
Combinatorial Power Allocation in AC Systems
Approximation, Hardness and Truthfulness for

Complex-demand Knapsack Problem

Sid Chi-Kin Chau

Masdar Institute of Science and Technology, Abu Dhabi, UAE

ckchau@masdar.ac.ae

August 22, 2013

Joint Work with Khaled Elbassioni and Majid Khonji

Paper: http://www.SustainableNetworks.org/papers/cks.pdf
Slides: http://www.SustainableNetworks.org/slides/cks.pdf

http://www.SustainableNetworks.org/papers/cks.pdf
http://www.SustainableNetworks.org/slides/cks.pdf


Story begins with Resource Allocation ...

Resources are in different forms

E.g. time, space, bandwidth, ...
and energy (electricity is the most common form of energy)

Smart grid (what is it?)

No precise definition, but broadly, modernizing electrical grid using
information and communications technology
For example, enabling more efficient allocation of energy

From communication networking to electricity networking

Similarities: Networked structures, Limited storage, Uncertainties in
demands and supplies, ...
Differences: Homogeneous commodity (i.e. electricity), Periodic
quantities (i.e. alternating current/AC)
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AC Electrical Systems 101

Circular motion of dynamo generator ⇒ Periodic current and voltage

Phase between current and voltage

Complex number representations: V = |V |e iωt , I = |I |e i(ωt+θ),
Power: P = V × I (also a complex number)

Active power: Re(P)
Reactive power: Im(P)
Apparent power: |P|
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AC Electrical Systems 101 (Lingo)

Active power (Re(P))

Can do useful work at loads

Reactive power (Im(P))

Needed to support the transfer of real power over the network
Capacitors generate reactive power; inductors to consume it

Power factor (Re(P)
|P| )

Ratio between real power and apparent power
Regulations require maximum power factor

Apparent power (|P|)
Magnitude of total active and reactive power
Cared by power engineers
Conductors, transformers and generators must be sized to carry the
total current (manifested by apparent power)
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Central Problem: Power Allocation

Utility-maximizing allocation power to end-users

Subject to capacity constraints of total apparent power (or current,
voltage)

Elastic (splittable) demands ⇒ (Non-)Convex optimization

Inelastic (unsplittable) demands ⇒ Combinatorial optimization

Minimum active/reactive power requirement
Challenge: Positive reactive power can cancel negative reactive power
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From Knapsack to Inelastic Power Allocation
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(Traditional) 1D Knapsack Problem

Definition (1DKS)

max
∑
k∈[n]

xkuk

subject to ∑
k∈K

xkdk ≤ C , xk ∈ {0, 1} for k ∈ [n]

[n] := {1, . . . , n}: a set of users

uk : utility of k-th user if its demand is satisfied

dk : positive real-valued demand of k-th user

C : real-valued capacity on total satisfiable demand

xk : decision variable of allocation

xk = 1, if k-th user’s demand is satisfied
xk = 0, otherwise
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Knapsack Problem for Power Allocation

Complex-valued resources (e.g. AC power, current, voltage)

Discrete optimization mostly concerns real-valued resources

Allocating complex-valued (AC) power among a set of users

Inelastic user demands (i.e. fully satisfied or not)

Maximizing total utility of satisfied users

Subject capacity constraints

Active power and reactive power constraints
Apparent power constraint

Optional:

Utility is private information reported by users
Selfish users tend to exaggerate their utility
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2D Knapsack Problem

Definition (2DKS)

max
xk∈{0,1}

∑
k∈K

xkuk (1)

subject to ∑
k∈K

xkdR
k ≤ CR and

∑
k∈K

xkd I
k ≤ C I (2)

dR
k + id I

k : complex-valued demand of k-th user

CR + iC I: complex-valued power capacity

Real-part: Active power (dR
k ,C

R)
Imaginary-part: Reactive power (d I

k ,C
I)

Well-known problem
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Complex-demand Knapsack Problem

Definition (CKS)

max
∑
k∈K

xkuk

subject to ∣∣∣∑
k∈K

xkdk

∣∣∣ ≤ C , xk ∈ {0, 1} for k ∈ [n]

dk : complex-valued demand of k-th user (dk = dR
k + id I

k)

C : real-valued capacity of total satisfiable demand in apparent power
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Complex-demand Knapsack Problem

Definition (CKS)

max
∑
k∈K

xkuk

subject to ∣∣∣∑
k∈K

xkdk

∣∣∣ ≤ C , xk ∈ {0, 1} for k ∈ [n]

It is a 0/1-quadratic programming problem:

max
∑

k∈[n] xkuk

s.t. (
∑

k∈[n] dR
k xk)2 + (

∑
k∈[n] d I

kxk)2 ≤ C 2

xk ∈ [0, 1] for all k ∈ [n].

A new variant of knapsack problem
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Complex-demand Knapsack Problem

Pictorially,

Picking a maximum-utility subset of vectors, such that the sum lies
within a circle
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Definitions of Approximation Algorithms

For set S of users, denote by u(S) ,
∑

k∈S uk

Denote S∗ an optimal solution of CKS

Definition

For α ∈ (0, 1] and β ≥ 1, a bi-criteria (α, β)-approximation to CKS is a
set S satisfying

u(S) ≥ α · u(S∗)∣∣∑
k∈S

dk

∣∣ ≤ β · C
Polynomial-time approximation scheme (PTAS): an algorithm
computes (1− ε, 1)-approximation in time polynomial in n for a fixed ε
Bi-criteria polynomial-time approximation scheme (PTAS): an
algorithm computes (1− ε, 1 + ε)-approximation
Fully polynomial-time approximation scheme (FPTAS): PTAS and
additionally requires polynomial running time in 1/ε
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Prior Results for Knapsack Problems

FPTAS for 1DKS

Using dynamic programming and scaling (Lawler, 1979)

No FPTAS for mDKS where m ≥ 2

Reducing to equipartition problem (Gens and Levner, 1979)

PTAS for mDKS where m ≥ 2

Using partial exhaust search and LP (Freize and Clarke, 1985)

Truthful (monotone) FPTAS for 1DKS

Monotonicity (Briest, Krysta and Vocking, 2005)

Truthful bi-criteria FPTAS for multi-minded mDKS

Dynamic programming, scaling and VCG (Krysta, Telelis and Ventre,
2013)
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Some Definitions

The problem is invariant under rotation

Let φ be the maximum angle between any two demands

Denote this restriction by CKS[φ]

Write CKS[φ1, φ2] for CKS[φ] with φ ∈ [φ1, φ2]
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Approximability Results

Write CKS[φ1, φ2] for CKS[φ] with φ ∈ [φ1, φ2]

Positive results

PTAS for CKS[0, π2 ]
Bi-criteria FPTAS for CKS[0, π-ε] for ε = 1/poly(n)

Inapproximability results
CKS[0, π2 ] is strongly NP-hard [Yu and Chau, 2013]
Unless P=NP, there is no (α, 1)-approximation for CKS[π2 , π]
Unless P=NP, there is no (α, β)-approximation for CKS[π-ε, π] for
some ε = 1/super-poly(n)
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Summary of Results

CKS[0, π
2

] CKS[0, π-ε] CKS[π-ε, π]

Pure
Inelastic

PTAS
No FPTAS

Bi-criteria FPTAS
No (α, 1)-approx

Bi-criteria
InapproximableMixed with

Elastic
Demands

(Linear Utility)

PTAS Bi-criteria PTAS

Multi-minded
Preferences

PTAS Bi-criteria FPTAS

Truthful
Mechanism

Randomized
PTAS

Deterministic
Bi-criteria FPTAS
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Simple Algorithm ((1
2 + ε)-Approx)

Assume CKS[0, π2 ]

Let S∗ be an optimal solution

Intuition:

Case 1:
∑

i∈S∗ dj lies in D1

Case 2:
∑

i∈S∗ dj lies in D2 and |S∗| = 1
Case 3:

∑
i∈S∗ dj lies in D2 and |S∗| > 1

Case 1 and Case 2 are easy. And Case 3?
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Simple Algorithm ((1
2 + ε)-Approx)

Case 3:
∑

i∈S∗ dj lies in D2 and |S∗| > 1

Lemma

Let S∗1 be an optimal solution within D1, and S∗ be an optimal solution
within D1 ∪ D2, then ∑

j∈S∗

uj ≤ 2
∑
j∈S∗

1

uj
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Simple Algorithm ((1
2 + ε)-Approx)

(12 + ε)-approximation algorithm for CKS[0, π2 ]

For each dj , if dj lies in D2, only retain the part in D1

Project each dj onto 1DKS

Apply FPTAS for 1DKS to solve {xj}
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PTAS for CKS[0, π2 ]

Polygonizing (inscribing polygon within) the circular feasible region

Approximate CKS by mDKS

PTAS for mDKS with constant m cannot be applied directly

Consider optimal solution with large (in magnitude) demands and
many small demands, each has the same utility

Better solution (polygonizing + guessing by partial exhaustive search)

1 Guess large demands (for a 1
ε subset)

2 Polygonizing by constructing a lattice on the remaining part of the
circular region with cell size proportional to ε

3 Find the maximum-utility set of demands in polygonized region (i.e.
mDKS problem) where m is a constant depending on 1/ε

4 Repeat for every 1
ε subset and retain the best solution
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PTAS for CKS[0, π2 ]

 
 

 
 

 

1 Guess large demands (for a 1
ε subset)

2 Polygonizing by constructing a lattice on the remaining part
3 Find the maximum-utility set of demands
4 Repeat for every 1

ε subset and retain the best solution
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PTAS for CKS[0, π2 ]

CKS-PTAS for CKS[0, π2 ]

Ŝ ← ∅
For each subset T ⊆ [n] of size at most min{n, 1ε}

Set dT ←
∑

k∈T dk

Obtain S ← mDKS-PTAS[dT ] by polygonization within accuracy ε
If u(Ŝ) < u(S),

Ŝ ← S

Return Ŝ

Theorem

For any ε > 0, CKS-PTAS is a (1− 2ε, 1)-approx to CKS[0, π2 ]

Running time is nO( 1
ε2

) log U, U , max
{

C ,max{dR
k , d

I
k , uk | k ∈ [n]}

}
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Bi-criteria FPTAS for CKS[0, π-ε]

CKS[0, π2 ] (Re(d) ≥ 0, Im(d) ≥ 0) ⇒ no demands cancel others

CKS[0, π-ε] (Re(d) ≶ 0) ⇒ some demands can cancel others

But θ < π, ⇒ Im(d) > 0, when Re(d) < 0

Intuition:

Let S+ , {k | dR
k ≥ 0, k ∈ S} and S− , {k | dR

k < 0, k ∈ S}
ξ+ =

∑
k∈S+

dR
k ≤ C (1 + tan θ), ζ+ =

∑
k∈S+

d I
k ≤ C

ξ− =
∑

k∈S−
−dR

k ≤ C tan θ, ζ− =
∑

k∈S−
d I
k ≤ C
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Bi-criteria FPTAS for CKS[0, π-ε]

Basic Ideas:

1 Enumerate the guessed total projections on real and imaginary axes for
S+ and S− respectively

2 Assume that tan θ is polynomial in n
3 Then solve two separate 2DKS exact problems that satisfy

(ξ+ − ξ−)2 + (ζ+ + ζ−)2 ≤ C 2

One in the first quadrant, while another in the second quadrant

4 But 2DKS exact is generally NP-Hard

Similar to bi-criteria FPTAS in mDKS
By scaling and truncating the demands makes the approximate problem
solvable efficiently by dynamic programming
But violation is allowed ⇒ bi-criteria FPTAS
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Bi-criteria FPTAS for CKS[0, π-ε]

CKS-biFPTAS for CKS[0, π-ε]

For all dk and k ∈ [n]

Set d̂k ← d̂R
k + id̂ I

k ,
⌈
dR
k

L

⌉
+ i
⌈
dI
k

L

⌉
For all ξ+ ∈ A+, ξ− ∈ A−, ζ+, ζ− ∈ B

If (ξ+ − ξ−)2 + (ζ+ + ζ−)2 ≤ C 2

F+ ← 2DKS-Exact[{uk , d̂k}, ξ+
L
, ζ+

L
]

F− ← 2DKS-Exact[{uk , d̂k}, ξ−
L
,
ζ−
L

]

If F+,F− 6= ∅ and u(F+ ∪ F−) > u(Ŝ)
Ŝ ← {F+ ∪ F−}

Return Ŝ

Theorem

For any ε > 0, CKS-biFPTAS is (1, 1 + ε)-approximation for
CKS[0, π-ε]. Running time is polynomial in both n, 1

ε and tan θ.
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Inapproxability of CKS[π-ε, π]

Theorem

Unless P=NP,

No (α, 1)-approximation for CKS[π2+ε, π] where α, ε have
polynomial length in n

No (α, β)-approximation for CKS[π-ε, π], where α and β have
polynomial length, and ε depends exponentially on n.

Hardness hold even if all demands are on the real line, except one
demand dm+1 such that arg(dm+1) = π

2 + θ, for some θ ∈ [0, π2 ]
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Inapproxability of CKS[π-ε, π]

Proof Ideas:

Subset sum problem (SubSum):

An instance I is a set of positive integers A , {a1, . . . , am} and
positive integer B,
Decide if there exist a subset of A that sums-up to exactly B

Mapping from SubSum to CKS

For each ak , k = 1, ...,m, define dk , ak
Define an additional dm+1 , −B + iB cot θ
For all k = 1, ...,m, let utility uk , α

m+1 , and um+1 , 1

Let C , B cot θ.

Showing equivalence

SubSum(I ) is feasible ⇒ There is an (α, β)-approximation solution of
utility at least α to CKS
There is (α, β)-approximation solution of utility at least α to CKS ⇒
There is an feasible solution to SubSum(I )
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Inapproxability of CKS[π-ε, π]

Proof Ideas:

Suppose there is (α, β)-approximation solution to CKS

Since user m + 1 has utility um+1 = 1 and the rest of users utilities∑m
k=1 uk < α, user m + 1 must be included

Therefore,

(
m∑

k=1

dR
k xk − B)2 + B2 cot2 θ ≤ β2C 2

(
m∑

k=1

dR
k xk − B)2 ≤ β2C 2 − B2 cot2 θ = B2 cot2 θ(β2 − 1)

SubSum is feasible, iff |
∑

k=1,...,m akxk − B| < 1

SubSum(I ) is feasible when B2 cot2 θ(β2 − 1) < 1

This occurs when β = 1, which proves the first claim
When θ is large enough such that B2 cot2 θ(β2 − 1) < 1 (i.e.,
θ > tan−1

√
B2(β2 − 1), where B is not polynomial in n), which

proves the second claim
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Furthermore, Extensions of Basic Results

1 Mixing elastic and inelastic demands (some xk are fractional)

Combining demands with splittable and unsplittable demands

2 Multi-minded preferences

More choices over multiple unsplittable demands

3 Randomized truthful in expectation mechanisms for CKS[0, π2 ]

Incentivizing users to report true utilities and demands

4 Networked setting of inelastic power allocation

Sharing in electrical grid, Constrained by edge capacities
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Mixing Elastic and Inelastic Demands

Let N be the set of users with inelastic demands

Let E be the set of users with elastic demands

Linear utility function
Utility of satisfying a demand dkxk where xk ∈ [0, 1] is represented by
ukxk , where uk is maximum utility

New optimization problem

(CKSmx.lin) max
∑

k∈N∪E
ukxk

subject to |
∑

k∈N∪E dkxk | ≤ C

xk ∈ {0, 1} for all k ∈ N and

xk ∈ [0, 1] for all k ∈ E .

We extend PTAS and bi-criteria FPTAS of CKS to CKSmx.lin, by
first solving a convex programming problem
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Multi-minded Preferences

Non-single minded preferences: D is a set of feasible demands
Each agent can express multiple preferences over more than one
unsplittable demand

(nsmCKS) max
∑
k∈N

∑
d∈D

vk(d)xk,d

subject to (
∑
k∈N

∑
d∈D

dR · xk,d)2 +
∑
k∈N

∑
d∈D

d I · xk,d)2 ≤ C 2

∑
d∈D xk,d = 1, for all k ∈ N
xk,d ∈ {0, 1} for all k ∈ N .

Multi-minded preferences:

vk(d) =


maxdk∈Dk

{vk(dk) : |dR
k | ≥ |dR|, |d I

k | ≥ |d I|,
sgn(dR

k ) = sgn(dR), sgn(d I
k) = sgn(d I)} if dk ∈ Dk ,

0, otherwise
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Truthful Mechanisms

Let V , V1 × · · · × Vn, where Vi is the set of all possible valuations of
user i , and let Ω be a set of outcomes

A randomized mechanism (A,P) is defined by

An allocation rule A : V → D(Ω)
A payment rule P : V → D(<n

+), where D(S) denotes the set of
probability distributions over set S

The utility of player i when it receives the vector of bids
v , (v1, ..., vn) ∈ V, is the random variable Uk(v) = v̄k(x(v))− pi (v),

x(v) ∼ A(v), and p(v) = (p1(v), ..., pn(v)) ∼ P(v);
v̄i denotes the true valuation of player i .

A randomized mechanism is said to be truthful in expectation,

If for all i and all v̄i , vi ∈ Vi , and v−k ∈ V−k , it guarantees that
E[Uk(v̄k , v−k)] ≥ E[Uk(vk , v−k)], when the true and reported
valuations of player k are v̄k and vk , respectively
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Truthful Mechanisms

Definition

Abstractly speaking, the feasible set of a problem is a convex set
X ⊆ [0, 1]n for the relaxed version without integral constraints or
XN , {x ∈ X | xk ∈ {0, 1} for all k ∈ N} with integral constraints

For a convex polytope Q ⊆ [0, 1]n, we define β · Q , {β · x | x ∈ Q}
An algorithm is called an (α, β)-LP-based approximation for QN , if
for any u ∈ Rn

+, it returns in polynomial time an x̂ ∈ (β · Q)N , such
that uT x̂ ≥ α ·maxx∈Q uT x

Theorem (Lavi-Swamy 2005)

If Q is a convex polytope satisfying the packing property and admitting
and α-LP-based approximation algorithm for QN . Then one can construct
a randomized, individually rational, α-socially efficient mechanism on the
set of outcomes QN , that is truthful-in-expectation and has no positive
transfer.
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Truthful Mechanisms

We extend the Lavi-Swamy theorem to non-linear problem (e.g.
complex-demand knapsack problem CKS)

CKS can be approximated by LP subproblems when CKS[0, π2 ]

We show that there is PTAS for CKS[0, π2 ] that admits a
randomized, individually rational, α-socially efficient mechanism on
the set of outcomes QN , that is truthful-in-expectation and has no
positive transfer

Our results can be generalized to other non-linear problems

Furthermore, we use VCG and dynamic programming to construct a
truthful PTAS for CKS[0, π-ε]
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Networked Setting of Inelastic Power Allocation

Networked power flow is a difficult problem (non-convex)

A simplified model of electrical grid G = (N,E )

Load k ∈ R has an internal impedance Zuk between its nodal voltage
Vuk and the ground, and requires an inelastic power demand dk

Consider a single source of generator at node uG ∈ N

We assume that the generation power is not limited and hence can
feasibly support all loads, if not limited by edge capacity

(NetP) max
xk∈{0,1}

∑
k∈R

ukxk

subject to
V 2
uk

Zuk
= xkdk for all k ∈ R

Vu − Vv = I(u,v)Z(u,v) for all (u, v) ∈ E∑
v :Neighbor(u) I(u,v) = 0 for all u 6= uG

|I(u,v)| ≤ C(u,v) for all (u, v) ∈ E
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Networked Setting of Inelastic Power Allocation

Theorem

Unless P=NP, there is no (α, β)-approximation for NetP (even
considering a DC system)

We consider the following gadget

...

By equivalence of SubSum to NetP

Open question: Then what can we do?
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Conclusion and Implications

A first study of combinatorial power allocation for AC systems

Thorough approximation and hardness results

Significance: A first step from communication networking to
electricity networking

Knapsack ⇒ Complex-demand Knapsack
Commodity flow problem ⇒ Optimal power flow problem
Network design problem ⇒ Optimal islanding problem

Open questions

Networked power allocation (e.g. tree, grid, star)
Coping with inapproximability (relaxing satisfiability)
Efficient incentive compatible mechanisms
Joint scheduling and power allocation

Paper: http://www.SustainableNetworks.org/papers/cks.pdf
Slides: http://www.SustainableNetworks.org/slides/cks.pdf

Sid C-K Chau (Masdar Institute) Complex-demand Knapsack August 22, 2013 38 / 38

http://www.SustainableNetworks.org/papers/cks.pdf
http://www.SustainableNetworks.org/slides/cks.pdf

