

Sensing and Recognition When Primary User has Multiple Transmit Powers

Feifei Gao

Institute of Information Processing Department of Automation Tsinghua University

Cognitive Radio

Overview

Interleaved: Spectrum sensing based.

清华大学

Tsinghua University

• Underlay: Interference temperature

Spectrum Sensing

- Spectrum Sensing
 - Matched Filter
 - Cyclostationary
 - Energy Detection
- Accompanied Research:
 - Parameter Uncertainty
 - Cooperative Sensing
 - Secondary Games
 - Sensing Throughput Trade-off
 - Imperfect Sensing
 - Combined with Multi-Antenna, OFDM, Relay, Secrecy....
- One critical "Bug" exists:
 - Assume PU has only **ONE** power level!!!

Many Others

Most popular

Most Standards says:

- PU will work on different power levels depending on the rate, bandwidth, environment.
- For example, in IEEE 802.11, GSM, LTE, etc.
- If SU knows PU's current power (each time), traditional method works. But....
- Other supports for studying the varying power levels
 - We spend so many effort in designing the power allocation.
 - Theoretical interest towards more "cognition"
- A more reasonable scenario is:
 - SU knows all the power levels of PU but it does not know which level PU currently stays.

- Spectrum sensing with multiple PU power levels:
 - Primary Target: Detect the presence of PU
 - Secondary Target: Find the status of PU
- Benefit?
 - More Information (nothing bad to know more)
 - Further Strategies, example
 - Any other you can imagine?
- A possibly new (small) direction in CR?
 - Some new issues deserve (re)-investigation

System Model

- N Power level $P_{i+1} > P_i > 0$ $x_l = \begin{cases} n_l & \mathcal{H}_0 \\ \sqrt{P_i}\sqrt{g}s_l + n_l & \mathcal{H}_i, \ i = 1, 2, ..., N \end{cases}$ with $\sum_{i=0}^{N} P(\mathcal{H}_i) = 1$
- It can be proved that energy detection is optimal under Gaussian signal/noise

Tsinghua University

• Energy form *M* received symbols $y = \sum_{l=1}^{M} |x_l|^2$

$$p(y|\mathcal{H}_i) = \frac{y^{\frac{M}{2} - 1} e^{-\frac{y}{2\sigma^2 + 2gP_i}}}{\Gamma(\frac{M}{2})(2\sigma^2 + 2gP_i)^{\frac{M}{2}}}$$

Spectrum Sensing: Approach I

- "Presence" first, "Status" second
 - The presence of PU \mathcal{H}_{on} with $\Pr(\mathcal{H}_{on}) = \sum_{i=1}^{N} \Pr(\mathcal{H}_i)$. Then

$$p(y|\mathcal{H}_{on}) = \frac{1}{\Pr(\mathcal{H}_{on})} \sum_{i=1}^{N} p(y|\mathcal{H}_{i}) \Pr(\mathcal{H}_{i})$$

Detection rule

$$p(\mathcal{H}_{\mathrm{on}}|y) \underset{\mathcal{H}_{0}}{\overset{\mathcal{H}_{\mathrm{on}}}{\gtrless}} p(\mathcal{H}_{0}|y)$$

which is simplified to

$$\sum_{i=1}^{N} p(y|\mathcal{H}_i) \Pr(\mathcal{H}_i) \underset{\mathcal{H}_0}{\overset{\mathcal{H}_{on}}{\geq}} p(y|\mathcal{H}_0) \Pr(\mathcal{H}_0)$$
 No closed form expression

Tsinghua University Detect the Status of PU if "on" $p(\mathcal{H}_i|y, \mathcal{H}_{\mathrm{on}}) \stackrel{i}{\underset{j}{\gtrless}} p(\mathcal{H}_j|y, \mathcal{H}_{\mathrm{on}}), \ \forall i, j \ge 1$ With $p(\mathcal{H}_{on}|\mathcal{H}_i, y) = 1$ and Bayes Rule, there is $p(y|\mathcal{H}_i)\Pr(\mathcal{H}_i) \gtrsim p(y|\mathcal{H}_j)\Pr(\mathcal{H}_j), \ \forall i, j \ge 1$

The final decision rule can be derived as

$$\mathcal{R}(\mathcal{H}_i) = \left\{ y \big| \max_{j < i} \Theta(i, j) < y < \min_{j > i} \Theta(i, j), \ \forall i \ge 1 \right\}$$

See expression of $\Theta(i, j)$ next page

清华7

Tsinghua University

$$P_{d} = \Pr(\mathcal{H}_{on}|\mathcal{H}_{on}) = \sum_{i=1}^{N} \Pr(\mathcal{H}_{i}|\mathcal{H}_{i}) \Pr(\mathcal{H}_{i})$$

• New Metrics $\Pr(\mathcal{H}_j|\mathcal{H}_i)$

Spectrum Sensing: Approach II

Detect the status directly:

$$p(\mathcal{H}_i|y) \underset{j}{\gtrless} p(\mathcal{H}_j|y), \ \forall i, j$$

From previous:

$$\mathcal{R}(\mathcal{H}_i) = \left\{ y \big| \max_{j < i} \Theta(i, j) < y < \min_{j > i} \Theta(i, j), \forall i \right\}$$

Same issues:

0-1

$$\begin{array}{c|c} \mathcal{H}_0 & \mathcal{H}_? & \mathcal{H}_N \\ \hline & & & \mathcal{H}_2 & \mathcal{H}_N \\ \hline & & & & & & \end{pmatrix} y \\ \hline & & & & & & & & \\ \text{threshold II} & & & & & & & & \lambda_{N'} \end{array}$$

• Thresholds from two different approach the same?

清华

Tsinghua University

- Neyman Pearson Criterion applicable?
- Definition of detection probability redefined?

Simulation

- Cooperative sensing is used for combat both the fading and the noise effect.
- Existing cooperative schemes (decision fusion):
 - AND
 - OR
 - k out of K

Applicable in multiple power-level? NO!!!

- Need to develop new rules here
 - Hard-fusion (majority)
 - Soft-fusion (posterior probability)

Majority Fusion

Define the decision vector $\vec{d} = \{d_0, \ldots, d_N\}$ with $\sum_{j=0}^{N} d_j = K$ • Total number of possible \vec{d} is $(N+1)^K$ Majority rule $\hat{j} = \max_{i} d_{j}$ The decision probability $\Pr_m(\mathcal{H}_j|\mathcal{H}_i) = \sum \Pr(\vec{d} | \mathcal{H}_i)$ $\vec{d} \in \mathcal{S}_{m_i}$ with $\mathcal{S}_{m_j} = \left\{ \vec{d} \mid d_j = \max\{d_0, d_1, \dots, d_N\} \right\}$

Be careful about the simultaneous maximum

Tsinghua University

清华大学 Tsinghua University

Further assumption:

- Existing work focus on the same fading scenario (reason?)
- With different fading, the theoretical derivation is tedious

Then

$$\Pr(\vec{d}|\mathcal{H}_i) = \frac{K!}{\prod_{l=0}^N d_l!} \prod_{n=0}^N \Pr(\mathcal{H}_n|\mathcal{H}_i)^{d_n}$$

and closed-form $\Pr_m(\mathcal{H}_j|\mathcal{H}_i)$ can be derived (very complicated)

The only analytical result for majority law seen so far

Check total detection probability

$$P_{d} = \frac{1}{\sum_{n=1}^{N} \Pr(\mathcal{H}_{n})} \sum_{i=1}^{N} \Pr_{m}(\mathcal{H}_{i}|\mathcal{H}_{i}) \Pr(\mathcal{H}_{i})$$

Optimal Fusion

• Majority decision does not consider the prior information of each \mathcal{H}_i

Tsinghua University

- For example: $d_i < d_j$ but $\Pr(\mathcal{H}_i) \gg \Pr(\mathcal{H}_j)$
- Need the information of $Pr(\mathcal{H}_i)$ at fusion center.
- Optimal Fusion

 $\hat{j} = \arg \max_{j} \operatorname{Pr}(\mathcal{H}_{j} | \vec{d}) = \arg \max_{j} \operatorname{Pr}(\vec{d} | \mathcal{H}_{j}) \operatorname{Pr}(\mathcal{H}_{j}).$

The decision probability is

$$\Pr_{o}(\mathcal{H}_{j}|\mathcal{H}_{i}) = \sum_{\vec{d}\in\mathcal{S}_{o}} P(\vec{d} | \mathcal{H}_{i})$$
(*)
with
$$\mathcal{S}_{o_{j}} = \{\vec{d} \mid \text{those } \vec{d} \text{ that make } \hat{j} = j \text{ in } (*)\}$$

One step further if we assume the same fading again... $\hat{j} = \arg \max_{j} \operatorname{Pr}(\mathcal{H}_{j}) \prod_{n=0}^{N} \operatorname{Pr}(\mathcal{H}_{n} | \mathcal{H}_{j})^{d_{n}}$ $= \arg \max_{j} \log \operatorname{Pr}(\mathcal{H}_{j}) + \sum_{n=0}^{N} d_{n} \log \operatorname{Pr}(\mathcal{H}_{n} | \mathcal{H}_{j})$

Tsinghua University

No closed form solution for S_{o_i} , but easy offline computation

Simulations

On Going

- Unknown noise variance
 - Unbounded (SNR Wall effect)
 - Bounded
- Unknown channel
 - Not possible unless bounded
 - Statistics being known
- Unknown power level
 - The number of power level is known
 - The number of power level is unknown

Many others....

Classification More Cognition

Tsinghua Universit

Conclusions

- What we have done in CR:
 - We considered a more practical scenario
 - We designed the optimal detection algorithm
 - We analytically characterize the performance
 - Cooperative sensing looks to be very different
- Imperfect parameters seems to have some differencesFuture?

nghua

- Some new phenomenon need to be studied.
- Some old topics in CR deserve re-investigation

