Transform Technique and Interference Alignment for Acyclic Delay Networks

G. Abhinav

Post-Doctoral Fellow, INC, CUHK

(Joint work with Teja, Dr. Prasad, and Prof. Sundar Rajan at IISc, Bangalore)

June 10, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline of Presentation I

Underdetermined (?) systems

Applications of IA Gaussian Interference Channel Three Unicast Sessions with Linear Network Coding

Transform Technique for Acyclic Networks with Delay

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

IA for 3-Unicast Sessions with Delay IA with Time-Invariant LECs IA with Block Time-Varying LECs IA with Time-Varying LECs

Conclusion

Outline

Underdetermined (?) systems

Applications of IA

Transform Technique for Acyclic Networks with Delay

IA for 3-Unicast Sessions with Delay

Conclusion

Many Variables, Few Equations [Jaf]

- Consider linear system in several variables.
- We have following system of equations with M < N:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_M \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} & \cdots & H_{1N} \\ H_{21} & H_{22} & \cdots & H_{2N} \\ \vdots & \vdots & \cdots & \vdots \\ H_{M1} & H_{M2} & \cdots & H_{MN} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_N \end{bmatrix}$$

• Interested only in X_1 . Rest are interference.

[[]Jaf] Prof. Syed Jafar's monograph freely available at: https://sites.google.com/site/interferencealignment/

Many Variables, Few Equations (Contd.)

▶ A realization x₁ can be decoded iff

$$\begin{bmatrix} H_{11} \\ H_{21} \\ \vdots \\ H_{M1} \end{bmatrix} \notin Span \left\{ \begin{bmatrix} H_{12} \\ H_{22} \\ \vdots \\ H_{M2} \end{bmatrix}, \cdots, \begin{bmatrix} H_{1N} \\ H_{2N} \\ \vdots \\ H_{MN} \end{bmatrix} \right\}$$

If {Signal Space ∩ Interference Space} ≠ {φ} then, contribution of x₁ to the same received vector will be non-unique. Many Variables, Few Equations (Contd.)

Example 1:
$$\begin{bmatrix} H_{11} \\ H_{21} \\ \vdots \\ H_{M1} \end{bmatrix} \in Span \left\{ \begin{bmatrix} H_{12} \\ H_{22} \\ \vdots \\ H_{M2} \end{bmatrix}, \cdots, \begin{bmatrix} H_{1N} \\ H_{2N} \\ \vdots \\ H_{MN} \end{bmatrix} \right\}$$
$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} X_1 + \begin{bmatrix} 1 \\ 1 \end{bmatrix} X_2 + \begin{bmatrix} 0 \\ 1 \end{bmatrix} X_3,$$
for $\{X_1, X_2, X_3\} = \{0, 1, -1\}$ and $\{X_1, X_2, X_3\} = \{1, 0, 0\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example: Many Variables, Few Equations (Contd.)

Consider the following system of equations, over C.

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}}_{\underline{h_1}} X_1 + \underbrace{\begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}}_{\underline{h_2}} X_2 + \underbrace{\begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}}_{\underline{h_3}} X_3 + \underbrace{\begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}}_{\underline{h_4}} X_4 + \underbrace{\begin{bmatrix} 5 \\ 5 \\ 8 \end{bmatrix}}_{\underline{h_5}} X_5$$

$$\bullet \ \underline{h_4} = \underline{h_3} - \underline{h_2}, \ \underline{h_5} = \underline{h_3} + \underline{h_2}$$

- Interference vectors $\underline{h_2}$ and $\underline{h_3}$ span 2-D space.
- [17 1 10] is orthogonal to $\underline{h_2}$ and $\underline{h_3}$, but not to $\underline{h_1}$.

Objective

Constraining interference symbols in a sub-space that is linearly independent of the signal sub-space over some field \mathbb{F} .

- Challenges:
 - Simultaneously achieving IA at several receivers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Underdetermined (?) systems

Applications of IA Gaussian Interference Channel Three Unicast Sessions with Linear Network Coding

Transform Technique for Acyclic Networks with Delay

IA for 3-Unicast Sessions with Delay

Conclusion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

IA in 3-User Gaussian Interference Channel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

K-User Gaussian Interference Channel

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Sum Degrees of Freedom

Definition

A Gaussian Interference Network is said to have a sum degrees of freedom (DoF) of d, if its sum-capacity scales as

$$C_{sum} = d \log SNR + o(\log SNR)$$

Sum-DoF of K-user GIC is upper-bounded by $\frac{K}{2}$.

Asympotic IA in 3-User GIC with Random Channel Coefficients [CaJ]

- Sum-DoF(K-User GIC) = K/2.
- ▶ Objective: Achieve a sum-DoF of ³/₂ − ε using IA in 3-User GIC, for some ε > 0.
- Create 2*n*-equations, at each receiver, in 3*n*-variables, with *n* variables assigned to each Tx.

[CaJ] V. Cadambe, S. Jafar, "Interference Alignment and Degrees of Freedom for the K user Interference Channel", IEEE Trans. Info. Theory, Vol. 54, no. 8, pp. 3425-3441, Aug. 2008.

Asympotic IA in 3-User GIC (Contd.)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Asympotic IA in 3-User GIC (Contd.)

Input-output relation is given by

$$Y_j = \sum_{i=1}^3 H_{ij} V_i \underline{X_i} + N_j.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Precoders	$V_1 \rightarrow 2n + 1 \times n + 1$	$V_2 \rightarrow 2n + 1 \times n$	$V_3 \rightarrow 2n + 1 \times n$
Data Symbols	$X_1 ightarrow n+1 imes 1$	$X_2 \rightarrow n \times 1$	$X_3 \rightarrow n \times 1$

Asympotic IA in 3-User GIC (Contd.)

► Structure of
$$H_{ij}$$
: $H_{ij} = \begin{bmatrix} h_{ij}^{(1)} & 0 & \cdots & 0 \\ 0 & h_{ij}^{(2)} & \cdots & 0 \\ \vdots & \ddots & \cdots & 0 \\ 0 & 0 & \cdots & h_{ij}^{(2n+1)} \end{bmatrix}$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

Selection of IA Precoders in 3-User GIC

- $\triangleright V_1 = [W \ TW \ \cdots \ T^n W].$
- $V_2 = H_{23}^{-1} H_{13} V_1 A.$
- $V_3 = H_{23}^{-1} H_{13} V_1 B$
 - $T = H_{12}^{-1} H_{32} H_{31}^{-1} H_{21} H_{23}^{-1} H_{13}$
 - A : Selection matrix selects first n columns
 - B : Selection matrix selects last n columns

RESULT: The above choice of precoders achieves IA almost surely and DoFs of $\frac{n+1}{2n+1}$, $\frac{n}{2n+1}$, $\frac{n}{2n+1}$ are achieved. A sum-DoF of $\frac{3}{2}$ achieved asymptotically.

IA in Three Unicast Sessions with Linear Network Coding

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Three Unicast Sessions

Why IA for 3-Unicast Sessions?

Impossible to achieve zero-interference!

[MDRJMV] C. Meng et al., "Precoding-Based Network Alignment For Three Unicast Sessions", arXiv:1305.0868 [cs.IT].

Why IA for 3-Unicast Sessions (Contd.)

 Systematic code design that guarantees rate of ¹/₂ (asymptotically) for every source-destination pair for a wide range of network topologies.

Random linear coding at intermediate nodes.

Assumptions

- Mincut $(S_i D_i) = 1$, Mincut $(S_i D_j, j \neq i) \ge 1$.
- Link capacity = one \mathbb{F}_{2^m} symbol per link use.
- Input-output relation at D_j is given by [KoM]

$$Y_j = \sum_{i=1}^3 M_{ij}(\underline{\epsilon}) X_i$$

• Over 2n + 1 network uses, with precoding,

IA for 3-Unicast Session vs IA for K-user GIC

3-Unicast	3-User GIC	
Channel matrices and	Channel matrices and	
symbols from finite field	symbols from complex field	
Human control of the channel	Nature's control on the channel	
Interdependency of channels	Independence of channels	
Feasibility depends on topology	Feasibility in almost surely sense	

IA for 3-Unicast Session

- Same choice of precoding matrices as for 3-User GIC.
- Conditions on the network topology under which (asymptotic) rates of ¹/₂ is feasible called "coupling relations".

Feasibility Conditions for IA for 3-Unicast Session

Define network polynomials

$$p_1(\underline{\epsilon}) = \frac{M_{21}(\underline{\epsilon})M_{13}(\underline{\epsilon})}{M_{11}(\underline{\epsilon})M_{23}(\underline{\epsilon})},$$

$$p_2(\underline{\epsilon}) = \frac{M_{22}(\underline{\epsilon})M_{13}(\underline{\epsilon})}{M_{12}(\underline{\epsilon})M_{23}(\underline{\epsilon})},$$

$$p_3(\underline{\epsilon}) = \frac{M_{33}(\underline{\epsilon})M_{12}(\underline{\epsilon})}{M_{13}(\underline{\epsilon})M_{33}(\underline{\epsilon})},$$

$$\eta = \frac{M_{32}(\underline{\epsilon})M_{21}(\underline{\epsilon})M_{13}(\underline{\epsilon})}{M_{12}(\underline{\epsilon})M_{31}(\underline{\epsilon})M_{23}(\underline{\epsilon})}.$$

$$p_i = \frac{M_{ab}(\underline{\epsilon})M_{pq}(\underline{\epsilon})}{M_{aq}(\underline{\epsilon})M_{pb}(\underline{\epsilon})}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Feasibility Conditions for IA for 3-Unicast Session (Contd.)

Case 1): $\eta \neq 1$. Coupling Relation 1:

$$p_i \notin \left\{1, \eta, 1+\eta, \frac{\eta}{1+\eta}
ight\}.$$

Coupling relation invariant to choice of precoding matrices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feasibility Conditions for IA for 3-Unicast Session (Contd.)

Case 2):
$$\eta = 1$$
.
Coupling Relation 2: Rate of $\frac{1}{2}$ iff $p_i \neq 1$.
 $V_1 = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$, $V_2 = M_{13}^{-1}M_{23} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$, $V_3 = M_{12}^{-1}M_{32} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$.

 Interpretation in terms of network topology and polynomial-time algorithms to check coupling relations in [MDRJMV].

[[]MDRJMV] C. Meng et al., "Precoding-Based Network Alignment For Three Unicast Sessions", arXiv:1305.0868 [cs.IT].

Outline

Underdetermined (?) systems

Applications of IA

Transform Technique for Acyclic Networks with Delay

IA for 3-Unicast Sessions with Delay

Conclusion

Acyclic Networks with Delay

Why transform technique?

- No advantage in terms of complexity of decoding.
- Enables IA in 3-unicast sessions with delay without making using of memory at intermediate nodes.

[[]BAPR] T. Bavirisetti, A. Ganesan, K. Prasad, and B. S. Rajan, "Precoding Based Network Alignment using Transform Approach for Acyclic Networks with Delay", arXiv:1310.2809 [cs.IT] (revised manuscript under review in IEEE Trans. Info. Theory).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

$M_{11}(D) = \mathbf{D} + \mathbf{D}^3$

イロト イポト イヨト イヨト

э

$M_{12}(D) = D^3$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$x_{1}(D) \qquad x_{2}(D)$$

$$D \qquad D \qquad D \qquad \begin{bmatrix} y_{1}(D) \\ y_{2}(D) \end{bmatrix} = \begin{bmatrix} D + D^{3} & D^{3} \\ D^{3} & D + D^{3} \end{bmatrix} \begin{bmatrix} x_{1}(D) \\ x_{2}(D) \end{bmatrix}$$

$$y_{1}(D) \qquad y_{2}(D)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

► In general, $\underline{Y}(D) = M(D)\underline{X}(D)$, where [KoM]

$$M(D) = M^{(0)}D^0 + M^{(1)}D^1 + \cdots + M^{(d_{max})}D^{d_{max}},$$

where $\{M^{(0)}, M^{(1)}, \dots, M^{(d_{max})}\}$ is the impulse response of the network.

 Objective: To convert convolutional behaviour into instantaneous behaviour (inspired by OFDM for multipath wireless channels).

Transform Technique

SOURCE

DESTINATION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Input-output relation after addition of CP and discarding the CP:

$$\begin{bmatrix} Y_1^{(n-1)} \\ Y_1^{(n-2)} \\ \vdots \\ Y_1^{(0)} \end{bmatrix} = \underbrace{\operatorname{circ}(M_{11}^{(0)}, \ M_{11}^{(1)}, \cdots, \ M_{11}^{(d_{max}-1)}, \ M_{11}^{(d_{max})})}_{M_{11}} \begin{bmatrix} X_1^{(n-1)} \\ X_1^{(n-2)} \\ \vdots \\ X_1^{(0)} \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$M_{11} = \begin{bmatrix} M_{11}^{(0)} & M_{11}^{(1)} & \cdots & M_{11}^{(d_{max})} & 0 & \cdots & 0 & 0 \\ 0 & M_{11}^{(0)} & \cdots & M_{11}^{(d_{max}-1)} & M_{11}^{(d_{max})} & \cdots & 0 & 0 \\ \vdots & \vdots \\ M_{11}^{(1)} & M_{11}^{(2)} & \cdots & M_{11}^{(d_{max})} 0 & 0 & \cdots & 0 & M_{11}^{(0)} \end{bmatrix}$$

RESULT:

Circulant matrix M_{11} can be diagonalized using finite-field DFT matrix given by

$$F = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{2(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{n-1} & \alpha^{2(n-1)} & \cdots & \alpha^{(n-1)(n-1)} \end{bmatrix},$$

where n|q-1, \mathbb{F}_q being the field of operation. That is,

 $\hat{M}_{11} = F M_{11} F^{-1}$

SOURCE

DESTINATION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Input-output relation is now given by

 $\begin{bmatrix} Y_1^{(n-1)} \\ Y_1^{(n-2)} \\ \vdots \\ Y_1^{(0)} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{d_{max}} M_{11}^{(i)} & 0 & 0 & \cdots & 0 \\ 0 & \sum_{i=0}^{d_{max}} \alpha^i M_{11}^{(i)} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sum_{i=0}^{d_{max}} \alpha^{(n-1)i} M_{11}^{(i)} \end{bmatrix} \begin{bmatrix} X_1^{(n-1)} \\ X_1^{(n-2)} \\ \vdots \\ X_1^{(0)} \end{bmatrix}.$

We now say that the single source single sink network has been transformed into *n*-instantaneous networks!

No memory is used at the intermediate nodes.

Outline

Underdetermined (?) systems

Applications of IA

Transform Technique for Acyclic Networks with Delay

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

IA for 3-Unicast Sessions with Delay IA with Time-Invariant LECs IA with Block Time-Varying LECs IA with Time-Varying LECs

Conclusion

IA with Time-Invariant LECs

Three Unicast Sessions with Delay

 $Y_j = \hat{M}_{1j}X_1 + \hat{M}_{2j}X_2 + \hat{M}_{3j}X_3$

IA with Time-Invariant LECs

SOURCE

IA with Time-Invariant LECs (Contd.))

 $Y_j = \hat{M}_{1j}(\underline{\epsilon}) V_1 X_1 + \hat{M}_{2j}(\underline{\epsilon}) V_2 X_2 + \hat{M}_{3j}(\underline{\epsilon}) V_3 X_3$

RESULT:

The input symbols can be exactly recovered at destinations subject to $p \nmid 2n + 1$, if the following conditions hold.

Rank $[V_1 \quad \hat{M}_{11}^{-1} \hat{M}_{21} V_2] = 2n + 1,$ Rank $[\hat{M}_{12}^{-1} \hat{M}_{22} V_2 \quad V_1] = 2n + 1,$ Rank $[\hat{M}_{13}^{-1} \hat{M}_{33} V_3 \quad V_1] = 2n + 1.$

Example - IA with Time-Invariant LECs

Figure : In this network, $d_{max} = 2$. IA is feasible over $GF(2^6)$ with 2n + 1 = 7.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

IA with Time-Invariant LECs (Contd.)

Bottomline:

- Varying coding coefficients w.r.t is a necessity in instantaneous networks to achieve IA.
- Channel diversity required for IA in delay networks is supplied by delays. So, varying coding coefficients is not a necessity.

IA with Block Time-Varying LECs

IA with Block Time-Varying LECs

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

IA with Block Time-Varying LECs (Contd.)

Feasibility of IA with Block Time-Varying LECs

RESULT: Necessary and Sufficient conditions for feasibility of IA using Block Time Varying LECs is exactly the same as "coupling relations" for the instantaneous network counterpart derived in [MRMJ].

 No need to simulate instantaneous network behaviour in 3-unicast sessions with delay.

IA with Time-Varying LECs

Generalizing IA with Time-Varying LECs

- Rate $(S_i D_i) = \frac{n_i}{n}$.
- Vary LECs with every time-instant.
- Addition and discarding of CP, gives an input-output relation

$$\underline{Y}_j = \sum_{i=1}^3 M_{ij} V_i \underline{X_i}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feasibility of IA with Time-Varying LECs

Is IA with time-varying LECs feasible, for some $(n_i > 0, n > 0)$, when the other two IA schemes fail in 3-unicast sessions with delay?

IA with Block Time-Varying LECs (Contd.)

Figure : IA with Time-Varying LECs is feasible for $n_1 = 5, n_2 = 3, n_3 = 3, n = 8$. IA with Time-Invariant and Block Time-Varying LECs is infeasible.

Outline

Underdetermined (?) systems

Applications of IA

Transform Technique for Acyclic Networks with Delay

IA for 3-Unicast Sessions with Delay

Conclusion

Summary

- Transform technique for acyclic networks with delays was discussed.
- Three different IA schemes for 3-unicast sessions with delays and their relation with IA for 3-unicast instantaneous networks were discussed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Open Problems

 Insights into networks where IA with time-varying LECs is feasible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Extensions of IA to higher dimensional networks.

THANK YOU!