we only need to
determine the the minimum list size Lmin for which,
deterministic list codes have a positive capacity.
1995 Blinovsky-Narayan-Pinsker: determined Lmin and showed
for binary AVC Lmin <∞⇔ Cr(W) > 0

• 1997 Hughes independently had Lmin and showed
for all AVC Lmin <∞⇔ Cr(W) > 0
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Background

(III) Ordinary Codes for Arbitrarily Varying Multiple Access
Channel (AVMAC)

• 1981 Jahn: By an extension of elimination technique: capacity
region R̄(W) of deterministic codes has non-empty interior ⇒
R̄(W) = Rr(W) (capacity region of random correlated
codes) and also determined Rr(W)
The conclusion is also true for list decoding, since elimination
technique works for list codes as well

Next question: when capacity of deterministic codes has empty
interior

• 1990 Gubner: “symmetrizable condition” is sufficient for
capacity region to have empty interior and conjecture it is also
necessary.

• 1999 Ahlswede-C.: proved the conjecture
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Background

(IV) List Decoding for AVMAC
Since capacity region of deterministic list codes is equal to capacity
region Rr(W) of random correlated codes in the case that it has a
non-empty interior, naturally the next problem is to determine the
minimum list size Lmin for list codes to have a capacity region with
a non-empty interior

• 2013 Nitinawarat: lower and upper bounds to the minimum
list size Lmin and showed
for binary AVMAC Lmin <∞⇔ Rr(W) has a non-empty
interior.

• a goal of this work: close the gap between the bounds
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Coding for AVMAC

AVMAC: is defined by a set of MAC’s

W = {W (·|·, ·, s) : X × Y → Z, s ∈ S}.

When x ∈ X n,y ∈ Yn are input to the channel, and state
sequence s ∈ Sn governs the channel, the channel outputs z ∈ Zn

with probability

Wn(z|x,y, s) =

n∏
t=1

W (zt|xt, yt, st)

Code: Codebooks U ⊂ X n,V ⊂ Yn and decoding set
Du,v, u ∈ U , v ∈ Vn
Ordinary code: Du,v ∩ Du′,v′ = ∅, (u, v) 6= (u′, v′)
List code: L(z) = {(u, v) : z ∈ Du,v}
List size of a list code: L = maxz |L(z)|
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Coding for AVMAC

The (average) probability of error for an (ordinary or list) code for
an AVMAC is defined as

max
s∈Sn

1

|U|V|
∑
u,v

Wn(Dc
u,v|u, v),

where Dc
u,v is the compliment of Du,v.

Note: error criterions may make difference for capacity regions of
AVMAC, but here we only consider the average probability of error.
A list code is called L-list code if its list size is no larger than L.
The capacity region of L-list codes for W is denoted by R̄L(W).
Problem: To find Lmin(W), the minimum L such that the interior
of R̄L(W) is not empty.
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Coding for AVMAC

Remark: A random correlated code CK1,K2 for AVMAC is
randomly distributed on a set {Ck1,k2 : ki ∈ Ki, i = 1, 2} of codes
for the channel. Two random indices K1 and K2 are generated by
two encoders, respectively. To perform a random code, the
decoder must know the outputs of the random indices. By
elimination technique, one can reduce the size of the indices
|K1| = |K2| = n2 such that the encoders may send the indices in a
block with vanishing rates to the decoder, if the interior of the
capacity region of deterministic (ordinary or list) codes is not
empty. Consequently in this case, the capacity region of random
correlated codes is achievable with deterministic codes.
By the technique, it is sufficient for us to have a code of “small
rates” and so it greatly simplify the proofs of coding theorems.
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Symmetrizable Conditions AVMAC

Coding for arbitrarily (point-to-point or multiple access) channel
can be considered as 0-sum game with two players.
The first player: the communicator (sender and receiver), chooses
coding scheme; and
The second player: the “jammer”, chooses a state sequence to
disturb the communication.
Intuitively, “symmetrizable conditions” provide ways for jammer
(randomly) to choose state sequences and win the game.
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Symmetrizable Conditions AVMAC

Symmetrizable Conditions by Gubner, (for ordinary codes for
AVMAC): There exits Q0, Q1, or Q2, such that at least one of the
following 3 equalities holds∑

s

W (z|x, y, s)Q0(s|x′, y′) =
∑
s′

W (z|x′, y′, s′)Q0(s′|x, y),

for all x, x′, y, y′, z;
The decoder may not distinguish (x, y) and (x′, y′), if the jammer
randomly chooses a state according to Q0 (for randomly chosen
(x′, y′)).∑

s

W (z|x, y, s)Q1(s|x′) =
∑
s′

W (z|x′, y, s′)Q1(s′|x),

for all x, x′, y, z;
The decoder may not distinguish (x, y) and (x′, y), if the jammer
randomly chooses a state according to Q1 (for randomly chosen
x′).
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Symmetrizable Conditions AVMAC

∑
s

W (z|x, y, s)Q2(s|, y′) =
∑
s′

W (z|x, y′, s′)Q2(s′|y),

for all x, y, y′, z.
The decoder may not distinguish (x, y) and (x, y′), if the jammer
chooses a state according to Q2 (for a randomly chosen y′).
That is, the jammer will “win the game” if one of the three
conditions holds, or in other words, W is symmetrizable.
The Results:
The capacity region of deterministic (ordinary) codes has
non-empty interior, and therefore is equal to capacity region of
random correlated codes (i.e., the communicator wins) if and only
if the channel is non-symmetrizable (none of the three equalities
holds).
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Symmetrizable Conditions AVMAC

Differently, since list decoding alow overlaps of decoding sets, it is
not sufficient for the jammer to win the game, because in the case
that decoder may not distinguish two pairs of codewords, he can
simply put both to the decoding list. That is, he needs a stronger
condition.
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Symmetrizable Conditions AVMAC

l-symmetrizable condition by Nitinawarat (for list codes for
AVMAC):The jammer will win the game for the list size l.
Diagonal:There exists Q(l) such that∑

s

W (z|x(1), y(1)), s)Q(l)(s|x(2), . . . , x(l + 1), y(2), . . . , y(l + 1))

=
∑
s

W (z|x(π(1)), y(π(1)), s)

Q(l)(s|x(π(2)), . . . , x(π(l + 1)), y(π(2)), . . . , y(π(l + 1))),

for all x(i) ∈ X , i = 1, 2, . . . l + 1, y(j) ∈ Y, j = 1, 2, . . . , l + 1,
z ∈ Z, permutation π on [l + 1].
The decoder may not distinguish (x(k), y(k)), k = 1, 2, . . . , l+ 1, if
the jammer randomly chooses a state according to Q(l).
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Symmetrizable Conditions AVMAC

l-symmetrizable condition by Nitinawarat (for list codes for
AVMAC) (continue)
Rectangle: or exists Q(a×b) with (a+ 1)(b+ 1) ≥ l + 1 such that∑

s

W (z|x(1), y(1), s)Q(a×b)(s|x(2), . . . , x(a+ 1), y(2), . . . , y(b+ 1))

=
∑
s

W (z|x(π(1)), y(σ(1)), s)

Q(a×b)(s|x(π(2)), . . . , x(π(a+ 1)), y(σ(2)), . . . , y(σ(b+ 1))),

for all
x(i) ∈ X , i = 1, 2, . . . a+ 1, y(j) ∈ Y, j = 1, 2, . . . , b+ 1, z ∈ Z
and permutation π on [a+ 1] and permutation σ on [b+ 1].
The decoder may not distinguish (x(i), y(j)), i = 1, 2, . . . , a+ 1,
j = 1, 2 . . . b+ 1, if the jammer randomly chooses a state,
according to Q(a×b).
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Symmetrizable Conditions AVMAC

l-symmetrizable condition by Nitinawarat (for list codes for
AVMAC) (continue)
Let Lmin(W) be the minimum L such that R̄L(W) a non-empty
interior and lmax(W) be the maximum l such that W is
l-symmetrizable. Then Nitinawarat proved:

lmax(W) + 1 ≤ Lmin(W) ≤ (lmax(W) + 1)2. (1)

The gap is large if lmax(W) is large.
Why did he fail to have a tight bound?

• The possible configurations of the lists are too complicated

• The l-symmetrizable condition is too simple.
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Symmetrizable Conditions AVMAC

Intuitively an equality in a symmetrizable condition implies that to
have a small probability of error, a type of configurations must
appear in lists. For example, 3-symmetrizable condition says the
following configurations with 4 pairs of codeowords must appear in
lists, and so the jammer wins the game for the list size 3:

• 3-Diagonal:
{(x(1),y(1)), (x(2),y(2)), (x(3),y(3)), (x(4),y(4))}

• 3-Rectangle:
{(x(1),y(1)), (x(1),y(2)), (x(2),y(1)), (x(2),y(2))},
{(x(1),y(1)), (x(2),y(1)), (x(3),y(1)), (x(4),y(1))},
{(x(1),y(1)), (x(1),y(2)), (x(1),y(3)), (x(1),y(4))},

• But much more possible configurations for lists of 4 pairs of
codewords are not included by 3-symmetrizable condition, e.g,
{(x(1),y(1)), (x(1),y(2)), (x(1),y(3)), (x(2),y(2))},
{(x(1),y(1)), (x(2),y(1)), (x(2),y(2)), (x(3),y(2))},
......
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configurations of the lists

We introduce bipartite graphs (without isolated vertex)
B = ({I,J }, E) to describe configurations of the lists.
B is called a configuration of the list L(z) if there exist bijections

f : I → {u ∈ U : ∃v ∈ V with (u, v) ∈ L(z)}

and
g : J → {v ∈ V : ∃u ∈ U with (u, v) ∈ L(z)}

such that
L(z) = {(f(i), g(j)) : (i, j) ∈ E}.

B′ is contained by L(z) as a configuration, if it is a subgraph of a
configuration B of L(z).
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configurations of the lists

Informally, the bipartite graph is contained by a list if it can be
embed into the list.
A bipartite graph is contained by a list code, as a configuration, if
it contained by any decoding list of the code.
Let B be set of bipartite graphs. For B′ ⊂ B, we call a list code a
B′-list code, if its all configurations are in B′. The capacity region
of B′-list codes for AVMAC W is denoted by R̄B′(W).
“B′-list codes” contains “all information” of “L-list code”, but not
vice versa.
Obviously, a B′-list codes is a L-list code, if no bipartite graph in
B′ has more than L edges.
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B-Symmetrizable Condition AVMAC

For a bipartite graph B = ({I,J }, E), W is B-symmetrizable, if
there exist a set of stochastic matrices QB,(i,j), (i, j) ∈ E such that
for all |I|-tuple x(I) = (x(i), i ∈ I) labeled by i ∈ I and |J |-tuple
y(J ) = (y(j), j ∈ J ) labeled by j ∈ J , (i, j), (i′, j′) ∈ E and z,∑

s

W (z|x(i), y(i), s)QB,(i,j)(s|x(I \ {i}), y(J \ {j}))

=
∑
s

W (z|x(i′), y(i′), s)QB,(i′,j′)(s|x(I \ {i′}), y(J \ {j′})),

where x(I \ {i}) = (xi, i ∈ I \ {i}) and
y(J \ {j}) = (yj , j ∈ J \ {j}).
The decoder does not know for which “edge” (i, j), (x(i), y(j)) is
the correct input pair, if the jammer chooses a state, according to
QB,(i′,j′), for a randomly chosen “edge” (i′, j′).
Denote the set of bipartite graphs symmetrizing W, by

B0(W) = {B :W is B-symmetrizable.}
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Examples
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Gubner's symetrizable condition contains 
all bipartite graphs with 2 edges
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Example
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(Diagonal)

Complete bipartite graph
(Rectangle)

But Nitnawarat's symetrizable condition only 
contains 2 types of bipartite graphs
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The Main Results

An AVMAC W is finite symmetrizable if the cardinality of the set
|B0(W)| <∞.

Theorem 1

For a finite symmetrizable AVMAC, a list code with positive rates
and probability of error smaller than a positive constant
(depending on the channel), contains all members in B0(W) as
configurations, if the length of code is sufficiently large.

Theorem 2

Given a finite symmetrizable AVMAC, for any λ > 0 and
sufficiently large n, there exists a B0(W)-list code of length n with
probability of error smaller than λ, and positive rates. That is,
R̄B0(W)(W) has a non-empty interior.
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The Main Results

Certainly, we want a list code to contain as few as possible
configurations of lists, under the condition that the error probability
is arbitrarily small. Then the two theorems together say that
B0(W) is the set of configurations contained by the “best codes”.
Theorems 1 and 2 have the following direct consequences.

Corollary 1

If W is finite symmetrizable and |B′| <∞,

R̄B′(W)

{
= R∗(W) if B0(W) ⊂ B′
has an empty interior else.

Corollary 2

Lmin(W) = Λmax(W),

where Λmax(W) is the maximum sizes of edge sets of bipartite
graphs in B0(W).
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The Main Results

Now the remained questions for list decoding for AVMAC only are:

• When is an AVMAC finite symmetrizable?

• What can we say about list decoding for a non-finite
symmetrizable AVMAC?

Let us first answer the first question:

Theorem 3

An AVMAC is finite symmetrizable, if and only if its capacity
region of random correlated codes has a non-empty interior.
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The Main Results

As capacity regions of all constant list codes are contained by
capacity region of random correlated codes (Fano). The answer to
the second question immediately follows from Theorem 3.

Corollary 3

For no finite L, the capacity region R̄L(W) has non-empty
interior, if W is not finite symmetrizable. That is, Lmin(W) <∞
if and only if the capacity region of random correlated codes has a
non-empty interior.
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Outline of Proof of Theorem 1

To prove Theorem 1, we need to show, if a sufficiently long code
does not contain a B ∈ B0(W) as a configuration, then there
exists a state sequence for which the error probability is larger than
a constant. In other words, we only need to find a random strategy
for the jammer to win the game in this case.

• The jammer first randomly and uniformly chooses a edge
(Ĩ , J̃) in the bipartite graph B.

• Then he randomly, independently, and uniformly chooses
|I| − 1-tuple X(I \ {Ĩ}) of codewords and |J | − 1-tuple
Y(J \ {J̃}) of codewords from the two codebooks
respectively, (for given (Ĩ , J̃) = (i, j)) as the “rest vertices” in
B.

• Finally, for given (Ĩ , J̃) = (i, j), X(I \ {i}) = x(I \ {i}) and
Y(J \ {j}) = y(J \ {j}), the jammer randomly generates a
sequence S be from Sn acccording to conditional distribution
Qn

B,(i,j)(·|x(I \ {i}),Y(J \ {j})).
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Outline of Proof of Theorem 1

• In a view of game theory, the criterion of average probability
of error means the jammer knows the coding scheme but not
the codewords to be sent. As we consider average probability
of error, we let words X and Y sent by the senders
(communicator) be independently uniformly distributed on
two codebooks and independent of the random strategy of the
jammer ((Ĩ , J̃), X(I \ {Ĩ}), Y(J \ {J̃}) and S).

• Then by regrouping the terms in the expectation of error
probability in X,Y, S, we show the the expectation is larger
than λ0 := 1

4Λmax(W) (a constant).

• Consequently, there exists a state sequence for which the error
probability is larger than λ0.
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Outline of Proof of Theorem 2

We need to prove that for any W and λ > 0, there exists a list
code containing no B 6∈ B0(W) as a configuration.

• codebook: The two codebooks are randomly, and
independently generated from two sets of typical sequences
T n
X and T n

Y with minx PX(x),miny PY (y) ≥ a for a fixed
small a > 0, respectively. By Chernov bound, we show the
codebooks have some “nice properties”.
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Outline of Proof of Theorem 2

• Decoding: Let Ī (J̄) be the maximum size of the first
(second) parts of vertex sets of the bipartite graphs in B0(W).
An output sequence z is decoded as (u, v), if and only if there
is an s ∈ Sn and a quadruple (X,Y, S, Z) of random variables
with (x(u),y(v), s, z) ∈ T n

XY SZ satisfying simultaneously the
below conditions.
O)

D(PXY SZ‖PX × PY × PS ×W ) < ξ, (2)

for a W ∈ W.
I) For all Ī-tuple of codewords xĪ in the first codebook, and
J̄-tuple yJ̄ in the second codebook having joint type
PXY SZX ĪY J̄ with (X,Y, S, Z),

I(XY Z;X ĪY J̄ |S) < ζ. (3)
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Outline of Proof of Theorem 2

• Next, we show the decoding rules O) and I) guarantee that
there is no B 6∈ B0(W) contained by the code as a
configuration, if ξ and ζ are chosen sufficiently small
(depending only on W).

• It is shown that by the “nice properties” of the randomly
generated codebooks, the error probability is exponentially
vanishing as length of the code increases, if the rates of the
code are “much smaller” than ξ and ζ.

Note the rates of the code may be very small, but it is sufficient
for us to show the theorem, because of the elimination technique.
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Outline of Proof of Theorem 3

Recall the capacity region R∗(W) of random correlated codes is
the closure of the convex hull of sets

{(R1, R2) : 0 ≤ R1 ≤ inf
W̄∈W̄

I(X;Z|Y ),

0 ≤ R2 ≤ inf
W̄∈W̄

I(Y ;Z|X),

0 ≤ R1 +R2 ≤ inf
W̄∈W̄

I(XY ;Z)}

for all random inputs X,Y , and output Z, where

W̄ = {
∑
s

Q(s)W (·|·, ·, s), for all distribution Q on S}.
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Outline of Proof of Theorem 3

(1) Then obviously R∗(W) has a non-empty interior if and only if
(p1)

max
PX ,PY

inf
W̄∈W̄

I(X;Z|Y ) > 0;

(p2)
max
PX ,PY

inf
W̄∈W̄

I(Y ;Z|X) > 0,

simultaneously hold, which imply that
(p0)

max
PX ,PY

inf
W̄∈W̄

I(XY ;Z) > 0.

That is, R∗(W) has a non-empty interior if and only if (p0), (p1),
and (p2) simultaneously hold.
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Outline of Proof of Theorem 3

(2) Next, we prove that an AVMAC W is finite symmetrizable if
and only if the following conditions simultaneously hold.
(P1) There is a upper bound D1 > 0 such that no bipartite graph
B = ({I,J }, E) ∈ B0(W) having a vertex in J with degree lager
than D1;
(P2) There is an upper bound D2 > 0 such that no bipartite graph
B = ({I,J }, E) ∈ B0(W) having a vertex in I with degree lager
than D2;
(P0) There is an upper bound D0 > 0, such that no bipartite
graph in B0(W) having a matching larger than D0.
(3) Finally we show (Pk) is equivalent to (pk), respectively, for
k=0,1,2. This completes our proof.
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A Challenging Problem

To avoid a heavy calculation, in all proofs of direct coding
theorems for AVMAC, were based on the elimination technique
that is, to construct a code with very small positive rates, instead
to achieve the capacity regions.
But, elimination technique does NOT work for channels with state
constraint (i.e., the jammer has to pay cost (or power) for the
state chosen and he can only pay the limited cost).
Can we find a coding scheme directly to achieve the capacity
regions (even for ordinary deterministic codes for AVMAV),
without using elimination technique?
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Thank You!
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