

Joint Channel Coding and Physical-Layer Network Coding Design for Gaussian Two-Way Relay Channels

Jinhong Yuan

University of New South Wales Sydney, Australia

7 September, 2011

Introduction

System Model

Error Performance Analysis

Equivalent Tanner Graph and Message Updates

EXIT Chart Analysis and Code Design

Summary

Introduction

Network Coding (NC) and Physical Layer Network Coding (PNC)

- **NC**: Coding better than suboptimal routing [1]
- > PNC can enhance the throughput of a multi-user wireless network [2].
- Channel coded PNC (CPNC) can approach the capacity (upper bound) of a Gaussian two-way relay channel (TWRC) within 1/2 bit [3].
- The pioneering work on designing practical CPNC schemes was reported in [4].

Motivation

- To date, both convolutional coded or repeat-accumulate (RA) coded PNC schemes have been investigated by simulation.
- Some open questions:
 - Whether the conventional good channel codes remain good for PNC?
 - How to design capacity approaching channel codes for PNC schemes?

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow," IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000.

[2] S. Zhang, S.-C. Liew, and P. P. Lam, "Hot topic: physical layer network coding," Proc. 12th Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 358-365, Los Angeles, California, USA, Sept. 2006..

[3] W. Nam, S.-Y. Chung, and Y. H. Lee, "Capacity of the Gaussian twoway relay channel to within 1/2 bit," IEEE Trans. Inform. Theory, vol. 56, no. 11, pp. 5488-5494, Nov. 2010.

[4] S. Zhang and S.-C. Liew, "Channel coding and decoding in a relay system operated with physical-layer network coding," IEEE Jour. Select Area. Commun., vol. 27, pp. 788-796, June 2009.

[5] S. Liew, S. Zhang, and L. Lu, "Physical-layer network coding: tutorial, survey, and beyond,"2011. $\langle \square \rangle$ $\langle \square \rangle$

System Model

Gaussian Two-way Relay Channel (TWRC)

- Consider a Gaussian TWRC where user A and user B exchange information via an intermediate relay R.
- Two phases: uplink phase, the users transmit simultaneously to the relay; downlink phase, the relay broadcasts to the users.
- **No direct link** between A and B, single antenna nodes.
- At each node, the received signal is corrupted by AWGN.

Uplink Phase of CPNC

- Messages: Binary message sequences $\mathbf{b}_A \in \{0,1\}^k$ and $\mathbf{b}_B \in \{0,1\}^k$.
- Encoding: The messages of users are encoded with the same binary linear codes, generating the coded sequences c_A ∈ {0,1}ⁿ and c_B ∈ {0,1}ⁿ.

$$\mathbf{c}_A = \mathbf{b}_A \mathbf{G}, \quad \mathbf{c}_B = \mathbf{b}_B \mathbf{G}$$

Generator matrix: G, and codebook: C.

Code rate of each user: R = k/n.

Air interface: The coded sequences are BPSK modulated, obtaining the signal sequence x_m = 2c_m − 1 ∈ {−1,1}ⁿ, m ∈ {A, B}.

System Model

Uplink Phase (Conti.)

The signal received by the relay

$$\mathbf{y}_R = \sqrt{E_s} \mathbf{x}_A + \sqrt{E_s} \mathbf{x}_B + \mathbf{n}_R$$

The relay decodes the network codeword

$$\mathbf{c}_{s} \triangleq \mathbf{c}_{A} \oplus \mathbf{c}_{B}$$

and computes network codeword's message

$$\mathbf{b}_s = \mathbf{b}_A \oplus \mathbf{b}_B$$

Since the same channel code was used by the two users

$$c_s = b_s G$$

• If the computed NC message $\overline{\mathbf{b}}_s \neq \mathbf{b}_s$, a computation error is declared.

System Model

Downlink Phase of CPNC

- ▶ The recovered NC message $\overline{\mathbf{b}}_s$ is **re-encoded**, BPSK-modulated, generating \mathbf{x}_R , then broadcasted to the two users.
- User $m, m \in \{A, B\}$, receives signal

$$\mathbf{y}_m = \sqrt{E_R} \mathbf{x}_R + \mathbf{n}_m$$

• Each user decodes the NC message sequence $\mathbf{b}_s = \mathbf{b}_A \oplus \mathbf{b}_B$, and then recovers the other user's message by XOR-ing \mathbf{b}_s with its own message.

Remarks

- The operation in the downlink is a standard single-user decoding, followed by a simple XOR operation.
- Focus: uplink
- ▶ Key problem: how to efficiently recover the NC message sequence b_s (or the Network codeword c_s) at the relay in the uplink.

Optimal Decoding of the Network Codeword

Preliminaries

Recall the received signal at the relay:

$$\mathbf{y}_R = \sqrt{E_s}(\mathbf{x}_A + \mathbf{x}_B) + \mathbf{n}_R = \sqrt{E_s}\mathbf{x}_s + \mathbf{n}_R$$

The relay receives a "ternary superimposed (SI) signal".

$$\mathbf{x}_{s} \triangleq \mathbf{x}_{A} + \mathbf{x}_{B} \in \{-2, 0, 2\}$$

- ▶ Then, recovers the binary network codeword $\mathbf{c}_s = \mathbf{c}_A \oplus \mathbf{c}_B$.
- The maximum likelihood (ML) decoding of the network codeword c_s

$$\overline{\mathbf{c}}_{s} = \underset{\mathbf{c}_{s} \in \mathcal{C}}{\arg \max p\left(\mathbf{y}_{R} | \mathbf{c}_{s}\right)}$$

Given each network codeword c_s, there is a set of superimposed signals x_s associated with it

$$\mathcal{X}_{s}(\mathbf{c}_{s}) \triangleq \{\mathbf{x}_{s} = \mathbf{x}_{A} + \mathbf{x}_{B} : \mathbf{c}_{A} \oplus \mathbf{c}_{B} = \mathbf{c}_{s}, \mathbf{c}_{A}, \mathbf{c}_{B} \in \mathcal{C}\}$$

Optimal Decoding of the Network Codeword

The ML rule:

$$\begin{split} \overline{\mathbf{c}}_{s} &= \arg \max_{\mathbf{c}_{s} \in \mathcal{C}} p\left(\mathbf{y}_{R} | \mathbf{c}_{s}\right) \\ &= \arg \max_{\mathbf{c}_{s} \in \mathcal{C}} \sum_{\mathbf{x}_{s} \in \mathcal{X}_{s}(\mathbf{c}_{s})} p\left(\mathbf{y}_{R} | \mathbf{x}_{s}, \mathbf{c}_{s}\right) p\left(\mathbf{x}_{s} | \mathbf{c}_{s}\right) \\ &= \arg \max_{\mathbf{c}_{s} \in \mathcal{C}} \sum_{\mathbf{x}_{s} \in \mathcal{X}_{s}(\mathbf{c}_{s})} p\left(\mathbf{y}_{R} | \mathbf{x}_{s}, \mathbf{c}_{s}\right) \frac{1}{|\mathcal{X}_{s}(\mathbf{c}_{s})|} \end{split}$$

Minimum Euclidean distance decoding

• The most likely superimposed signal sequence $\overline{\mathbf{x}}_s$ is found by

$$\begin{split} \bar{\mathbf{x}}_s &= \arg \max_{\mathbf{x}_s \in \mathbb{X}_s} p\left(\mathbf{y}_R | \mathbf{x}_s\right) \\ &= \arg \min_{\mathbf{x}_s \in \mathbb{X}_s} |\mathbf{y}_R - \mathbf{x}_s|^2 \end{split}$$

 Mapping the most likely superimposed signal sequence to the network codeword

$$\overline{\mathbf{x}}_s \mapsto \overline{\mathbf{c}}_s$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Optimal Decoding of the Network Codeword

• Our goal is to find the error probabilities of the above ML computation.

- To do this, we need
 - find the cardinality of set $\mathcal{X}_s(\mathbf{c}_s)$
 - obtain the **distance spectrum** of the CPNC scheme.
 - the error probability not only depends on Hamming Distance, but also the Euclidean Distances from the superimposed signals, even for binary modulation

Theorem 1. The cardinality of the set $\mathcal{X}_s(\mathbf{c}_s)$ is given by

$$|\mathcal{X}_{s}(\mathbf{c}_{s})| = 2^{\mathsf{Rank}\left(\mathbf{G}^{\mathcal{S}^{c}(\mathbf{c}_{s})}\right)}$$

 $\mathbf{G}^{S^c(\mathbf{c}_s)}$ is obtained by removing the columns indexed by t where $c_s(t) = 1$ from the original generator matrix \mathbf{G} .

Optimal Decoding of the Network Codeword UNSW

Punctured Codebook Approach

Example 1. Consider a (7,4) Hamming code with

Let c_s be a certain codeword in C, e.g., $c_s = [0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0]$. Then, we have $S(c_s) = \{3,4,6\}$. Deleting Column 3, 4 and 6 of G, we obtain

$$\mathbf{G}^{\mathcal{S}^{c}(\mathbf{c}_{s})} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

The cardinality of the set $\mathcal{X}_s(\mathbf{c}_s)$ is given by

$$|\mathcal{X}_{s}(\mathbf{c}_{s})| = 2^{\mathsf{Rank}\left(\mathbf{G}^{\mathcal{S}^{c}(\mathbf{c}_{s})}\right)}$$
(1)

Why Hamming and Euclidean Distances?

Example with (7, 4) Hamming Code

- Recall $\mathbf{c}_s = \mathbf{c}_A \oplus \mathbf{c}_B$, $\mathbf{x}_s = \mathbf{x}_A + \mathbf{x}_B$;
- Transmitted Codewords
 - $\mathbf{c}_A = 0000000, \ \mathbf{x}_A = -1 1 1 1 1 1 1;$
 - $\mathbf{c}_B = 0111001, \ \mathbf{x}_B = -1 + 1 + 1 + 1 1 1 + 1;$
 - $\mathbf{c}_s = 0111001, \ \mathbf{x}_s = -2 \quad 0 \quad 0 \quad 0 2 2 \quad 0;$
- If decodes to $\mathbf{c}_s^* = 1110000, \ d_H(\mathbf{c}_s, \mathbf{c}_s^*) = 3.$
 - ► $\mathbf{c}_{A}^{*} = 0000000, \ \mathbf{x}_{A} = -1 1 1 1 1 1 1;$ $\mathbf{c}_{B}^{*} = 1110000, \ \mathbf{x}_{A} = +1 + 1 + 1 - 1 - 1 - 1 - 1;$ $\mathbf{x}_{s}^{*} = 0 \quad 0 \quad 0 - 2 - 2 - 2 - 2;$ $d_{E}^{2}(\mathbf{x}_{s}, \mathbf{x}_{s}^{*}) = (-2)^{2} + (2)^{2} + (2)^{2} = 12.$
 - $\mathbf{c}_{A}^{*} = 0001111$, $\mathbf{x}_{A} = -1 1 1 + 1 + 1 + 1 + 1$; $\mathbf{c}_{B}^{*} = 1111111$, $\mathbf{x}_{A} = +1 + 1 + 1 + 1 + 1 + 1 + 1$; $\mathbf{x}_{s}^{*} = 0 \quad 0 \quad 0 + 2 + 2 + 2 + 2$; $d_{E}^{2}(\mathbf{x}_{s}, \mathbf{x}_{s}^{*}) = (-2)^{2} + (-2)^{2} + (-4)^{2} + (-4)^{2} + (-2)^{2} = 44$.
 - $\mathbf{c}_{A}^{*} = 0010011, \mathbf{x}_{A} = -1 1 + 1 1 1 + 1 + 1;$ $\mathbf{c}_{B}^{*} = 1100011, \mathbf{x}_{A} = +1 + 1 - 1 - 1 - 1 + 1 + 1;$ $\mathbf{x}_{s}^{*} = 0 \quad 0 \quad 0 - 2 - 2 + 2 + 2;$ $d_{E}^{2}(\mathbf{x}_{s}, \mathbf{x}_{s}^{*}) = (-2)^{2} + (2)^{2} + (-4)^{2} + (-2)^{2} = 28.$

Pair-wise error probability

- Consider the genuine transmitted signal sequences x_A and x_B, x_s = x_A + x_B and its network codeword c_s.
- Let \mathbf{c}_s^* be the wrong network codeword been detected .
- The pair-wise error probability (PEP)

$$P(\mathbf{x}_s \rightarrow \mathbf{c}_s^*)$$

is determined by the distance between two network codewords.

• Each competing network codeword \mathbf{c}_s^* has a set of superimposed signals $\mathcal{X}_s(\mathbf{c}_s^*)$

$$P(\mathbf{x}_{s} \rightarrow \mathbf{c}_{s}^{*}) = P(\mathbf{x}_{s} \rightarrow \mathcal{X}_{s}(\mathbf{c}_{s}^{*}))$$

• We partition the competing set $\mathcal{X}_s(\mathbf{c}_s^*)$ into *subsets* according to its Euclidean distance.

$$\mathcal{X}_s^d\left(\mathbf{x}_s^*, \mathbf{c}_s\right) \triangleq \left\{\mathbf{x}_s \in \mathcal{X}_s(\mathbf{c}_s) : \|\mathbf{x}_s - \mathbf{x}_s^*\|^2 = d^2\right\}$$

• We define the *pair-wise distance spectrum (PDS)* between \mathbf{x}_s^* and $\mathcal{X}_s(\mathbf{c}_s)$ as

$$\mathbb{J}\left(\mathbf{x}_{s}^{*},\mathbf{c}_{s}\right) \triangleq \left\{\left(d_{0},\left|\mathcal{X}_{s}^{d_{0}}\left(\mathbf{x}_{s}^{*},\mathbf{c}_{s}\right)\right|\right),...,\left(d_{N},\left|\mathcal{X}_{s}^{d_{N}}\left(\mathbf{x}_{s}^{*},\mathbf{c}_{s}\right)\right|\right)\right\}.$$

Pair-wise Distance Spectrum (PDS) An illustration of PDS

- \triangle : Genuine transmitted superimposed sequence \mathbf{x}_s
- \bigcirc : The superimposed sequences of a competing set $\mathcal{X}_s(\mathbf{c}_s^*)$

The points on the inner-most circle is called the "minimum distance subset".

Pair-wise Distance Spectrum

Theorem 2. The PDS w.r.t. \mathbf{x}_s and $\mathcal{X}_s(\mathbf{c}_s^*)$ is given by

$$\mathbb{J}\left(\boldsymbol{x}_{s},\boldsymbol{c}_{s}^{*}\right)=\frac{\mathbb{A}\left(\boldsymbol{C}^{\mathcal{S}^{c}\left(\boldsymbol{c}_{s}\right)\cap\mathcal{S}^{c}\left(\boldsymbol{c}_{s}^{*}\right)}\right)}{O\left(\boldsymbol{c}_{s}^{*}\right)}.$$

where $\mathbb{A}(\cdot)$ is the weight distribution of $C^{\mathcal{S}^c(c_s)\cap \mathcal{S}^c\left(c_s^*\right)}$ and

$$O(\mathbf{c}_{s}) = 2^{nR-\mathsf{Rank}\left(\mathbf{G}^{\mathcal{S}^{c}(\mathbf{c}_{s})}\right)}.$$

 Corollary 1. The cardinality of the "minimum distance subset" is upper-bounded by

$$\begin{aligned} \left| \mathcal{X}_{s}^{d_{0}}\left(\mathbf{x}_{s}^{*}, \mathbf{c}_{s}\right) \right| &= 2^{\operatorname{Rank}\left(\mathbf{G}^{\mathcal{S}^{c}(\mathbf{c}_{s})}\right) - \operatorname{Rank}\left(\mathbf{G}^{\mathcal{S}^{c}(\mathbf{c}_{s}^{*}) \cap \mathcal{S}^{c}(\mathbf{c}_{s})}\right)} \\ &\leq 2^{\left|\mathcal{S}\left(\mathbf{c}_{s}^{*}\right) \cap \mathcal{S}^{c}(\mathbf{c}_{s})\right|} = 2^{d_{10}\left(\mathbf{c}_{s}^{*}, \mathbf{c}_{s}\right)} \end{aligned}$$
(2)

where $d_{10}(\mathbf{c}_{s}^{*},\mathbf{c}_{s}) \triangleq |\mathcal{S}(\mathbf{c}_{s}^{*}) \cap \mathcal{S}^{c}(\mathbf{c}_{s})|.$

[4] T. Yang, I. Land, T. Huang, J. Yuan, and Z. Chen, "Distance properties and performance of physical layer network coding with binary linear codes for Gaussian two-way relay channels," Proc. IEEE ISIT, Aug. 2011.

Pair-wise Error Probability Upper Bound

• With the union bound technique, the pair-wise error probability (PEP) that the decoder recovers $\mathbf{c}_s^* \neq \mathbf{c}_s$ is upper bounded by

$$P_{e}\left(\mathbf{x}_{s}, \mathcal{X}_{s}(\mathbf{c}_{s}^{*})\right) \leq \sum_{i=0}^{N} \left|\mathcal{X}_{s}^{d_{i}}\left(\mathbf{x}_{s}, \mathbf{c}_{s}^{*}\right)\right| Q\left(\sqrt{\frac{E_{s}d_{H}\left(\mathbf{c}_{s}^{*}, \mathbf{c}_{s}\right) + i \cdot 4E_{s}}{\sigma^{2}}}\right)$$
(3)

where $N = |\mathcal{S}(\mathbf{c}_s) \cap \mathcal{S}^c(\mathbf{c}_s^*)|$.

- To compute the PEP union bound, we need to find the PDS $\mathbb{J}(\mathbf{c}_s^*, \mathbf{c}_s)$.
- For a short code, $\mathbb{J}(\mathbf{c}_s^*, \mathbf{c}_s)$ can be determined based on Theorem 2.
- However, as n increases, the number of distinct rows in C^{S^c}(c^s_s)∩S^c(c_s) increases exponentially with n and the task quickly becomes prohibitive.
- To simplify this task, we now consider an upper bound for the high SNR case.

Asymptotic Pair-wise Error Probability Bound

Lemma: Asymptotically, the PEP upper bound is approximated as

$$\begin{aligned} P_e\left(\mathbf{x}_s, \mathcal{X}_s(\mathbf{c}_s^*)\right) &\lesssim \left| \mathcal{X}_s^{d_0}\left(\mathbf{x}_s, \mathbf{c}_s^*\right) \right| Q\left(\sqrt{\frac{E_s d_H\left(\mathbf{c}_s^*, \mathbf{c}_s\right)}{\sigma^2}}\right) \\ &\leq 2^{d_{10}\left(\mathbf{c}_s^*, \mathbf{c}_s\right)} Q\left(\sqrt{\frac{E_s d_H\left(\mathbf{c}_s^*, \mathbf{c}_s\right)}{\sigma^2}}\right) \end{aligned}$$

- This means that at a high SNR, the PEP is only determined by the minimum distance subset.
- For more insight, we consider a single-user one-way relay (OWRC) case. The PEP of this OWRC is

$$P_{e}^{SU}\left(\mathbf{c}_{s}^{*},\mathbf{c}_{s}\right) \leq Q\left(\sqrt{\frac{E_{s}d_{H}\left(\mathbf{c}_{s}^{*},\mathbf{c}_{s}\right)}{\sigma^{2}}}\right)$$

At high SNRs, the PEP of the CPNC over TWRC is approximately increased by a factor of (at most) 2^{d₁₀(c^s_s,c_s)} relative to the single-user case.

Conditional Word Error Probability

▶ The word error probability (WEP) conditioned on $\mathbf{x}_s^* \in \mathcal{X}_s(\mathbf{c}_s^*)$ is

$$P_{e}\left(\mathbf{c}_{s}^{*}
ight)\lesssim\sum_{\mathbf{c}_{s}\in\mathcal{C},\mathbf{c}_{s}\neq\mathbf{c}_{s}^{*}}2^{d_{10}\left(\mathbf{c}_{s}^{*},\mathbf{c}_{s}
ight)}Q\left(\sqrt{rac{E_{s}d_{H}\left(\mathbf{c}_{s}^{*},\mathbf{c}_{s}
ight)}{\sigma^{2}}}
ight).$$

• The parameter $d_{10}(\mathbf{c}_s^*, \mathbf{c}_s)$ is codeword-dependent.

► For random codes, we have $\Pr\left[\left|d_{10}\left(\mathbf{c}_{s}^{*},\mathbf{c}_{s}\right)-\frac{d_{\mathcal{H}}\left(\mathbf{c}_{s}^{*},\mathbf{c}_{s}\right)}{2}\right| < \varepsilon\right] \xrightarrow{n \to \infty} 1$ for an arbitrarily small ε [5].

For long linear codes, we may assume

$$d_{10}\left(\mathbf{c}_{s}^{*},\mathbf{c}_{s}
ight)pproxrac{d_{H}\left(\mathbf{c}_{s}^{*},\mathbf{c}_{s}
ight)}{2}$$

The conditional WEP is

$$P_{e}\left(\mathbf{c}_{s}^{*}\right) \lesssim \sum_{d=d_{\min}(\mathbf{C})}^{d_{\max}(\mathbf{C})} A_{d}\left(\mathbf{C}\right) 2^{\frac{d}{2}} Q\left(\sqrt{\frac{E_{s}d}{\sigma^{2}}}\right)$$

[5] T. Cover and etc, "Elements of information theory", Wiley Science, 1991.

Averaged Word Error Probability and Bit Error Probability

The averaged WEP of the CPNC is

$$P_{e} = \frac{1}{2^{nR}} \sum_{\mathbf{c}_{s} \in \mathcal{C}} P_{e}\left(\mathbf{c}_{s}\right) \lesssim \sum_{d=d_{\min}(\mathbf{C})}^{d_{\max}(\mathbf{C})} A_{d}\left(\mathbf{C}\right) 2^{\frac{d}{2}} Q\left(\sqrt{\frac{E_{s}d}{\sigma^{2}}}\right).$$

The average BEP of the CPNC is

$$\begin{array}{ll} P_b &\lesssim & \displaystyle \sum_{d=d_{\min}(\mathbf{C})}^{d_{\max}(\mathbf{C})} B_d\left(\mathbf{C}\right) 2^{\frac{d}{2}} Q\left(\sqrt{\frac{E_s d}{\sigma^2}}\right) \\ &\leq & \displaystyle \frac{1}{2} \sum_{d=d_{\min}(\mathbf{C})}^{d_{\max}(\mathbf{C})} B_d\left(\mathbf{C}\right) \exp\left[-\frac{d}{2} \left(\frac{E_s}{\sigma^2} - \ln 2\right)\right] \end{array}$$

where $B_d(\mathbf{C})$ is the average information weight w.r.t. all codewords of weight d. The BEP of the single-user case is

$$P_b^{SU} \leq \frac{1}{2} \sum_d B_d \left(\mathbf{C} \right) \exp \left[-\frac{d}{2} \frac{E_s}{\sigma^2} \right].$$

At high SNRs, the CPNC scheme relative to the single-user case has a performance degradation of approximately ln 2 (in linear scale).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Numerical Results

Hamming Coded PNC

- ▶ We consider (7,4) Hamming coded PNC.
- Our analytical results match well with the numerical results.
- The SNR gap between the single-user performance and the two-user CPNC scheme is just under In2 (in linear scale.)

Numerical Results

Convolutional Coded PNC

- We consider convolutional coded PNC with various coding rates.
- Our analytical results match well with the numerical results.
- The SNR gap between the single-user performance and the two-user CPNC scheme is just under ln2 (in linear scale.)

Numerical Results

< ≣⇒

Repeat-Accumulate (RA) Coded PNC

- We consider a RA coded PNC with code rate R = 3/4.
- ▶ The performance difference of ln2 is very clear.
- The CPNC significantly outperforms the complete-decoding based scheme by a few dBs.

Summary of Performance Analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

- Interesting to know that the SNR loss of the CPNC scheme relative to the single-user case is about ln 2 (in linear scale) at a high SNR, regardless of the code rate.
- This means a conventional good code tends to perform well asymptotically in a CPNC scheme.

Further Questions

How to design capacity achieving codes for CPNC schemes in the low SNR region?

Revisit System Model

Uplink Phase and Its Signals

- ▶ $\mathbf{b}_A, \mathbf{b}_B \in \{0, 1\}^k$, $\mathbf{c}_A, \mathbf{c}_B \in \{0, 1\}^k$.
- Superimposed codeword $\mathbf{c}_s \triangleq \mathbf{c}_A + \mathbf{c}_B \in \{0, 1, 2\}^n$, $\mathbf{x}_s \triangleq \mathbf{x}_A + \mathbf{x}_B \in \{-2, 0, 2\}^n$.
- ▶ **y**_R is a noisy observation of **c**_s.
- Relay needs to compute the network-coded (NC) message sequence

$$\mathbf{b}_N = \mathbf{b}_A \oplus \mathbf{b}_B \in \{0,1\}^k.$$

イロト 不得 トイヨト イヨト

-

Revisit System Model

Relay Operations

- ▶ Relay computes $\mathbf{b}_N \in \{0,1\}^k$ from a noisy observation of $\mathbf{c}_s \in \{0,1,2\}^n$.
- Various network decoding approaches in [1]:
- Method 1: Complete-decode and forward. Relay decodes \mathbf{b}_A and \mathbf{b}_B first, then computes $\mathbf{b}_N = \mathbf{b}_A \oplus \mathbf{b}_B$

- Similar to CNC1 in [1], but iterative MUD/decoding brings a large gain.
- Multiplexing gain loss at high SNR.

[1] S. Zhang and S.-C. Liew, "Channel coding and decoding in a relay system operated with physical-layer network coding," IEEE Jour. Select Area. Commun., vol. 27, pp. 788-796, June 2009.

Revisit System Model

Relay Operation

Method 2: Compute and forward.

Relay decodes superimposed message sequence $\mathbf{b}_s \triangleq \mathbf{b}_A + \mathbf{b}_B$, from the noisy observation of the superimposed codeword $\mathbf{c}_s \triangleq \mathbf{c}_A + \mathbf{c}_B$.

Then, map $\mathbf{b}_s = \mathbf{b}_A + \mathbf{b}_B \mapsto \mathbf{b}_N = \mathbf{b}_A \oplus \mathbf{b}_B$.

- Similar to ACNC in [1], only forwards sufficient information.
- Virtual encoder with ternary inputs and outputs needs to be defined.
- For convolutional code, a super trellis or the product of the component code trellis will be useful [2].
- For LDPC or RA code, an equivalent Tanner graph (ETG) defined over the superimposed messages.

 S. Zhang and S.-C. Liew, "Channel coding and decoding in a relay system operated with physical-layer network coding," IEEE Jour. Select Area. Commun., vol. 27, pp. 788-796, June 2009.

[2] D. To and J. Choi, "Convolutional codes in two-way relay networks with physical-layer network coding," IEEE Trans. Wireless Commun., vol. 9, no.9, pp. 2724-2729, Sept. 2010.

Equivalent Tanner Graph

Tanner Graph for single user: Irregular Repeat-Accumulate (IRA) Code

- Message bits $b_m(t)$, $t = 1, \dots, k$, are repeated η times, for $\eta = 2, 3, \dots, d_v$.
- Variable node degree distribution is λ_η : λ_η ≥ 0, Σ^{d_v}_{η=2} λ_η = 1.
- Interleaved sequence is encoded by a series of parity-check codes of degrees ψ , for $\psi = 1, 2, \cdots, d_c$.
- Check node degree distribution is $\rho_{\psi} : \rho_{\psi} \ge 0, \sum_{\psi=1}^{d_c} \rho_{\psi} = 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Equivalent Tanner Graph

ETG for two users

- Input $\mathbf{b}_s = \mathbf{b}_A + \mathbf{b}_B$: ternary
- Output c_s = c_A + c_B: ternary
- How to define/exchange/update extrinsic information or log-likelihood ratios?
- For code design, how to model the distribution of the *a priori* information for density evolution or EXIT chart functions?

Message Updates

- Intrinsic information from \mathbf{y}_R
 - For *j*th superimposed coded symbol

$$p_0(j) = P(c_s(j) = 0|y_R(j)) p_1(j) = P(c_s(j) = 1|y_R(j)) p_2(j) = P(c_s(j) = 2|y_R(j))$$

Represented in log-likelihood ratio (LLR) form

$$LLR(c_s(j)|y_R(j)) = [\Lambda(j), \Omega(j)]$$

Primary LLR:

$$\Lambda(j) \triangleq \log \left(\frac{P_0(j) + P_2(j)}{P_1(j)} \right)$$

Secondary LLR:

$$\Omega(j) \triangleq \log\left(\frac{p_0(j)}{p_2(j)}\right)$$

Primary LLR is the LLR of the network coded bits.

$$\Lambda(j) \triangleq \log \left(\frac{P_0(j) + P_2(j)}{P_1(j)} \right) = \log \left(\frac{\mathsf{P}(c_N(j) = 0 | y_R(j))}{\mathsf{P}(c_N(j) = 1 | y_R(j))} \right)$$

Message Updates

Check Node Update Rule

• Update function
$$f_{CN}^2$$
 for degree $\psi = 2$.

$$\begin{split} \Lambda_Q^{(3)} &= \log\left(\frac{1\!+\!\exp\left(\Lambda_P^{(1)}\right)\exp\left(\Lambda_P^{(2)}\right)}{\exp\left(\Lambda_P^{(1)}\right)\!+\!\exp\left(\Lambda_P^{(2)}\right)}\right)\\ \Omega_Q^{(3)} &= \log\left(\frac{1\!+\!\exp\left(\Omega_P^{(1)}\right)\exp\left(\Omega_P^{(2)}\right)\!+\!\kappa_{\rm CN}}{\exp\left(\Omega_P^{(2)}\right)\!+\!\exp\left(\Omega_P^{(1)}\right)\!+\!\kappa_{\rm CN}}\right) \end{split}$$

P: a priori, Q: extrinsic

$$\mathcal{K}_{\mathsf{CN}} = \frac{\left[1 + \exp\left(\Omega_{P}^{(1)}\right)\right] \left[1 + \exp\left(\Omega_{P}^{(2)}\right)\right]}{2 \exp\left(\Lambda_{P}^{(1)}\right) \exp\left(\Lambda_{P}^{(2)}\right)}$$

 $\blacktriangleright\,$ For CN degree $\psi>$ 2, successively using $f_{\rm CN}^2$ to update the extrinsic

Sac

э

イロト イポト イヨト イヨト

Message Updates

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Variable Node Updating Rule

▶ Variable node (VN) updating rule for degree η is

$$\begin{split} \Lambda_Q^{(l)} &= (\eta - 2) \log 2 + \sum_{l'=1, l' \neq l}^{\eta} \Lambda_P^{(l')} + K_{\text{VN}} \\ \Omega_Q^{(l)} &= \sum_{l'=1, l' \neq l}^{\eta} \Omega_P^{(l')} \end{split}$$

where

$$\mathcal{K}_{\text{VN}} = \log \left(\frac{1 + \prod\limits_{l'=1, l' \neq l}^{\eta} \exp\left(\Omega_{P}^{(l')}\right)}{\prod\limits_{l'=1, l' \neq l}^{\eta} \left(1 + \exp\left(\Omega_{P}^{(l')}\right)\right)} \right)$$

- Extrinsic information transfer (EXIT) chart (S. ten Brink 1999, 2003, 2004).
- To illustrate the iteration decoding (mutual information) trajectory.
- To visualize the convergence of the iterative decoding.
- With curve fitting technique, EXIT chart can be used for code design and threshold analysis.

- Inner decoder: CN-ACC decoder; Outer decoder: VN decoder.
- Exchange both primary and secondary LLRs.
- Recall: Primary LLR Λ linked with NC message b_N .
- Tracking only primary LLR: $I_A = I(\mathbf{b}_N; \Lambda_P), I_E = I(\mathbf{b}_N; \Lambda_Q).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

EXIT Functions

Inner decoder:

$$I_E = T_{\text{Inner}} \left(I_A, \mathbb{P}(\Omega_P), \rho_{\psi}, E_s \right)$$

Outer decoder:

$$I_E = T_{\text{Outer}}(I_A, \mathbb{P}(\Omega_P), \lambda_\eta)$$

where $I_A = I(\mathbf{b}_N; \Lambda_P)$.

- EXIT functions contains both primary LLR Λ_P and secondary LLR Ω_P .
- Primary LLR approaches a consistent Gaussian-like distribution with its mean equal to half of its variance.

$$\Lambda_P = (\sigma_{\Lambda}^2/2)x_N + n_{\Lambda}$$

- ► Secondary LLR $\Omega(j) \triangleq \log (p_0(j)/p_2(j))$ resembles a combination of a Gaussian-like distribution and an impulse at zero.
- Two models to bound the EXIT functions.
 - Model I: Assume perfect secondary LLR information

$$\dot{\Omega}_P = egin{cases} +\infty & ext{if } b_s = 0 \ 0 & ext{if } b_s = 1 \ -\infty & ext{if } b_s = 2 \end{cases}$$

• Model II: Assume no *a priori* information on the secondary LLR Ω_P , i.e., $\ddot{\Omega}_P = 0$.

$$T_{\text{Inner}}\left(I_{A}, \mathbb{P}(\dot{\Omega}_{P}), \rho_{\psi}, E_{s}\right) \geq I_{E} \geq T_{\text{Inner}}\left(I_{A}, \mathbb{P}(\ddot{\Omega}_{P}), \rho_{\psi}, E_{s}\right)$$

э

・ロト ・聞ト ・ヨト ・ヨト

- Model I always gives higher mutual information than Model II.
- ▶ For CN degrees higher than 2, no much performance difference.

- Capacity approaching codes usually have higher degree CNs.
- Using Model II will be sufficient in our code design.
- Model II is a lower bound and it guarantees the convergence.

Scheme	Code Type	CN		VN	
		ψ	ρ	η	λ
Physical-layer network coded (PNC)	Regular $R = 1/3$	1	1	3	1
	Bi-regular $R = 3/4$	1	0.2288	4	1
		3	0.5424		
		5	0.2288		
	Irregular $R = 1/3$	1	0.30	2	0.1542
		3	0.70	3	0.3353
				7	0.1375
				8	0.2237
				21	0.1493
	Irregular $R = 3/4$	1	0.20	2	0.3221
		5	0.80	3	0.3297
				6	0.2272
				7	0.478
				31	0.732
Based on complete decoding	Irregular $R = 1/3$	1	0.20	3	0.4963
		3	0.80	4	0.1144
				9	0.829
				10	0.2004
				29	0.870
				30	0.190
	Irregular $R = 3/4$	1	0.10	2	0.2672
		3	0.90	3	0.5915
				7	0.493
				8	0.610
				19	0.310

R = 3/4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

R = 1/3

(ロ)、(型)、(三)、(三)、(三)、(0)、(0)

R = 3/4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

R = 1/3

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 → ���

R = 3/4

・ロト・西ト・ヨト・ヨー うへの

R = 1/3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Summary

- We investigated performance and design of channel coded PNC scheme.
- We proposed a method to compute the pairwise distance spectrum of a CPNC scheme, and asymptotically tight WEP and BEP bounds were derived.
- The SNR loss of the CPNC scheme relative to the single-user case is about ln 2 (in linear scale) at a high SNR, regardless of the code rate.
- Proposed ETG and general message updating rules.
- Present two models to bound the EXIT functions for convergency analysis and code designs.
- Design capacity approaching IRA coded PNC schemes.

Further Work

- Information-theorectic issues: Capacity?
- Practical design issues: Synchronization, channel estimation, power/phase controls?
- Extentions: Higher level modulation (lattice coding), fading channels, multihop TWRC, MIMO TWRC, multiway, etc ?

Acknowledgement

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tao Huang, University of New South Wales

Tom Yang, CSIRO ICT Centre

Ingmar Land, ITR, University of South Australia