Combinatorial Power Allocation in AC Systems Approximation, Hardness and Truthfulness for Complex-demand Knapsack Problem

Sid Chi-Kin Chau

Masdar Institute of Science and Technology, Abu Dhabi, UAE

ckchau@masdar.ac.ae

August 22, 2013

Joint Work with Khaled Elbassioni and Majid Khonji

Paper: http://www.SustainableNetworks.org/papers/cks.pdf Slides: http://www.SustainableNetworks.org/slides/cks.pdf

- Resources are in different forms
 - E.g. time, space, bandwidth, ...
 - and *energy* (electricity is the most common form of energy)
- Smart grid (what is it?)
 - No precise definition, but broadly, modernizing electrical grid using information and communications technology
 - For example, enabling more efficient allocation of energy
- From communication networking to electricity networking
 - Similarities: Networked structures, Limited storage, Uncertainties in demands and supplies, ...
 - Differences: Homogeneous commodity (i.e. electricity), Periodic quantities (i.e. alternating current/AC)

AC Electrical Systems 101

- Circular motion of dynamo generator \Rightarrow Periodic current and voltage
- Phase between current and voltage

- Complex number representations: $V = |V|e^{\mathbf{i}\omega t}$, $I = |I|e^{\mathbf{i}(\omega t+ heta)}$,
- Power: $P = V \times I$ (also a complex number)
 - Active power: $\operatorname{Re}(P)$
 - Reactive power: Im(P)
 - Apparent power: |P|

AC Electrical Systems 101 (Lingo)

- Active power $(\operatorname{Re}(P))$
 - Can do useful work at loads
- Reactive power (Im(P))
 - Needed to support the transfer of real power over the network
 - Capacitors generate reactive power; inductors to consume it
- Power factor $\left(\frac{\operatorname{Re}(P)}{|P|}\right)$
 - Ratio between real power and apparent power
 - Regulations require maximum power factor
- Apparent power (|P|)
 - Magnitude of total active and reactive power
 - Cared by power engineers
 - Conductors, transformers and generators must be sized to carry the total current (manifested by apparent power)

Central Problem: Power Allocation

- Utility-maximizing allocation power to end-users
 - Subject to capacity constraints of total apparent power (or current, voltage)
- Elastic (splittable) demands \Rightarrow (Non-)Convex optimization
- Inelastic (unsplittable) demands \Rightarrow Combinatorial optimization
 - Minimum active/reactive power requirement
 - Challenge: Positive reactive power can cancel negative reactive power

From Knapsack to Inelastic Power Allocation

(Traditional) 1D Knapsack Problem

Definition (1DKS)

$$\max \sum_{k \in [n]} x_k u_k$$

subject to

$$\sum_{k\in K} x_k d_k \leq C, \;\; x_k \in \{0,1\} \; ext{for} \; k \in [n]$$

- $[n] := \{1, \ldots, n\}$: a set of users
- *u_k*: utility of *k*-th user if its demand is satisfied
- dk: positive real-valued demand of k-th user
- C: real-valued capacity on total satisfiable demand
- x_k: decision variable of allocation
 - $x_k = 1$, if k-th user's demand is satisfied
 - $x_k = 0$, otherwise

Knapsack Problem for Power Allocation

- Complex-valued resources (e.g. AC power, current, voltage)
 - Discrete optimization mostly concerns real-valued resources
- Allocating complex-valued (AC) power among a set of users
- Inelastic user demands (i.e. fully satisfied or not)
- Maximizing total utility of satisfied users
- Subject capacity constraints
 - Active power and reactive power constraints
 - Apparent power constraint
- Optional:
 - Utility is private information reported by users
 - · Selfish users tend to exaggerate their utility

Definition (2DKS)

$$\max_{x_k \in \{0,1\}} \sum_{k \in \mathcal{K}} x_k u_k \tag{1}$$

subject to

$$\sum_{k\in K} x_k d_k^{ ext{R}} \leq C^{ ext{R}} ext{ and } \sum_{k\in K} x_k d_k^{ ext{I}} \leq C^{ ext{I}}$$

- $d_k^{\mathrm{R}} + \mathbf{i} d_k^{\mathrm{I}}$: complex-valued demand of k-th user
- $C^{\mathrm{R}} + iC^{\mathrm{I}}$: complex-valued power capacity
 - Real-part: Active power $(d_k^{\rm R}, C^{\rm R})$
 - Imaginary-part: Reactive power (d_k^{I}, C^{I})
- Well-known problem

(2)

Definition (CKS)

$$\max \sum_{k \in K} x_k u_k$$

subject to $\Big|\sum_{k\in \mathcal{K}}x_kd_k\Big|\leq C, \;\; x_k\in\{0,1\} \; ext{for} \; k\in[n]$

• d_k : complex-valued demand of k-th user $(d_k = d_k^{\rm R} + \mathbf{i} d_k^{\rm I})$

• C: real-valued capacity of total satisfiable demand in apparent power

Complex-demand Knapsack Problem

$$\max \sum_{k \in K} x_k u_k$$

subject to

$$\Big|\sum_{k\in K} x_k d_k\Big| \leq C, \ x_k \in \{0,1\} \text{ for } k \in [n]$$

• It is a 0/1-quadratic programming problem:

$$\begin{array}{ll} \max & \sum_{k \in [n]} x_k u_k \\ \text{s.t.} & (\sum_{k \in [n]} d_k^R x_k)^2 + (\sum_{k \in [n]} d_k^I x_k)^2 \leq C^2 \\ & x_k \in [0,1] \text{ for all } k \in [n]. \end{array}$$

• A new variant of knapsack problem

Complex-demand Knapsack Problem

Pictorially,

• Picking a maximum-utility subset of vectors, such that the sum lies within a circle

Definitions of Approximation Algorithms

For set S of users, denote by u(S) ≜ ∑_{k∈S} u_k
Denote S* an optimal solution of CKS

Definition

For $\alpha \in (0, 1]$ and $\beta \ge 1$, a bi-criteria (α, β) -approximation to CKS is a set S satisfying

$$u(S) \ge \alpha \cdot u(S^*)$$
$$\big| \sum_{k \in S} d_k \big| \le \beta \cdot C$$

- Polynomial-time approximation scheme (PTAS): an algorithm computes $(1 \epsilon, 1)$ -approximation in time polynomial in n for a fixed ϵ
- Bi-criteria polynomial-time approximation scheme (PTAS): an algorithm computes $(1 \epsilon, 1 + \epsilon)$ -approximation
- Fully polynomial-time approximation scheme (FPTAS): PTAS and additionally requires polynomial running time in $1/\epsilon$

Prior Results for Knapsack Problems

- FPTAS for 1 D KS
 - Using dynamic programming and scaling (Lawler, 1979)
- No FPTAS for mDKS where $m \ge 2$
 - Reducing to equipartition problem (Gens and Levner, 1979)
- PTAS for mDKS where $m \ge 2$
 - Using partial exhaust search and LP (Freize and Clarke, 1985)
- Truthful (monotone) FPTAS for $1 \mathrm{DKS}$
 - Monotonicity (Briest, Krysta and Vocking, 2005)
- Truthful bi-criteria FPTAS for multi-minded $m{
 m DKS}$
 - Dynamic programming, scaling and VCG (Krysta, Telelis and Ventre, 2013)

Some Definitions

- The problem is invariant under rotation
- Let ϕ be the maximum angle between any two demands
- Denote this restriction by $\mathrm{CKS}[\phi]$
- Write $CKS[\phi_1, \phi_2]$ for $CKS[\phi]$ with $\phi \in [\phi_1, \phi_2]$

Approximability Results

- Write $CKS[\phi_1, \phi_2]$ for $CKS[\phi]$ with $\phi \in [\phi_1, \phi_2]$
- Positive results
 - PTAS for $CKS[0, \frac{\pi}{2}]$
 - Bi-criteria FPTAS for $CKS[0, \pi-\varepsilon]$ for $\varepsilon = 1/poly(n)$
- Inapproximability results
 - $CKS[0, \frac{\pi}{2}]$ is strongly NP-hard [Yu and Chau, 2013]
 - Unless P=NP, there is no $(\alpha, 1)$ -approximation for $CKS[\frac{\pi}{2}, \pi]$
 - Unless P=NP, there is no (α, β)-approximation for CKS[π-ε, π] for some ε = 1/super-poly(n)

	$CKS[0, \frac{\pi}{2}]$	$ ext{CKS}[0, \pi\text{-}\varepsilon]$	$CKS[\pi-\varepsilon,\pi]$
Pure Inelastic	PTAS No FPTAS	Bi-criteria FPTAS No $(lpha,1)$ -approx	Bi-criteria
Mixed with Elastic Demands (Linear Utility)	PTAS	Bi-criteria PTAS	Inapproximable
Multi-minded Preferences	PTAS	Bi-criteria FPTAS	
Truthful Mechanism	Randomized PTAS	Deterministic Bi-criteria FPTAS	

Simple Algorithm $((\frac{1}{2} + \epsilon) - Approx)$

- Assume $CKS[0, \frac{\pi}{2}]$
- Let S^* be an optimal solution
- Intuition:

• Case 1 and Case 2 are easy. And Case 3?

Simple Algorithm $((\frac{1}{2} + \epsilon) - Approx)$

• Case 3:
$$\sum_{i \in S^*} d_i$$
 lies in \mathcal{D}_2 and $|S^*| > 1$

Lemma

Let S_1^* be an optimal solution within \mathcal{D}_1 , and S^* be an optimal solution within $\mathcal{D}_1 \cup \mathcal{D}_2$, then

$$\sum_{i \in \mathcal{S}^*} u_j \leq 2 \sum_{j \in \mathcal{S}^*_1} u_j$$

Simple Algorithm $((\frac{1}{2} + \epsilon) - Approx)$

 $(\frac{1}{2}+\epsilon)$ -approximation algorithm for CKS $[0,\frac{\pi}{2}]$

- For each d_j , if d_j lies in \mathcal{D}_2 , only retain the part in \mathcal{D}_1
- Project each d_j onto 1DKS
- Apply FPTAS for 1DKS to solve $\{x_j\}$

• Polygonizing (inscribing polygon within) the circular feasible region

- ${\scriptstyle \bullet}\,$ Approximate ${\rm CKS}$ by $m{\rm DKS}$
- PTAS for mDKS with constant m cannot be applied directly
 - Consider optimal solution with large (in magnitude) demands and many small demands, each has the same utility
- Better solution (polygonizing + guessing by partial exhaustive search)
 - Guess large demands (for a $\frac{1}{\epsilon}$ subset)
 - \bigcirc Polygonizing by constructing a lattice on the remaining part of the circular region with cell size proportional to ϵ
 - Find the maximum-utility set of demands in polygonized region (i.e. m DKS problem) where m is a constant depending on $1/\epsilon$
 - **()** Repeat for every $\frac{1}{\epsilon}$ subset and retain the best solution

PTAS for CKS $[0, \frac{\pi}{2}]$

- Guess large demands (for a $rac{1}{\epsilon}$ subset)
- Polygonizing by constructing a lattice on the remaining part
- Find the maximum-utility set of demands
- Repeat for every $rac{1}{\epsilon}$ subset and retain the best solution

CKS-PTAS for CKS $[0, \frac{\pi}{2}]$

• $\hat{S} \leftarrow \varnothing$

• For each subset $T \subseteq [n]$ of size at most min $\{n, \frac{1}{\epsilon}\}$

Theorem

For any $\epsilon > 0$, CKS-PTAS is a $(1 - 2\epsilon, 1)$ -approx to CKS $[0, \frac{\pi}{2}]$ Running time is $n^{O(\frac{1}{\epsilon^2})} \log U$, $U \triangleq \max \left\{ C, \max\{d_k^{\mathrm{R}}, d_k^{\mathrm{I}}, u_k \mid k \in [n]\} \right\}$

Bi-criteria FPTAS for CKS[$0, \pi$ - ε]

- $\mathrm{CKS}[0, \frac{\pi}{2}] \; (\mathrm{Re}(d) \geq 0, \mathrm{Im}(d) \geq 0) \Rightarrow$ no demands cancel others
- $\operatorname{CKS}[0, \pi \varepsilon]$ ($\operatorname{Re}(d) \leq 0$) \Rightarrow some demands can cancel others
- But $heta < \pi$, \Rightarrow Im(d) > 0, when $\operatorname{Re}(d) < 0$
- Intuition:

• Let
$$S_+ \triangleq \{k \mid d_k^{\mathrm{R}} \ge 0, k \in S\}$$
 and $S_- \triangleq \{k \mid d_k^{\mathrm{R}} < 0, k \in S\}$
• $\xi_+ = \sum_{k \in S_+} d_k^{\mathrm{R}} \le C(1 + \tan \theta), \quad \zeta_+ = \sum_{k \in S_+} d_k^{\mathrm{I}} \le C$
• $\xi_- = \sum_{k \in S_-} -d_k^{\mathrm{R}} \le C \tan \theta, \quad \zeta_- = \sum_{k \in S_-} d_k^{\mathrm{I}} \le C$

Basic Ideas:

- Enumerate the guessed total projections on real and imaginary axes for S₊ and S₋ respectively
- Assume that tan θ is polynomial in n
- Then solve two separate 2DKS exact problems that satisfy $(\xi_+ \xi_-)^2 + (\zeta_+ + \zeta_-)^2 \le C^2$
 - One in the first quadrant, while another in the second quadrant
- But 2DKS exact is generally NP-Hard
 - Similar to bi-criteria FPTAS in mDKS
 - By scaling and truncating the demands makes the approximate problem solvable efficiently by dynamic programming
 - But violation is allowed \Rightarrow bi-criteria FPTAS

Bi-criteria FPTAS for CKS $[0, \pi-\varepsilon]$

CKS-BIFPTAS for CKS[$0, \pi$ - ε]

• For all d_k and $k \in [n]$

• Set
$$\hat{d}_k \leftarrow \hat{d}_k^{\mathrm{R}} + \mathbf{i}\hat{d}_k^{\mathrm{I}} \triangleq \left[\frac{d_k^{\mathrm{R}}}{L}\right] + \mathbf{i}\left[\frac{d_k^{\mathrm{I}}}{L}\right]$$

• For all
$$\xi_+ \in \mathcal{A}_+, \xi_- \in \mathcal{A}_-, \zeta_+, \zeta_- \in \mathcal{B}$$

• If
$$(\xi_+ - \xi_-)^2 + (\zeta_+ + \zeta_-)^2 \le C^2$$

•
$$F_+ \leftarrow 2\text{DKS-EXACT}[\{u_k, \hat{d}_k\}, \frac{\xi_+}{L}, \frac{\zeta_+}{L}]$$

• $F_- \leftarrow 2\text{DKS-EXACT}[\{u_k, \hat{d}_k\}, \frac{\xi_-}{L}, \frac{\zeta_-}{L}]$
• If $F_+, F_- \neq \emptyset$ and $u(F_+ \cup F_-) > u(\hat{S})$
• $\hat{S} \leftarrow \{F_+ \cup F_-\}$

• Return
$$\hat{S}$$

Theorem

For any $\epsilon > 0$, CKS-BIFPTAS is $(1, 1 + \epsilon)$ -approximation for CKS $[0, \pi-\epsilon]$. Running time is polynomial in both n, $\frac{1}{\epsilon}$ and $\tan \theta$.

Sid C-K Chau (Masdar Institute)

Complex-demand Knapsack

August 22, 201

6 / 38

Inapproxability of $CKS[\pi-\varepsilon,\pi]$

Theorem

Unless P=NP,

- No (α, 1)-approximation for CKS[^π/₂+ε, π] where α, ε have polynomial length in n
- No (α, β)-approximation for CKS[π-ε, π], where α and β have polynomial length, and ε depends exponentially on n.
- Hardness hold even if all demands are on the real line, except one demand d_{m+1} such that $\arg(d_{m+1}) = \frac{\pi}{2} + \theta$, for some $\theta \in [0, \frac{\pi}{2}]$

Inapproxability of $CKS[\pi-\varepsilon,\pi]$

Proof Ideas:

- Subset sum problem (SUBSUM):
 - An instance *I* is a set of positive integers *A* ≜ {*a*₁,..., *a_m*} and positive integer *B*,
 - Decide if there exist a subset of A that sums-up to exactly B
- $\bullet\,$ Mapping from SuBSuM to CKS
 - For each $a_k, k = 1, ..., m$, define $d_k \triangleq a_k$
 - Define an additional $d_{m+1} \triangleq -B + \mathbf{i}B \cot \theta$
 - For all k = 1, ..., m, let utility $u_k \triangleq \frac{\alpha}{m+1}$, and $u_{m+1} \triangleq 1$
 - Let $C \triangleq B \cot \theta$.
- Showing equivalence
 - SUBSUM(1) is feasible \Rightarrow There is an (α, β) -approximation solution of utility at least α to CKS
 - There is (α, β) -approximation solution of utility at least α to CKS \Rightarrow There is an feasible solution to SUBSUM(*I*)

Inapproxability of $CKS[\pi-\varepsilon,\pi]$

Proof Ideas:

- Suppose there is (lpha,eta)-approximation solution to CKS
- Since user m + 1 has utility $u_{m+1} = 1$ and the rest of users utilities $\sum_{k=1}^{m} u_k < \alpha$, user m + 1 must be included
- Therefore,

$$(\sum_{k=1}^m d_k^{\mathrm{R}} x_k - B)^2 + B^2 \cot^2 \theta \le \beta^2 C^2$$

$$\left(\sum_{k=1}^{m} d_k^{\mathrm{R}} x_k - B\right)^2 \leq \beta^2 C^2 - B^2 \cot^2 \theta = B^2 \cot^2 \theta (\beta^2 - 1)$$

- SUBSUM is feasible, iff $|\sum_{k=1,...,m} a_k x_k B| < 1$
- SUBSUM(1) is feasible when $B^2 \cot^2 \theta (\beta^2 1) < 1$
 - ${\, \bullet \,}$ This occurs when $\beta = {\rm 1},$ which proves the first claim
 - When θ is large enough such that $B^2 \cot^2 \theta(\beta^2 1) < 1$ (i.e., $\theta > \tan^{-1} \sqrt{B^2(\beta^2 1)}$, where B is not polynomial in n), which proves the second claim

- Mixing elastic and inelastic demands (some x_k are fractional)
 - · Combining demands with splittable and unsplittable demands
- Multi-minded preferences
 - More choices over multiple unsplittable demands
- Randomized truthful in expectation mechanisms for $CKS[0, \frac{\pi}{2}]$
 - Incentivizing users to report true utilities and demands
- Networked setting of inelastic power allocation
 - Sharing in electrical grid, Constrained by edge capacities

Mixing Elastic and Inelastic Demands

- $\bullet\,$ Let ${\cal N}$ be the set of users with inelastic demands
- $\bullet\,$ Let ${\mathcal E}$ be the set of users with elastic demands
 - Linear utility function
 - Utility of satisfying a demand $d_k x_k$ where $x_k \in [0, 1]$ is represented by $u_k x_k$, where u_k is maximum utility
- New optimization problem

$$\begin{array}{ll} (\mathrm{CKS}_{\mathrm{mx.lin}}) & \max \sum_{k \in \mathcal{N} \cup \mathcal{E}} u_k x_k \\ \text{subject to} & |\sum_{k \in \mathcal{N} \cup \mathcal{E}} d_k x_k| \leq C \\ & x_k \in \{0,1\} \text{ for all } k \in \mathcal{N} \text{ and} \\ & x_k \in [0,1] \text{ for all } k \in \mathcal{E}. \end{array}$$

 \bullet We extend PTAS and bi-criteria FPTAS of $\rm CKS$ to $\rm CKS_{mx.lin},$ by first solving a convex programming problem

Multi-minded Preferences

- \bullet Non-single minded preferences: ${\cal D}$ is a set of feasible demands
- Each agent can express multiple preferences over more than one unsplittable demand

(NSMCKS)
$$\max \sum_{k \in \mathcal{N}} \sum_{d \in \mathcal{D}} v_k(d) x_{k,d}$$

subject to $(\sum_{k \in \mathcal{N}} \sum_{d \in \mathcal{D}} d^{\mathrm{R}} \cdot x_{k,d})^2 + \sum_{k \in \mathcal{N}} \sum_{d \in \mathcal{D}} d^{\mathrm{I}} \cdot x_{k,d})^2 \leq C^2$
 $\sum_{d \in \mathcal{D}} x_{k,d} = 1, \quad \text{for all } k \in \mathcal{N}$
 $x_{k,d} \in \{0,1\} \text{ for all } k \in \mathcal{N}.$

Multi-minded preferences:

$$v_k(d) = \begin{cases} \max_{d_k \in \mathcal{D}_k} \{v_k(d_k) : |d_k^{\mathrm{R}}| \ge |d^{\mathrm{R}}|, |d_k^{\mathrm{I}}| \ge |d^{\mathrm{I}}|, \\ \operatorname{sgn}(d_k^{\mathrm{R}}) = \operatorname{sgn}(d^{\mathrm{R}}), \operatorname{sgn}(d_k^{\mathrm{I}}) = \operatorname{sgn}(d^{\mathrm{I}}) \} & \text{if } d_k \in D_k, \\ 0, & \text{otherwise} \end{cases}$$

Sid C-K Chau (Masdar Institute)

Truthful Mechanisms

- Let V ≜ V₁ ×···× V_n, where V_i is the set of all possible valuations of user i, and let Ω be a set of outcomes
- A randomized mechanism (\mathcal{A},\mathbb{P}) is defined by
 - An allocation rule $\mathcal{A}:\mathcal{V}\to\mathcal{D}(\Omega)$
 - A payment rule $\mathbb{P}: \mathcal{V} \to \mathcal{D}(\Re^n_+)$, where $\mathcal{D}(\mathcal{S})$ denotes the set of probability distributions over set \mathcal{S}
- The utility of player *i* when it receives the vector of bids $v \triangleq (v_1, ..., v_n) \in \mathcal{V}$, is the random variable $U_k(v) = \bar{v}_k(x(v)) p_i(v)$,
 - $x(v) \sim \mathcal{A}(v)$, and $p(v) = (p_1(v), ..., p_n(v)) \sim \mathbb{P}(v)$;
 - \overline{v}_i denotes the true valuation of player *i*.
- A randomized mechanism is said to be truthful in expectation,
 - If for all *i* and all $\bar{v}_i, v_i \in \mathcal{V}_i$, and $v_{-k} \in \mathcal{V}_{-k}$, it guarantees that $\mathbb{E}[U_k(\bar{v}_k, v_{-k})] \geq \mathbb{E}[U_k(v_k, v_{-k})]$, when the true and reported valuations of player *k* are \bar{v}_k and v_k , respectively

Definition

- Abstractly speaking, the feasible set of a problem is a convex set
 X ⊆ [0, 1]ⁿ for the relaxed version without integral constraints or
 X^N ≜ {*x* ∈ *X* | *x_k* ∈ {0, 1} for all *k* ∈ *N*} with integral constraints
- For a convex polytope $Q \subseteq [0,1]^n$, we define $\beta \cdot Q \triangleq \{\beta \cdot x \mid x \in Q\}$
- An algorithm is called an (α, β)-LP-based approximation for Q^N, if for any u ∈ ℝⁿ₊, it returns in polynomial time an x̂ ∈ (β · Q)^N, such that u^Tx̂ ≥ α · max_{x∈Q} u^Tx

Theorem (Lavi-Swamy 2005)

If Q is a convex polytope satisfying the packing property and admitting and α -LP-based approximation algorithm for Q^N . Then one can construct a randomized, individually rational, α -socially efficient mechanism on the set of outcomes Q^N , that is truthful-in-expectation and has no positive transfer.

- We extend the Lavi-Swamy theorem to non-linear problem (e.g. complex-demand knapsack problem CKS)
- CKS can be approximated by LP subproblems when CKS[0, $\frac{\pi}{2}$]
- We show that there is PTAS for $CKS[0, \frac{\pi}{2}]$ that admits a randomized, individually rational, α -socially efficient mechanism on the set of outcomes Q^N , that is truthful-in-expectation and has no positive transfer
- Our results can be generalized to other non-linear problems
- Furthermore, we use VCG and dynamic programming to construct a truthful PTAS for CKS[0, π-ε]

Networked Setting of Inelastic Power Allocation

- Networked power flow is a difficult problem (non-convex)
- A simplified model of electrical grid $\mathcal{G} = (N, E)$
- Load $k \in \mathcal{R}$ has an internal impedance Z_{u_k} between its nodal voltage V_{u_k} and the ground, and requires an inelastic power demand d_k
- Consider a single source of generator at node $u_G \in N$
- We assume that the generation power is not limited and hence can feasibly support all loads, if not limited by edge capacity

(NETP)
$$\max_{x_k \in \{0,1\}} \sum_{k \in \mathcal{R}} u_k x_k$$

subject to
$$\frac{V_{u_k}^2}{Z_{u_k}} = x_k d_k \text{ for all } k \in \mathcal{R}$$
$$V_u - V_v = I_{(u,v)} Z_{(u,v)} \text{ for all } (u,v) \in E$$
$$\sum_{v:\text{Neighbor}(u)} I_{(u,v)} = 0 \text{ for all } u \neq u_G$$
$$|I_{(u,v)}| \leq C_{(u,v)} \text{ for all } (u,v) \in E$$

Networked Setting of Inelastic Power Allocation

Theorem

Unless P=NP, there is no (α, β) -approximation for NETP (even considering a DC system)

• We consider the following gadget

- $\bullet~$ By equivalence of ${\rm SUBSUM}$ to ${\rm NetP}$
- Open question: Then what can we do?

Conclusion and Implications

- A first study of combinatorial power allocation for AC systems
- Thorough approximation and hardness results
- Significance: A first step from communication networking to electricity networking
 - Knapsack \Rightarrow Complex-demand Knapsack
 - ${\scriptstyle \bullet}$ Commodity flow problem \Rightarrow Optimal power flow problem
 - ${\scriptstyle \bullet}$ Network design problem \Rightarrow Optimal islanding problem
- Open questions
 - Networked power allocation (e.g. tree, grid, star)
 - Coping with inapproximability (relaxing satisfiability)
 - Efficient incentive compatible mechanisms
 - Joint scheduling and power allocation

Paper: http://www.SustainableNetworks.org/papers/cks.pdf Slides: http://www.SustainableNetworks.org/slides/cks.pdf