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Introduction
Network Coding (NC) and Physical Layer Network Coding (PNC)

I NC: Coding better than suboptimal routing [1]

I PNC can enhance the throughput of a multi-user wireless network [2].

I Channel coded PNC (CPNC) can approach the capacity (upper bound) of a
Gaussian two-way relay channel (TWRC) within 1/2 bit [3].

I The pioneering work on designing practical CPNC schemes was reported in [4].

Motivation

I To date, both convolutional coded or repeat-accumulate (RA) coded PNC
schemes have been investigated by simulation.

I Some open questions:

I Whether the conventional good channel codes remain good for PNC?
I How to design capacity approaching channel codes for PNC schemes?
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[3] W. Nam, S.-Y. Chung, and Y. H. Lee, “Capacity of the Gaussian twoway relay channel to within 1/2 bit,”IEEE Trans. Inform. Theory,
vol. 56, no. 11, pp. 5488-5494, Nov. 2010.

[4] S. Zhang and S.-C. Liew, “Channel coding and decoding in a relay system operated with physical-layer network coding,”IEEE Jour.
Select Area. Commun., vol. 27, pp. 788-796, June 2009.

[5] S. Liew, S. Zhang, and L. Lu, “Physical-layer network coding: tutorial, survey, and beyond,”2011.



System Model

Gaussian Two-way Relay Channel (TWRC)

I Consider a Gaussian TWRC where user A and user B exchange information via
an intermediate relay R.

I Two phases: uplink phase, the users transmit simultaneously to the relay;
downlink phase, the relay broadcasts to the users.

I No direct link between A and B, single antenna nodes.

I At each node, the received signal is corrupted by AWGN.



System Model

Uplink Phase of CPNC

I Messages: Binary message sequences bA ∈ {0, 1}k and bB ∈ {0, 1}k .

I Encoding: The messages of users are encoded with the same binary linear
codes, generating the coded sequences cA ∈ {0, 1}n and cB ∈ {0, 1}n.

cA = bAG, cB = bBG

Generator matrix: G, and codebook: C.

Code rate of each user: R = k/n.

I Air interface: The coded sequences are BPSK modulated, obtaining the signal
sequence xm = 2cm − 1 ∈ {−1, 1}n, m ∈ {A,B}.



System Model

Uplink Phase (Conti.)

I The signal received by the relay

yR =
√
EsxA +

√
EsxB + nR

I The relay decodes the network codeword

cs , cA ⊕ cB

and computes network codeword’s message

bs = bA ⊕ bB

I Since the same channel code was used by the two users

cs = bsG

I If the computed NC message bs 6= bs , a computation error is declared.



System Model

Downlink Phase of CPNC

I The recovered NC message bs is re-encoded, BPSK-modulated, generating xR ,
then broadcasted to the two users.

I User m,m ∈ {A,B}, receives signal

ym =
√

ERxR + nm

I Each user decodes the NC message sequence bs = bA ⊕ bB , and then recovers
the other user’s message by XOR-ing bs with its own message.



System Model

Remarks

I The operation in the downlink is a standard single-user decoding, followed by a
simple XOR operation.

I Focus: uplink

I Key problem: how to efficiently recover the NC message sequence bs (or the
Network codeword cs) at the relay in the uplink.



Optimal Decoding of the Network Codeword

Preliminaries

I Recall the received signal at the relay:

yR =
√
Es(xA + xB) + nR =

√
Esxs + nR

I The relay receives a “ternary superimposed (SI) signal”.

xs , xA + xB ∈ {−2, 0, 2}

I Then, recovers the binary network codeword cs = cA ⊕ cB .

II The maximum likelihood (ML) decoding of the network codeword cs

cs = arg max
cs∈C

p (yR |cs)

I Given each network codeword cs , there is a set of superimposed signals xs
associated with it

Xs(cs) , {xs = xA + xB : cA ⊕ cB = cs , cA, cB ∈ C}



Optimal Decoding of the Network Codeword

I The ML rule:

cs = arg max
cs∈C

p (yR |cs)

= arg max
cs∈C

∑
xs∈Xs (cs )

p (yR |xs , cs) p (xs |cs)

= arg max
cs∈C

∑
xs∈Xs (cs )

p (yR |xs , cs)
1

|Xs(cs)|

I Minimum Euclidean distance decoding

I The most likely superimposed signal sequence xs is found by

xs = arg max
xs∈Xs

p (yR |xs)

= arg min
xs∈Xs

|yR − xs |2

I Mapping the most likely superimposed signal sequence to the
network codeword

xs 7→ cs



Optimal Decoding of the Network Codeword

I Our goal is to find the error probabilities of the above ML computation.

I To do this, we need

I find the cardinality of set Xs(cs)
I obtain the distance spectrum of the CPNC scheme.
I the error probability not only depends on Hamming Distance, but

also the Euclidean Distances from the superimposed signals, even
for binary modulation

Theorem 1. The cardinality of the set Xs(cs) is given by

|Xs(cs)| = 2
Rank

(
GS

c (cs )
)

GS
c (cs ) is obtained by removing the columns indexed by t where cs(t) = 1 from

the original generator matrix G.



Optimal Decoding of the Network Codeword

Punctured Codebook Approach

Example 1. Consider a (7, 4) Hamming code with

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 .
Let cs be a certain codeword in C, e.g., cs = [0 0 1 1 0 1 0]. Then, we have
S (cs) = {3, 4, 6}. Deleting Column 3, 4 and 6 of G, we obtain

GS
c (cs ) =


1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

 .
The cardinality of the set Xs(cs) is given by

|Xs(cs)| = 2
Rank

(
GS

c (cs )
)

(1)



Why Hamming and Euclidean Distances?
Example with (7, 4) Hamming Code

I Recall cs = cA ⊕ cB , xs = xA + xB ;

I Transmitted Codewords

cA = 0000000, xA = −1− 1− 1− 1− 1− 1− 1;

cB = 0111001, xB = −1 + 1 + 1 + 1− 1− 1 + 1;

cs = 0111001, xs = −2 0 0 0− 2− 2 0;

I If decodes to c∗s = 1110000, dH(cs , c∗s ) = 3.

I c∗A = 0000000, xA = −1− 1− 1− 1− 1− 1− 1;
c∗B = 1110000, xA = +1 + 1 + 1− 1− 1− 1− 1;
x∗s = 0 0 0− 2− 2− 2− 2;
d2
E (xs , x∗s ) = (−2)2 + (2)2 + (2)2 = 12.

I c∗A = 0001111, xA = −1− 1− 1 + 1 + 1 + 1 + 1;
c∗B = 1111111, xA = +1 + 1 + 1 + 1 + 1 + 1 + 1;
x∗s = 0 0 0 + 2 + 2 + 2 + 2;
d2
E (xs , x∗s ) = (−2)2 + (−2)2 + (−4)2 + (−4)2 + (−2)2 = 44.

I c∗A = 0010011, xA = −1− 1 + 1− 1− 1 + 1 + 1;
c∗B = 1100011, xA = +1 + 1− 1− 1− 1 + 1 + 1;
x∗s = 0 0 0− 2− 2 + 2 + 2;
d2
E (xs , x∗s ) = (−2)2 + (2)2 + (−4)2 + (−2)2 = 28.



Error Performance Analysis

Pair-wise error probability

I Consider the genuine transmitted signal sequences xA and xB , xs = xA + xB and
its network codeword cs .

I Let c∗s be the wrong network codeword been detected .

I The pair-wise error probability (PEP)

P(xs → c∗s )

is determined by the distance between two network codewords.

I Each competing network codeword c∗s has a set of superimposed signals Xs(c∗s )

P(xs → c∗s ) = P(xs → Xs(c∗s ))

I We partition the competing set Xs(c∗s ) into subsets according to its Euclidean
distance.

X d
s (x∗s , cs) , {xs ∈ Xs(cs) : ‖xs − x∗s ‖

2 = d2}
I We define the pair-wise distance spectrum (PDS) between x∗s and Xs(cs) as

J (x∗s , cs) ,
{(

d0, |X d0
s (x∗s , cs) |

)
, ...,

(
dN , |X

dN
s (x∗s , cs) |

)}
.



Error Performance Analysis

Pair-wise Distance Spectrum (PDS)

An illustration of PDS
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4: Genuine transmitted superimposed sequence xs
©: The superimposed sequences of a competing set Xs(c∗s )
The points on the inner-most circle is called the ”minimum distance subset”.



Error Performance Analysis

Pair-wise Distance Spectrum

I Theorem 2. The PDS w.r.t. xs and Xs(c∗s ) is given by

J (xs , c
∗
s ) =

A
(

CS
c (cs )∩Sc(c∗s )

)
O (c∗s )

.

where A(·) is the weight distribution of CS
c (cs )∩Sc(c∗s ) and

O (cs) = 2
nR−Rank

(
GS

c (cs )
)
.

I Corollary 1. The cardinality of the ”minimum distance subset” is upper-bounded
by ∣∣∣X d0

s (x∗s , cs)
∣∣∣ = 2

Rank
(

GS
c (cs )

)
−Rank

(
GS

c (c∗s )∩Sc (cs )
)

≤ 2|S(c∗s )∩Sc (cs )| = 2d10(c∗s ,cs) (2)

where d10 (c∗s , cs) , |S (c∗s ) ∩ Sc (cs)|.

[4] T. Yang, I. Land, T. Huang, J. Yuan, and Z. Chen, “Distance properties and performance of physical layer network coding with binary
linear codes for Gaussian two-way relay channels,”Proc. IEEE ISIT, Aug. 2011.



Error Performance Analysis

Pair-wise Error Probability Upper Bound

I With the union bound technique, the pair-wise error probability (PEP) that the
decoder recovers c∗s 6= cs is upper bounded by

Pe (xs ,Xs(c∗s )) ≤
N∑
i=0

∣∣∣X di
s (xs , c

∗
s )
∣∣∣Q(√EsdH (c∗s , cs) +i · 4Es

σ2

)
(3)

where N = |S (cs) ∩ Sc (c∗s )|.
I To compute the PEP union bound, we need to find the PDS J (c∗s , cs).

I For a short code, J (c∗s , cs) can be determined based on Theorem 2.

I However, as n increases, the number of distinct rows in CS
c(c∗s )∩Sc (cs ) increases

exponentially with n and the task quickly becomes prohibitive.

I To simplify this task, we now consider an upper bound for the high SNR case.



Error Performance Analysis

Asymptotic Pair-wise Error Probability Bound

I Lemma: Asymptotically, the PEP upper bound is approximated as

Pe (xs ,Xs(c∗s )) .
∣∣∣X d0

s (xs , c
∗
s )
∣∣∣Q(√EsdH (c∗s , cs)

σ2

)

≤ 2d10(c∗s ,cs)Q

(√
EsdH (c∗s , cs)

σ2

)
I This means that at a high SNR, the PEP is only determined by the minimum

distance subset.

I For more insight, we consider a single-user one-way relay (OWRC) case. The
PEP of this OWRC is

PSU
e (c∗s , cs) ≤ Q

(√
EsdH (c∗s , cs)

σ2

)
.

I At high SNRs, the PEP of the CPNC over TWRC is approximately increased by

a factor of (at most) 2d10(c∗s ,cs) relative to the single-user case.



Error Performance Analysis

Conditional Word Error Probability

I The word error probability (WEP) conditioned on x∗s ∈ Xs(c∗s ) is

Pe (c∗s ) .
∑

cs∈C,cs 6=c∗s

2d10(c∗s ,cs)Q

(√
EsdH (c∗s , cs)

σ2

)
.

I The parameter d10 (c∗s , cs) is codeword-dependent.

I For random codes, we have Pr

[∣∣∣∣d10 (c∗s , cs)− dH(c∗s ,cs)
2

∣∣∣∣ < ε

]
n→∞→ 1 for an

arbitrarily small ε [5].

I For long linear codes, we may assume

d10 (c∗s , cs) ≈
dH (c∗s , cs)

2
.

I The conditional WEP is

Pe (c∗s ) .
dmax(C)∑

d=dmin(C)

Ad (C) 2
d
2 Q

(√
Esd

σ2

)

[5] T. Cover and etc, “Elements of information theory”, Wiley Science, 1991.



Error Performance Analysis

Averaged Word Error Probability and Bit Error Probability

I The averaged WEP of the CPNC is

Pe =
1

2nR

∑
cs∈C

Pe (cs) .
dmax(C)∑

d=dmin(C)

Ad (C) 2
d
2 Q

(√
Esd

σ2

)
.

I The average BEP of the CPNC is

Pb .
dmax(C)∑

d=dmin(C)

Bd (C) 2
d
2 Q

(√
Esd

σ2

)

≤
1

2

dmax(C)∑
d=dmin(C)

Bd (C) exp

[
−
d

2

(
Es

σ2
− ln 2

)]
where Bd (C) is the average information weight w.r.t. all codewords of weight d .

I The BEP of the single-user case is

PSU
b ≤ 1

2

∑
d Bd (C) exp

[
− d

2
Es
σ2

]
.

I At high SNRs, the CPNC scheme relative to the single-user case has a
performance degradation of approximately ln 2 (in linear scale).



Numerical Results
Hamming Coded PNC

I We consider (7,4) Hamming coded PNC.

I Our analytical results match well with the numerical results.

I The SNR gap between the single-user performance and the two-user CPNC
scheme is just under ln2 (in linear scale.)

3 4 5 6 7 8 9 10

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

W
E

R
 (

at
 th

e 
re

la
y)

 

 

CPNC for TWRC − Bound from Eq.(48)
CPNC for TWRC − Simulation
Single−user OWRC − Union bound
Single−user OWRC − Simulation



Numerical Results
Convolutional Coded PNC

I We consider convolutional coded PNC with various coding rates.

I Our analytical results match well with the numerical results.

I The SNR gap between the single-user performance and the two-user CPNC
scheme is just under ln2 (in linear scale.)
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Numerical Results
Repeat-Accumulate (RA) Coded PNC

I We consider a RA coded PNC with code rate R = 3/4.

I The performance difference of ln2 is very clear.

I The CPNC significantly outperforms the complete-decoding based scheme by a
few dBs.
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Summary of Performance Analysis

I Interesting to know that the SNR loss of the CPNC scheme relative to the
single-user case is about ln 2 (in linear scale) at a high SNR, regardless of the
code rate.

I This means a conventional good code tends to perform well asymptotically in a
CPNC scheme.

Further Questions

I How to design capacity achieving codes for CPNC schemes in the low SNR
region?



Revisit System Model

Uplink Phase and Its Signals

Detailed System Model
Uplink

Encoder 

A
Rn

Ry Nb̂
BPSK

Ac
Ax

Encoder 

B

sE

BPSK
Bc

Bx

Relay

Computation
Bb

Ab

sE

I bA, bB ∈ {0, 1}k , cA, cB ∈ {0, 1}k .

I Superimposed codeword cs , cA + cB ∈ {0, 1, 2}n, xs , xA + xB ∈ {−2, 0, 2}n.

I yR is a noisy observation of cs .

I Relay needs to compute the network-coded (NC) message sequence

bN = bA ⊕ bB ∈ {0, 1}k .



Revisit System Model
Relay Operations

I Relay computes bN ∈ {0, 1}k from a noisy observation of cs ∈ {0, 1, 2}n.

I Various network decoding approaches in [1]:

I Method 1: Complete-decode and forward.

Relay decodes bA and bB first, then computes bN = bA ⊕ bB

Encoder 
A

Encoder 
B

BPSK

BPSK

AP

Ab

Bb

Ac

Bc

Ax

Bx

Rn

Ry

A

B

APP
detector

Decoder A

Decoder B

Ry

E

ADET, A

ADEC,

E

ADEC,A

ADET,

E

BDET, A

BDEC,

E

BDEC,A

BDET,

A

B

1

A

1

B

Transmitter

Receiver

Ab̂

Bb̂

Nb̂

BP

I Similar to CNC1 in [1], but iterative MUD/decoding brings a large
gain.

I Multiplexing gain loss at high SNR.

[1] S. Zhang and S.-C. Liew, “Channel coding and decoding in a relay system operated with physical-layer network coding,”IEEE Jour.
Select Area. Commun., vol. 27, pp. 788-796, June 2009.



Revisit System Model

Relay Operation

I Method 2: Compute and forward.

Relay decodes superimposed message sequence bs , bA + bB , from the noisy
observation of the superimposed codeword cs , cA + cB .

Then, map bs = bA + bB 7→ bN = bA ⊕ bB .

Ry Nb
Relay

Computation

Link ?

Symbol 

wise 

mapping

sc
sb Nb

Decoder in 

superimposed 

signal domain

Ry sb Nb
Map

I Similar to ACNC in [1], only forwards sufficient information.
I Virtual encoder with ternary inputs and outputs needs to be defined.
I For convolutional code, a super trellis or the product of the

component code trellis will be useful [2].
I For LDPC or RA code, an equivalent Tanner graph (ETG) defined

over the superimposed messages.

[1] S. Zhang and S.-C. Liew, “Channel coding and decoding in a relay system operated with physical-layer network coding,”IEEE Jour.
Select Area. Commun., vol. 27, pp. 788-796, June 2009.
[2] D. To and J. Choi, “Convolutional codes in two-way relay networks with physical-layer network coding,”IEEE Trans. Wireless
Commun., vol. 9, no.9, pp. 2724-2729, Sept. 2010.



Equivalent Tanner Graph

Tanner Graph for single user: Irregular Repeat-Accumulate (IRA) Code

)1(mb )1(mc

)2(mc

)(nmc

)2(mb

)(kmb

B}{Am ,

I Message bits bm(t), t = 1, · · · , k, are repeated η times, for η = 2, 3, · · · , dv .

I Variable node degree distribution is λη : λη ≥ 0,
∑dv
η=2 λη = 1.

I Interleaved sequence is encoded by a series of parity-check codes of degrees ψ,
for ψ = 1, 2, · · · , dc .

I Check node degree distribution is ρψ : ρψ ≥ 0,
∑dc
ψ=1 ρψ = 1.



Equivalent Tanner Graph

ETG for two users

I

N

T

E

R
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V

E

R
Variable 

node
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node
Accumulator

(1)yR

(2)yR

(n)yR

NC
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Equivalent Encoding Process

Computation Process

(2)bN

(k)bN

(1)cs
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(k)bs
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CNf
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CNf
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CNf
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ETG of IRA code at the 
relay

Channel 
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3

VNf

3

VNf

2

VNf

SI 

bits

I Input bs = bA + bB : ternary

I Output cs = cA + cB : ternary

I How to define/exchange/update extrinsic information or log-likelihood ratios?

I For code design, how to model the distribution of the a priori information for
density evolution or EXIT chart functions?



Message Updates

I Intrinsic information from yR

I For jth superimposed coded symbol

p0(j) = P(cs(j) = 0|yR(j))
p1(j) = P(cs(j) = 1|yR(j))
p2(j) = P(cs(j) = 2|yR(j))

I Represented in log-likelihood ratio (LLR) form

LLR(cs(j)|yR(j)) = [Λ(j),Ω(j)]

Primary LLR:

Λ(j) , log
(

p0(j)+p2(j)

p1(j)

)
Secondary LLR:

Ω(j) , log
(

p0(j)

p2(j)

)
I Primary LLR is the LLR of the network coded bits.

Λ(j) , log
(

p0(j)+p2(j)

p1(j)

)
= log

(
P(cN (j)=0|yR (j))
P(cN (j)=1|yR (j))

)



Message Updates
Check Node Update Rule

I Update function f 2
CN for degree ψ = 2.

Λ
(3)
Q = log

(
1+exp

(
Λ

(1)
P

)
exp
(

Λ
(2)
P

)
exp
(

Λ
(1)
P

)
+exp

(
Λ

(2)
P

)
)

Ω
(3)
Q = log

(
1+exp

(
Ω

(1)
P

)
exp
(

Ω
(2)
P

)
+KCN

exp
(

Ω
(2)
P

)
+exp

(
Ω

(1)
P

)
+KCN

)
P: a priori, Q: extrinsic

KCN =

[
1+exp

(
Ω

(1)
P

)][
1+exp

(
Ω

(2)
P

)]
2 exp

(
Λ

(1)
P

)
exp
(

Λ
(2)
P

) .

I For CN degree ψ > 2, successively using f 2
CN to update the extrinsic

3

CNf

2

CNf

2

CNf

)1(
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)2( )3(



Message Updates

Variable Node Updating Rule

I Variable node (VN) updating rule for degree η is

Λ
(l)
Q = (η − 2) log 2 +

∑η
l′=1,l′ 6=l

Λ
(l′)
P + KVN

Ω
(l)
Q =

∑η
l′=1,l′ 6=l

Ω
(l′)
P

where

KVN = log

 1+
η∏

l′=1,l′ 6=l

exp

(
Ω

(l′)
P

)
η∏

l′=1,l′ 6=l

(
1+exp

(
Ω

(l′)
P

))




EXIT Chart

I Extrinsic information transfer (EXIT) chart (S. ten Brink 1999, 2003, 2004).

I To illustrate the iteration decoding (mutual information) trajectory.

I To visualize the convergence of the iterative decoding.

I With curve fitting technique, EXIT chart can be used for code design and
threshold analysis.

Convergence Analysis and Code Design:

1. Introduction 
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EXIT Chart

I
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Inner DecoderOuter Decoder

I Inner decoder: CN-ACC decoder; Outer decoder: VN decoder.

I Exchange both primary and secondary LLRs.

I Recall: Primary LLR Λ linked with NC message bN .

I Tracking only primary LLR: IA = I (bN ; ΛP), IE = I (bN ; ΛQ).
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I Inner decoder:

IE = TInner

(
IA,P(ΩP), ρψ ,Es

)
I Outer decoder:

IE = TOuter (IA,P(ΩP), λη)

where IA = I (bN ; ΛP).
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I EXIT functions contains both primary LLR ΛP and secondary LLR ΩP .

I Primary LLR approaches a consistent Gaussian-like distribution with its mean
equal to half of its variance.

ΛP = (σ2
Λ/2)xN + nΛ

I Secondary LLR Ω(j) , log
(
p0(j)/p2(j)

)
resembles a combination of a

Gaussian-like distribution and an impulse at zero.

I Two models to bound the EXIT functions.

I Model I: Assume perfect secondary LLR information

Ω̇P =


+∞ if bs = 0

0 if bs = 1

−∞ if bs = 2

I Model II: Assume no a priori information on the secondary LLR ΩP ,
i.e., Ω̈P = 0.

TInner

(
IA,P(Ω̇P), ρψ ,Es

)
≥ IE ≥ TInner

(
IA,P(Ω̈P), ρψ ,Es

)
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I Model I always gives higher mutual information than Model II.

I For CN degrees higher than 2, no much performance difference.
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I Capacity approaching codes usually have higher degree CNs.

I Using Model II will be sufficient in our code design.

I Model II is a lower bound and it guarantees the convergence.
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TABLE I
CODE STRUCTURE

Scheme Code Type CN VN
ψ ρ η λ

Physical-layer network coded (PNC)

Regular R = 1/3 1 1 3 1

Bi-regular R = 3/4
1 0.2288 4 1
3 0.5424
5 0.2288

Irregular R = 1/3

1 0.30 2 0.1542
3 0.70 3 0.3353

7 0.1375
8 0.2237

21 0.1493

Irregular R = 3/4

1 0.20 2 0.3221
5 0.80 3 0.3297

6 0.2272
7 0.478

31 0.732

Based on complete decoding

Irregular R = 1/3

1 0.20 3 0.4963
3 0.80 4 0.1144

9 0.829
10 0.2004
29 0.870
30 0.190

Irregular R = 3/4

1 0.10 2 0.2672
3 0.90 3 0.5915

7 0.493
8 0.610

19 0.310
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Summary

I We investigated performance and design of channel coded PNC scheme.

I We proposed a method to compute the pairwise distance spectrum of a CPNC
scheme, and asymptotically tight WEP and BEP bounds were derived.

I The SNR loss of the CPNC scheme relative to the single-user case is about ln 2
(in linear scale) at a high SNR, regardless of the code rate.

I Proposed ETG and general message updating rules.

I Present two models to bound the EXIT functions for convergency analysis and
code designs.

I Design capacity approaching IRA coded PNC schemes.

Further Work

I Information-theorectic issues: Capacity?

I Practical design issues: Synchronization, channel estimation, power/phase
controls?

I Extentions: Higher level modulation (lattice coding), fading channels, multihop
TWRC, MIMO TWRC, multiway, etc ?
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