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Practical concern with CNC

Long-distance symbol-level synchronization is difficult, e.g.,
 when a symbadb misses the synchronization by a unit time
(say, aus), it becomesD.

LNC Acyclic network| Data unit [] [

CNC Any network Data unit LI [F[(D)]

Abstract Any network Data unit [] Some algebraic

generalization structure that shares the
key property of [F[(D)]
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Algebraic properties of thering F[(D)]

Inside the ringf[(D)], the ideakD!) represents things that happen from the

timet onward.
Key property All ideals in the ringf[(D)] form a strictly descending chain

(DYO(D2 O ...0MdYO ... - {0}
// Anything infinitely delayed is null.

What algebraic structures share tkay propert?
Recall that CNC expands the polynomial rif{@p] into the ringF[(D)]
of rational power series byaking everythingexcept timeinvertible.

This meansocalizationof the ringF[D] at the ideakD).
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Algebraic properties of thering F[(D)]

Just ignorethisdideif it containsforeign languageto you. Relax!
F[D] is aPID, and{D) is aprimeideal. /I In fact, a maximal ideal

Localizationresults in docal ringF[(D)],

o }A discrete valuation rin@PVR)
which is also &ID.

Terminology. When aocal ringis aDVR, the generatar of the unigue
maximal ideal is called theniformizer

Thekey propertyof F[(D)] is typical for aDVR:

 All ideals in the DVR form a strictly descending aiha

(20 0...0&0O... - {0} /By, e.g.Nakayama’s Lemma
// ' Unidirectional, just like time.

=
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Algebraic structures

+ - 4|/ Examples Remarks

Field F Y1 V1V 1/ 1 Q = {rational #s},

R = {real #s},
F(X) =
{rational functions}
Ring /I /1 V1 x | RXR, Zero divisor:
(commutative (2, 0){0, 5) = (0, 0)

ring with id) Z = fint \
= {integers
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ldealsin aring

In a ringR, the ideal generated by elemarit
fax: xR} = <a> = allR

Thus,<a> [ <b> means thaa|b.
// Then,a/b makes sense whdh is anintegral domain

The ideal generated by elemeat$, C is
{axtby+cz: X, y, z[R} = <a, b, c>

The ringF[[D]] = {symbol pipelines starting at a tiree)}.
The idealD’F[[D]] = {symbol pipelines starting at a tiree3}.
The ringF[(D)] = {“rational pipelines” starting at a tin=0}.

The idealDIF[(D)] = {“rational pipelines” starting at a tinel}.
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Ring, field, integral domain, & PID

+-[| / | Examples Remarks
Ring (commutative | 1/ | RxR |Zero=(0, 0).
ring with id) Ozero divisor, which is not invertible:
(2, 0)40, 5) = zero

Integral domain 4 X, Z[X] | Onon-principal ideal: (2, x) # (any)

Principal ideal v/ X, Z., F[X] |!deal « element up to invertible factor.

domain (PID) P Good enough for basic linear algebra.
Ordering among ideals via inclusion is
partial.

Discrete valuation | /| », F[(D)], |Allideals form a linear chain.

ring (DVR) D F{[D]]

Field F AR Q, R, |The only ideal is {0}.

F(X)




Synchronization concern — general DVR

Long-distance symbol-level synchronization is difficult, e.g.,
 when a symbadb misses the synchronization by a unit time
(say, aus), it becomesD.

LNC Acyclic network| data unit[] [
CNC Any network data unit [] [F[(D)]

Abstract NC Any network data unit [] [J, a DVR
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Generality enhances applicability.

A DVR is not restricted to time-multiplexing of dasymbols.

Example. When the uniformizez of a DVR represents a unit shift in
any domain other than tinfe.g., space, phase, frequency, wavelength,
or code), then the DVR-based NC is insensitivertprecision in
Inter-node synchronization.

Generality. The uniformizer of a DVR Is not necessarily a simfany
particular domain.

Open problem. Identify explicit application of NV based on a general
DVR.
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F[(D)] — PID - DVR

Z = A handy
example of PID

F[(D)]
for CNC

DVR

P1D suffices for linear algebra



Contents

e PID-based network coding

e DVR-based causal network coding

Based mainly on:
[Li-Sun, “Network coding theory via commutative algebra,” IEEE Trdhs.1/2011]
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Contents

e PID-based network coding

e Non-singular and normal network codes
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P-linear network code

Let P denote a PID.

Definition. A P-linear network codassigns a coding coefficiekt . [ P
to every adjacent paid( e of channels.

Moreover, aP-linear network code isormalif it is associated with a
uniqueset of coding vectors.

Normality is crucial for:
 Message propagatidih The coding vectof, unambiguously specifies
a data unit] P to be transmitted over a chaneel
 Message receptiod A nodedecodedy its incoming coding vectors
rather than by coding coefficients.
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Rules over coding vectors

Terminology. A channel is called amchannelor alink depending
whether its originating end is the source

A set of coding vectorf satisfies the following w.r.t. the coding
coefficients:

Initialization. Coding vectors of-channeldorm the natural
basis off'®, wherew is the message size. Thus,
[fde <channel = the identity matrix

Recursion. For an outgoingnk efrom a noder (#9),
fe = ZdDIn(v) fd kd,e
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Example of normal convolutional NC

Initialization. Coding vectors of-channeldorm the natural basis @.
Recursion. For an outgoingnk efrom a noder, fo=2 5, fakae

.
3




Calculation of coding vectors

Initialization. Coding vectors of-channeldorm the natural basis @®.
[fdle <channer = the identity matrix

Recursion. For an outgoingnk efrom a nodey, f,= dem(\,) faKge

fo = ZdDIn(v) fakge
= 2 channedding) TdKd.e T 2iink donw) TaKd.e

Kal,e + ZIink dddIn(v) 1:d kd,e

| * _d: s-channel
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Coding vectors

) ()
Equation. For an outgoingnk efromv ' |

’ _E 1
_ - f(l)_g(oj

1
\4

fo= |k + 2ink doingy TaKae

| * _d: s-channel

Example. Takef, =1, T4, f5 together. \

3) 4 (5
(@)= (4) (5 () () ()

a0 01 @) 2 i
[f(s) fa f(s)] =oln gl [f(s) fa f(5) .(; =

Notation. F = A 4 =



Calculation for coding vectors

Try tosolve F in termsof Aand B from:
F=A+FB

FII, -B) =A /I Write | for the number of links.
det(,—B) F =AL[Ad|(l,—B) //Adj=Adjugate matrix

The special case of an acyclic network:

The upstreanto-downstream order
= B Is a strictly triangular matrix
—det(, —B)=1 & Adj(,—B) =(,-B)™
= Unique solution: F= Al —B)™*
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Optimal Linear Network Codes on acyclic network

Definition. An [F-linear network code-LNC) is said to b@ptimal when

* Incoming coding vectors to every receiwegenerate a subspacelio?
with the full rank .

For each receivev, createw edge-disjoint paths starting froeachannels
and ending at incoming links ta

Il if necessary append a new source node

Notation. Let C, be an (E|-w*xwindex matrix in which
e rows are indexed by links;
* columns are indexed l®/channels;

« the @ d)" entry inC, is 1 when one of thevpaths starts witld and
ends with the incoming lingto v and is O otherwise.
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Existence of Optimal LNC on acyclic network

Corollary. An [F-LNC is optimal if, for each receliver,
« the matrixAlll — B)™[IC, is nonsingular (and has the full rank

e ofr, equivalently, the matri% } S nonsingular.

|-B C,

| -A(1-B)™* A 0 0 Al - B)™C,

0 (1-B)™ | -B C | (I - B)™(T,




Existence of Optimal LNC on acyclic network

Lemma. If |IF| exceeds the degree of evetyn a polynomialg(x,, ..., X.)
overF, then there exisy,, ..., a, I F such thag(a,, ...,a,) # 0.

Proof. By induction onn.

Theorem 1. An optimal F-LNC exists whenlf| > o (= number of receivers).
Proof. Regard every coding coefficiekf . as an indeterminate. The degree
of every indeterminate is at most 1 in %pr g} for evegnd hence at

mosto in L AB ((;)} The above Lemma now applies.

V. receive

Task. Fill matrices A and B with coding coefficientk, , and achieve
nonsingularity of thed matrices[l_AB g} .

Vv

2012/3/15 SEREL T REAVEIEE 30 Network coding theory via commutative algebra 21



Schwartz-Zippel Lemma and an extension

Schwartz-Zippel Lemma. Let g(X;, ..., X,) be a polynomial of degree
0> 0 overFF, anda,, ..., a, be independently and uniformly selected

scalars front L F. Then,
Pr{g(ay, ..., a) = 0} < 3/ |F|
Proof. By induction om. Il Pr{g(ay, ...,a,) #0} >1 -9/ |F|

Extension. Consider a polynomiag(x,, ..., X,) of a total degreedm
over IF such that the degree of each indeterminate is no more dhan

Leta,, ..., a, be independently and uniformly selected scalars fFoim
F. Then,

Pr{g(ay, ..., a,) # 0} > (1 — 3/ [F|"

Proof. Refer to Lemma 4 in [Heet al, “A random linear network
coding approach to multicagt
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Optimality of Random LNCs

Theorem. Let [F| > o Construct anf-LNC with coding coefficients

Independently and uniformly chosen fran Then, the probability for
theF-LNC to be optimal is at least (1 &/ [F|)E.

A O
Proof. In the extended lemma, lgtx,, ..., X)) = We':,laiveL -B Cv:|

andm = |E]. H

2012/3/15 SEREL T REAVEIEE 30 Network coding theory via commutative algebra 23



Nonsingularity and normality

For aP-linear network code det(,—B) F =A[LAd|(l,—B)

None gr multip
solutions for Q;E

det(,—B) #0 Nonsingular

code
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Nonsingularity and normality

For aP-linear network codedet(, —B) F = A [Ad|(l,—B)

None or multiple
solutions for f ] .

det(,— B) divides all entries
in the matrixA [Adj(!,— B).
[ Unigque solution

detﬂ|— B) Zz0 Nonsingular ' Normal code
code
W
No solution

2012/3/15 SEREL T REAVEIEE 30 Network coding theory via commutative algebra 25



Nonsingularity 7> normality over P

Example. IP’:Z,A:{1 O} B:{O _} 1=2

01 1 0
1 i 1 —{ )} @
O1,-B= and\d'l—B{ } (1 0)!
| {_1 J j(1,—B) 1 1 (Oj (J
| (1/2) ;
This Z-linear network code is nonsingular ( 12) o, @
because ddt(-B) = 2 # 0. ol N
® (12
But, it isnotnormal as 2 does not divide (—1/2)
entries in A U\dj(h_ B) = 1 - “Coding vec_tors” _exist over
1 1 Q, the quotient field oZ..

2012/3/15 SEREL T REAVEIEE 30 Network coding theory via commutative algebra 26



Normalization of a nonsingular code

When det(,—B) # 0, we can force it to be a divisor a@f entries in the
matrix ALAd|(Il,—B) by: /I A containsky . with s-channel.

e Simply multiply every entry iA with det(,— B).

— O

Do (1/2) ;
det(,—B) = 2 (,/‘ 1/2) 4
1/2 ;
2’{—1/2)
“Coding vectors” exist over
Q, the quotient field o¥.
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Normalization of a nonsingular code

When det(,—B) # 0, we can force it to be a divisor a@f entries in the
matrix ALAd|(Il,—B) by: /I A containsky . with s-channel.

e Simply multiply every entry iA with det(,— B).

— O

o
B
)

&

The nonsingular code becomes normal.
Coding vectors now exist ové.




Contents

e PID-based network coding

e Existence of optimal code
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Inv. Factor Thm. of Free Submodule over a PID

By Invariant Factor Theorem of Free Submodule ovdiDg Every
submodule of#is a free module ovér. /| Free= It has a rank w

We now illustrate this
theorem withP = Z.
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Inv. Factor Thm. of Free Submodule over a PID (= Z)

Lattice points on the grid Z2, a freeZ-module at the rank 2.

0, 1)

O
N\

(1,0)




A submodule of a free Z-module is automatically free.
The exemplifying submodule is at the rank 2 witheais as shown.
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PID = The submodule is also free,

and the bases of can be aligned.

In this alignment, the sequential “factors” of the submodul&iare (3, 2).
iw g L q " jﬁ %2 3, 2) .
S gL —0 % —o—
7 2 1| _~
—ch WL ﬁ/> >€L E
(1,0) (3,0)
T T T -
B D 4
S 8 T o St e
d B A )|
—jL 1 | ] ]




Another way to align the two bases

The sequential “factors” of the submoduleZiinow become~«3, 2).
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PID = Can so align that “factors” divide one another
The sequential “factors” of the submoduléZitinow become-<1, —6).
= As-1|-6, the sequencel, £6) of invariant factorss unique. L

s
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A smaller submodule at the rank 2

Theinvariant factorof this smaller submodule irfAre ¢2, +6).
&

o —

7 | 4.2

2,1 _~

I\

(-6, o,Lé w

(1,0)

JK
]
43\




P-linear network code with optimal data reception

Let f, be coding vectors of a norniadlinear network code.

By Invariant Factor Theoremf Free Submodule over a Blibcoming
coding vectors to a nodegenerate a free submodulel®st Therankof

this submodule is theata reception ratef v.

Definition. A normalP-linear network code is said to bptimalwhen

* Thedata reception rataf every nodes = maxflow fromsto v.
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Existence of optimal P-linear NC

Theorem 1. There exists an optimd@l-linear NC whenlp| is sufficiently
large.

Proof. The fundamental theoremf LNC asserts the existence ah

optimal F-linear NC with all coding coefficients in any sufficiently
large subset of.

So we may assume thats nota field and hence is an infinite PID.
Applying the Lemma 1 té& = quotient field ofP, there exists

« an optimalF-linear NC with coding coefficients IA.

This NC qualifies as

e a nonsingulaP-linear network code.

Normalize the code into an optini&linear NC.



2012/3/15

An optimal normal NC over P = GF(3)

A normal GF(3)-linear code on tighuttle Network
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An optimal normal NC over P = GF(3)

Message =4 D)

2a+b

2a+b

2a+2b

A normal GF(3)-linear code on tighuttle Network
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Deadlock in cyclic data propagation

Message =4 D)
2axb

o

2a+2b

A normal GF(3)-linear code on tighuttle Network
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Deadlock in cyclic data propagation

To breakdeadlockin data propagation, we need some kind®fclic attribute
of either the network topology or the algebraicstire of data units.

2azb

29+b

2a+2b

In this case, the network contains cycles and tBellP= GF(3) does not
provide the neededalcyclic attributesither.



Contents

Open problem. Formulate something nice in between for an acyclic attribute.

e DVR-based causal network coding

e Existence of optimal code
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D-linear NC and causality

Definition. A D-linear network code is said to beusaif:
* On every cycle, at least one pair (d, e) is Wjthdivisible byz,

[l z= uniformizer inD

Theorem 2. Causality= normalityfor aD-linear network code.

Proof. Skipped.
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Example of a causal F[(D)]-linear network code




Delay function on a network with cycles

Definitions. A delay functiort maps adjacent pairs to intege@ such that
» along every cycley(d, e) > 0 for at least one adjacent pair €).

A delay functiort.



Causal Data Propagation by DVR-based NC

Definitions. A delay functiort maps adjacent pairs to intege0 such that
» along every cycley(d, e) > 0 for at least one adjacent pair €).

A D-linear network code iscausal if (9 | kg .

®

A delay functiort.



A tcausal D-linear network code

7|0, Z|z Z|0




Example of a #causal FF[(D)]-linear network code




Optimal DVR-based Network Codes

Theorem 3. Let D be a DVR. Given a delay functianthere exists an
optimalt-causallD-linear NC.

Proof. Let Q be the quotient field o), andmthe largest(d, € among
all adjacent pairgd, e).

The idealz™1D shares the same cardinality willh which is infinite.
From theLemma 1, there exists

 an optimalQ-linear NCC with coding coefficients, , L1 Z"D.

= at-causalD-linear network code

= at-causal normab-linear network code

= An optimalt-causalD-linear NC as well
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Optimal DVR-based Network Codes

Theorem 3. There exists an optimé&icausalD-linear NC.

Proof. Skipped.
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Optimal DVR-based Network Codes

Theorem 3. There exists an optimahusall-linear NC.

Proof. Skipped.
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Contents

e DVR-based causal network coding

e Decoding
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Inv. Factor Thm. of Free Submodule over a PID

Assume thav is eligible for receiving the message

/[l maxflow fromsto v is at leastv

By thelnvariant Factor Theoremf Free Submodule over a PID

1)

2)

3)

Thereceived submodulé: ellIn(v)) of thesource moduléd¥is
also a freed-module at the ranku

There is a basigy, ..., u,} of the source module and a basis
{d,u,, ...,d_p_} of the received submodule, whedg ..., d_ UD.
The elementd,, ...,d,can be so chosen thdt|d, | ... |d,,
Moreover, such a choice is unique up to unit factdhe uniquel,,
d,, ...,d_ are called thenvariant factorof the received submodule
In the source module.
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Inv. Factor Thm. of Free Submodule over a DVR

Assume thamaxflow fromstovis at leastu
I/ so thatv is eligible for receiving the message

By thelnvariant Factor Theoremf Free Submodule over a PID

1) Thereceived submodulé, elJln(v)) of thesource moduld®is
also a fredd-module at the ranku

2) Thereis a basiay, ...,u_} of the source module and a basis
{d,u,, ...,d_p_} of the received submodule, whedg ..., d_ UD.

SinceD is a DVR we may write

. d,=2,..., d,= Z up to multiplication by units /17,20
Then, reorded,, ...,d_, sothat, <...<i,

The sequencey( ...,1,) IS unique.
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Example of decoding a D-linear NC

Nodev receives data units
[ 1
(a b)p 172 =(a ﬂ)

Z 1-z
. 1-z

Message = b) O D?

An optimal causab-linear NC on the&huttle
Network



Example of decoding a D-linear NC

Nodev receives data units
[ 1
(a b)p 172 =(a ﬂ)

Z 1-z
. 1-z

Message = b) O D?

Apply Invariant Factor Theorerto
(fo elIn(v)). We find
I,=0and, = 1.

An optimal causab-linear NC on th&huttle Network



Decoding of an optimal causal D-linear NC

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellin(v)) of D«is

also a freed-module of rankwand there is a basisl{, ..., u_} of D¥so
that{ z*u,, ..., 2°uU,} is a basis(®f edIn(v)), where i, <...<i =1.
The goal is to establish:

[fleony [ [SOome matrix] =21,
Why? Let the message be the row vecipr(... a). Then,
(@8 ... 8) Hfeleniny [ [Some matrix] =7 (2, &, ... &)

Received data A decoding matrix at 1 =1, is the highest valuation
by the nodey the nodes with the ~ among invariant factors of
“decoding delay’Z  the received submodule.



Example of decoding a D-linear NC

Nodev receives data units

i 1

(a b)p 172 =(a a+lz)
Z 1-z

1-z

Message = b) O D?

Apply Invariant Factor Theorerto
(fo: eldIn(v)). We find

I;,=0andi, =1
Decode the messa@e b with
delay Z via

= e

Decoding
matrix

An optimal causab-linear NC on th&huttle Network



Decoding of an optimal causal D-linear NC

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellin(v)) of D«is

also a fredd-module of rankwand there is a basisl{, ...,u_ } of D¥so
that{Z"U, ..., 2°U.} is a basigfof edIn(v)), where (i, < ... <i_ =1
Thus, there exists an [in[xwmatrix M overD such that

[fel einy) M = 2 Uj] 1<j<w

w
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Decoding of an optimal causal D-linear NC

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellIn(v)) of D«is

also a freed-module of rankwand there is a basisi{, ..., u,} of D¥so
thaf z*u,, ..., 2°U,} is a basigff edIin(v)), where (i, < ... <i =1
Thus, there exists an |[in[xwmatrix M overD such that

[fe]eDIn(v) M = [2 uj]lsjsa)

Write [Z! Ul1g< (D = [2 Ul1g<, = 2 [Uj]1g<» WhereD is the diagonal
matrix with diagonal entriezg-".
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Decoding of an optimal causal D-linear NC

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellIn(v)) of D«is

also a fredd-module of rankwand there is a basisl{, ...,u_ } of D¥so
thaf z*u,, ..., 2°U,} is a basigff edin(v)), where i, < ... <i, =i.
Thus, there exists an |[in[xwmatrix M overD such that

[fe]eDIn(v) M = [2 uj]lsjsa)

Write [Z' Ul1g< (D = [2 U1, = 2 [U]1<i< » WhereD is the diagonal
matrix with diagonal entrieg~'i. Combining these two equalities,

[feletiny LM D = z [Ui] i<
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Decoding of an optimal causal D-linear NC

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellIn(v)) of D«is

also a fredd-module of rankwand there is a basisl{, ..., u_ } of D¥so
thaf z*u,, ..., 2°U,} is a basigff edIin(v)), where (i, < ... <i =1
Thus, there exists an |[in[xwmatrix M overD such that

[fe]eDIn(v) M = [2 uj]lsjsa)

Write [Z! Ul1g< (D = [2 Ul1g<, = 2 [Uj]1g<» WhereD is the diagonal
matrix withZ~ on the diagonal. Combining these two equalities,

[feletingy LM D = z [Ui] 1<
[fe]eDIn(v) M [D D([uj]lﬁjﬁ =z w
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Decoding of an optimal causal D-linear NC

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellIn(v)) of D«is

also a freeD-module of rankwand there is a basisl{, ..., u_} of D¥so
thaf z*uy, ..., 2°U,} is a basigff edIn(v)), where i, < ... <i_=I.

[fe]eDIn(V) M [D D([uj]lﬁjgﬁ)_l =7 |,

= [Some matrix]
for decoding



Z = optimal decoding “delay”

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellin(v)) of D«¥is

also a freeD-module of rankwand there is a basisl{, ..

., U, of D¥so
that{ Z"u,, ..., 2°U,} =1

Is a basisfRf eLlin(v)), where (=i, < ... <1 ,=1

w

Task. Assuming the existence of a decoding ma#rixt the “delay”z,
we are to show thak > 1.
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Z = optimal decoding “delay”

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellin(v)) of D«¥is

also a fredd-module of rankwand there is a basisl{, ...,u_ } of D¥so
that{ z*u,, ..., 2°U,} is a basigff edIn(v)), where i, < ... <i =
Thus, there exists a x|In(v)| matrixM’ over D such that

w

[Z" Uil 1g<o TM" = [feleingy) /I Symmetric to previous argument
Or equivalently,
[Ui]1gj<o (D" TM' = [f]qiny, WhereD' is the diagonal matrix with

diagonal entrieg’
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Z = optimal decoding “delay”

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellin(v)) of D«¥is

also a fredd-module of rankwand there is a basisl{, ...,u_ } of D¥so
that{ z*u,, ..., 2°U,} is a basigff edIn(v)), where i, < ... <i_ =
Thus, there exists afx|In(v)| matrixM’ over D such that

(U] i< D" EM” = [fe]eyingy
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Z = optimal decoding “delay”
v = an eligible receiver of the messaBg thelnvariant Factor Theorerof

Free Submodule over a Plihe received submodulé.: ellin(v)) of D«¥is

also a fredd-module of rankwand there is a basisl{, ...,u_ } of D¥so
that{ z*u,, ..., 2°U,} is a basigff edIn(v)), where i, < ... <i_ =
Thus, there exists afx|In(v)| matrixM’ over D such that

[U] 1< D" EM” = [fe]eyingy

Task. Assuming e A = 24, we are to show that > .

w

[uj] 1<ji<w (D" M" LA = [fe]eDIn(v) A= zkl w
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Z = optimal decoding “delay”

v = an eligible receiver of the messaBg thelnvariant Factor Theorerof
Free Submodule over a Plihe received submodulé.: ellin(v)) of D«¥is

also a freeD-module of rankwand there is a basisl{, ..

., U, of D¥so
that{ Z"u,, ..., 2°U,} =1

Is a basisfRf eLlin(v)), where (=i, < ... <1 ,=1

w
[U]ge DD’ M DA =24,

whereD’ is the diagonal matrix with diagonal entr&s. Thus
D' M’ CA Ou]y.,= 24,

Presence af on the bottom row of the diagonal matbix = Z|z¢
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Convolutional decoding with delay |

Abbreviate the matrixf[] ¢ asF.

Thus, there exists an |[ip[xwmatrix A overF[(D)] such that

FOA=DI,
Write F =) D"F,, whereF, is a matrix ov(T,
n=0

(0]

A=Y D"A,, whereA, isa matrix ovtF

n=0

s (S0, S| - o1,
n=0 n=0

Equate coefficients dD" on both sides by convolution among matrices.
* The coefficient oD'! is equal td ,

* The coefficient oD! is equal to the zero matrix for @ i.



2012/3/15

Decoding delay | of convolutional NC

FO Fl |:2 I:l
O kK K F
O O F F_,
O 0O O F,

OO0 O .. O
OF F .. F_
O 0O F ..FE,

O 0 O O F

Ao A A

O A A
O O A

O O O ..

Ah A A

O A A
O O A

O O O

A

A,
A,

A

for “time-variant decoding.” Meanwhile,

O
O
O

O
O
O

O
O
O

O
O
O

O
O
O

BB T AZAYEES 3: Network coding theory via commutative algebra

The firsti+1 equations of matrix convolution can be summalrias:

w

O
O

O O
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One way to calculate the decoding delay |

F, FF F, ... F
O F, F .. F_
Thus the rank of the matrixO O F, F_,
O O O F,
O O O O
O F F .. F_
IS w higher than that afO O F, ..F_,
O O O O F

This necessary condition for convolutional decodahthe delay is also
sufficient for “time-variant decoding” according [tei-wang 2009] which
IS motivated by a result ghassey-Sain 1968pn linear sequential circuit.



Summary of theory of linear NC

Acyclic LNC: |
When the DVRlegeneratesto a field Convolutional NC:
Afield F is a PID, but the unique When the DVR =F[(D)]

maximal ideal is {0}. No uniformizer!

It is theacyclictopology that endows
LNC with normality & causality.

DV R-based linear NC

The descending chain of ideals
endows normality & causality.
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Summary of theory of linear NC

Acyclic LNC: |
whenDVR degenerates intofaeld Convolutional NC:

whenDVR =F[(D)]

DV R-based linear NC

Ensurenormalityandcausality

Pl D-based linear NC

Formulatenormality of a code.
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When the convolutional kernels
belong to the polynomial ring F[D], there

is no feedback, no loop and no inversion.
Expansion of F[D] to F[(D)] enables the

inversion of everything but time. This
expansion means localization of F[D] at

the prime ideal (D). The result F[(D)] is g
local ring, in fact, a DVR.

Mat Eng
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The descending chain of
ideals ina DVR is an abstract
generalization of the unidirectional
characteristic of time, ...

Mat Eng
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.. which has the effect
of breaking the deadlock
of cyclic transmission.

Mat Eng
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Information accessed by a node
is a free submodule over the DVR. Its
invariant factors represent “"delay” in a
generalized sense that is not
restricted to the time domain.

Mat Eng

BB T AZAYEES 3: Network coding theory via commutative algebra
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So, when the submodule is
of the full rank, the original message can
be decoded at a "delay” at the highest
valuation in an invariant factor. When
the "delay” represents a shift in any
domain other than time, the code evades
the synchronization problem.

Mat Eng
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1. Linear network coding (NC) 2. Convolutional NC
3. NC theory via commutative algebra 4. Construction of NC over cyclic networ
5. Martingale of patterns 6. Computing by symmetry
7. Unified algebraic theory of sorting, routing, lieasting, & concentration network
8. Cut-through coding 9. Algebraic transfornmafltistage interconnection networ
10, Scalagleirj‘ogblocking switches and geometrigtioh

.\\;‘\\ -

SN

.

N
B
\\'\
_._.\_,

11. Scalability ofﬁilﬁ"bon'ditionally nonbld'léking switeh
12. Coding by algebraic topology '




Some connections between
MathematicsX Information Engineering

Digital Signal Processing

Discrete Fourier Transform
Discrete Time Series Analysis Image Processing
Recursive Regression { Digital Compression

/ Adaptive Algorithms
Statistical Analysis / Machine Learning

s
Data Analysis %/’ Neural Networks
Random Processes Genetic patterns
Martingale i~
Encryption

Number Theory - Network Security
Linear Algebra < Traffic Analysis
Galois Theory —~X~____—~ — Switching
Algebraic Curves \ Information Theory
Commutative algebra == Error Correction Codes

Graph Theory Network Coding



