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Different types of LNC: a recap 
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Every edge transmits a binary sequence me of length L. 

For scalar linear coding:  

 me  GF(2L) 

 me, eOut(v), is determined by a linear 

function over GF(2L), i.e.,  

 Local encoding kernels  GF(2L) 

 Global encoding kernels  GF(2L) 

       // : total no. source binary sequences 

md1 md2 

me 

= kd1,emd1+kd2,emd2 



Different types of LNC: a recap 
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Every edge transmits a binary sequence me of length L. 

For vector linear coding:  

 me  GF(2)L 

 me, eOut(v), is determined by L different 

linear functions over GF(2), i.e.,  

 Local encoding kernels  GF(2)LL 

 Global encoding kernels  (GF(2)LL) 

md1 md2 

me 

= md1Kd1,e+md2Kd2,e 



 Reduce LNC implementation complexity  

There have been continuous attempts to design LNC schemes 

with low implementation complexities. 

 1st straightforward approach: reduce block length L. 

 [1, 2] Vector LNC may yield solutions with lower 

implementation complexities compared with scalar LNC. 

[1] Q. T. Sun et. al., “On vector linear solvability of multicast networks,” 

IEEE Trans. Comm., Dec. 2016. 

[2] T. Etzion, A. Wachter-Zeh, “Vector network coding based on subspace 

codes outperforms scalar linear network coding,” IEEE ISIT, 2016. 
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 Reduce LNC implementation complexity  

There have been continuous attempts to design LNC schemes 

with low implementation complexities. 

 2nd approach: choose appropriate LEKs 

 Ref. [3] studied permutation-based LNC: vector LNC with 

LEKs chosen from permutation matrices. 
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When L, randomly constructed permutation-based LNC 

schemes can asymptotically approach the multicast capacity. 

[3] S. Jaggi, Y. Cassuto, M. Effros, “Low complexity encoding for 

network codes,” IEEE ISIT, 2006 



From permutation to circular-shifts 

 When block  length L is long, even permutation operations on the 

binary sequences may not have computational complexity as low 

as desired for real-world implementation. 

 A natural further reduction is to choose circular-shift operations.  

 lower computational complexity; 

 amenable to implementation through atomic hardware 

operations. 
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Previous study of circular-shift LNC 

 There have been considerations of adopting circular-shifts (& 

bitwise addition) for LNC encoding [4-6]. 

 [4] focuses on (n, 2)-Combination Network, and constructs a 

linear solution involving circular-shift and bit truncation.   

 [5] shows the existence of an (L–1, L)-fractional circular-shift 

(rotation-and-add) linear solution for every multicast network.  

 [6] shows the existence of circular-shift-based regenerating 

codes. 
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[4] M. Xiao, M. Medard, T. Aulin, “A binary coding approach for combination 

networks and general erasure networks,” IEEE ISIT, 2007 

[5] A. Keshavarz-Haddad, M. A. Khojastepour, “Rotate-and-add coding: a novel 

algebraic network coding scheme,” IEEE ITW, 2010 

[6] H. Hou, K. W. Shum, M. Chen, H. Li, “BASIC codes: low-complexity 

regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory, 2016. 



Previous study of circular-shift LNC 

 There have been considerations of adopting circular-shifts (& 

bitwise addition) for LNC encoding [4-6]. 

 [4] focuses on (n, 2)-Combination Network, and constructs a 

linear solution involving circular-shift and bit truncation.   

 [5, 6] from the perspective of cyclic convolutional coding 
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Due to lack of a systematic model 

How to efficiently construct is unknown 

[4] M. Xiao, M. Medard, T. Aulin, “A binary coding approach for combination 

networks and general erasure networks,” IEEE ISIT, 2007 

[5] A. Keshavarz-Haddad, M. A. Khojastepour, “Rotate-and-add coding: a novel 

algebraic network coding scheme,” IEEE ITW, 2010 

[6] H. Hou, K. W. Shum, M. Chen, H. Li, “BASIC codes: low-complexity 

regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory, 2016. 



Highlight of this talk 

 Algebraically formulate circular-shift LNC as a special type of 

vector LNC. 

 Establish an intrinsic connection between scalar LNC and circular-

shift LNC for a general network. 

 Efficiently construct an (L–1, L)-fractional circular-shift linear 

solution for some L on multicast networks.  

 Insufficient to achieve the exact multicast capacity. 
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Algebraic formulation of circular-shift LNC 

 Let CL denote the cyclic permutation matrix of size L (over GF(2)) 

 

 

  

 

 

Lemma. Let  be a primitive Lth root of unity, where L is odd.  
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Algebraic formulation of circular-shift LNC 

 Let CL denote the cyclic permutation matrix of size L (over GF(2)) 

 

 

  

 

 

 For 1    L, define C as 
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// matrices that are summation at most  cyclic-permutation matrices 

C1   C2   …  CL 

0 1 0 0

0 0 1 0

0 0

0 0 1

1 0 0 0

L
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Algebraic formulation of circular-shift LNC 

Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Remarks. 

CL forms a commutative subring of the (non-commutative) ring of 

LL binary matrices.  

 

 For 1    L, define C as 
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// matrices that are summation at most  cyclic-permutation matrices 

C1   C2   …  CL 



Algebraic formulation of circular-shift LNC 

Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Remarks. 

CL forms a commutative subring of the (non-commutative) ring of 

LL binary matrices.  

 Circular-shift LNC conforms to the assumption in the algebraic 

framework of vector LNC in [7]. 

 In the context of [8], a circular-shift linear code of order L can be 

regarded as a linear code over the CL-module GF(2)L.  
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[7] J. B. Ebrahimi, C. Fragouli, “Algebraic algorithm for vecor network coding” 

IEEE Trans. Inf. Theory, 2011. 

[8] J. Connelly, K. Zeger, “Linear network coding over rings part II: vector codes 

and non-commutative alphabets,” IEEE Trans. Inf. Theory, 2017. 



Algebraic formulation of circular-shift LNC 

Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Remarks. 

The rotate-and-add linear code in [5], can be regarded as a circular-

shift linear code of order 1 without 0 as LEK. 
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[5] A. Keshavarz-Haddad, M. A. Khojastepour, “Rotate-and-add coding: a novel 

algebraic network coding scheme,” IEEE ITW, 2010. 



Insufficiency of circular-shift LNC 
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Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Proposition. Both the (n, 2)-Combination Network (n  4) and the 

Swirl Network [9] with parameter   4 are not circular-shift linearly 

solvable of order L for any L ≥ 1. 

[9] Q. T. Sun et. al., “Multicast network coding and field sizes,” IEEE Trans. Inf. 

Theory, 2015 



Insufficiency of circular-shift LNC 
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Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Proposition. Both the (n, 2)-Combination Network (n  4) and the 

Swirl Network [9] with parameter   4 are not circular-shift linearly 

solvable of order L for any L ≥ 1. They do not have permutation-

based linear solutions for any L ≥ 1 either.  

 Circular-shift LNC and permutation-based LNC are insufficient to 

achieve the exact multicast capacity.   

 The best to expect for circular-shift LNC is 1-bit redundancy per 

edge transmission.  It is feasible & can be efficiently constructed! 

Need review the concept of fractional LNC.  



Fractional LNC (on multicast networks) 

In an (L, L)-fractional linear code (over GF(2), L L) 

 Every edge transmits a binary sequence of length L. 

 The LEKs are selected from GF(2)LL.  

 The  binary sequences m1, m2, …, m generated at  

s are of length L. 

 The source needs an LL matrix Gs to generate the  

 binary sequences me of length L for Out(s). 

[me]eOut(s) = [mj]1j  Gs 

// L-dimensional vector linear codes are (L, L)-fractional linear 

codes with Gs = IL. 
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same as 

vector code 

additional 

settings at 

source s 



Fractional LNC (on multicast networks) 

In an (L, L)-fractional linear code (over GF(2), L L) 

 Every edge transmits a binary sequence of length L.  

 The LEKs are selected from GF(2)LL.  

 The  binary sequences m1, m2, …, m generated at  

s are of length L. 

 The source needs an LL matrix Gs to generate the  

 binary sequences me of length L for Out(s). 

[me]eOut(s) = [mj]1j  Gs 

Definition. An (L, L) circular-shift linear code of order  is an (L, 

L)-fractional linear code with LEKs chosen from C . 
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same as 

vector code 

additional 

settings at 

source s 



Construction of (L–1, L) circular-shift linear solutions 

Lemma. For each element k  GF(2L–1), there is a unique polynomial 

over GF(2)             g(x) = aL–1x
L–1 + … + a1x

1 + a0 s.t.  

()   k = g(), and it has at most (L–1)/2 nonzero coefficients.  
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  : a primitive Lth root of unity.   L: a prime with primitive root 2. 

Theorem. Consider an arbitrary scalar linear solution over GF(2L–1) 

with LEKs gd,e()  and decoding matrix Dt() for receiver t.  

Define an (L−1, L)-fractional linear code (over GF(2)): 

 Out(s) transmits [0 m1], …, [0 m]   // Gs = I  [0 IL−1] 

 LEKs Kd,e = gd,e(CL) 

This code is a circular-shift linear solution of order (L–1)/2.  

The decoding matrix for t is Dt(CL)(I  ÎL) 

1

1 1
ˆ/ / L

L

 
  
 

   I
I

 C(L–1)/2 



Construction of (L–1, L) circular-shift linear solutions 

Remarks. 

 The mapping from kd,e  GF(2L–1) to Kd,e  C(L–1)/2  is one-to-one 

correspondence. However, it is not an isomorphism.  

 The theorem holds for general networks as well.  
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Theorem. Consider an arbitrary scalar linear solution over GF(2L–1) 

with LEKs gd,e()  and decoding matrix Dt() for receiver t.  

Define an (L−1, L)-fractional linear code (over GF(2)): 

 Out(s) transmits [0 m1], …, [0 m]   // Gs = I  [0 IL−1] 

 LEKs Kd,e = gd,e(CL) 

This code is a circular-shift linear solution of order (L–1)/2.  

The decoding matrix for t is Dt(CL)(I  ÎL) 

1

1 1
ˆ/ / L

L
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Construction of (L–1, L) circular-shift linear solutions 

Proof Key. 
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Theorem. Consider an arbitrary scalar linear solution over GF(2L–1) 

with LEKs gd,e()  and decoding matrix Dt() for receiver t.  

Define an (L−1, L)-fractional linear code (over GF(2)): 

 Out(s) transmits [0 m1], …, [0 m]   // Gs = I  [0 IL−1] 

 LEKs Kd,e = gd,e(CL) 

This code is a circular-shift linear solution of order (L–1)/2.  

The decoding matrix for t is Dt(CL)(I  ÎL) 

1

1 1
ˆ/ / L

L
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If (gd,e()) is a scalar linear solution, 

then (gd,e( j)) is a scalar linear solution 

 1  j  L. 

 C(L–1)/2 



Example 

Let L = 3,  be a primitive 3rd root of unity. 
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Decoding matrix for the rightmost receiver:   
2 1

1



 
  

Given a scalar linear solution over GF(22) w/ GEKs 

21 22( , )m m
11 12( , )m m

2

2

1 1 1 01/ /   
0 11


  
     
         



Example 

Let L = 3,  be a primitive 3rd root of unity. 
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Decoding matrix for the rightmost receiver:   

Given a scalar linear solution over GF(22) w/ GEKs 

Establish a (2, 3)-fractional linear code w/ GEKs 
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Efficient construction of circular-shift LNC 

 When 2L–1  |T|, as a scalar linear solution over GF(2L–1) can be 

efficiently constructed, an (L–1, L) circular-shift linear solution of 

order (L–1)/2 can also be efficiently constructed.  

 For an arbitrary subset F of GF(2L–1), as long as |F|  |T|, a scalar 

linear solution with LEKs selected from F can be efficiently 

constructed.  

 For any 1    (L–1)/2, as long as  

an (L–1, L) circular-shift linear solution of order  can be obtained 

by efficiently constructing a scalar linear code over GF(2L–1) with 

LEKs selected from  

F = {aL–1
L–1 +… + a1

1 + a0 : at most  nonzero coefficients aj}  
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Complexity comparison 

 Theoretically compare the encoding and decoding complexity 

between circular-shift LNC and scalar LNC. 

 Same as in [6], ignore the complexity of computing mdCL
j  

(can be software implemented by modifying the pointer to the 

starting address in the sequence).  

 L binary operations for md(CL
j+CL

i) 

 For an (L–1, L) circular-shift linear solution of degree  : 

 Encoding: L( |In(v)|–1) binary operations for me = dIn(v)mdKd,e  

 Decoding: 2L(L–1)/2 binary operations  

// decoding matrix is Dt(CL)(I  ÎL) 

25 

[6] H. Hou, K. W. Shum, M. Chen, H. Li, “BASIC codes: low-complexity 

regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory, 2016. 

Each block entry  
in Dt(CL)  C(L–1)/2 



Complexity comparison 

 |T|  L < 2m , m+1, L+1 are primes with primitive root 2. 
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Number of Binary Operations per Source Information Bit 



Complexity comparison 

 |T|  L < 2m , m+1, L+1 are primes with primitive root 2. 
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Number of Binary Operations per Source Information Bit 

 The interesting tradeoff makes circular-shift LNC more flexible to 

be applied in networks with different computational constraints. 

 

 

 

 Reason: necessary block length is log2|T| vs |T|. 



Summary 

 Circular-shift LNC cannot achieve the exact capacity for some 

multicast networks.  

 For prime L with primitive root 2, an intrinsic connection is 

established between scalar LNC over GF(2L) and (L–1, L) 

circular-shift LNC for general networks.  

 For any 1    (L–1)/2, as long as  

an (L–1, L) circular-shift linear solution of order  can be 

efficiently constructed. 

 There is an interesting tradeoff between encoding and decoding 

complexity with different choice of degree . 

 

28 



Concluding Remarks 

 Circular-shift LNC cannot achieve the exact capacity for some 

multicast networks.  

 For prime L with primitive root 2, an intrinsic connection is 

established between scalar LNC over GF(2L) and (L–1, L) 

circular-shift LNC for general networks.  

 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 

149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 

373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 

557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 

787, 797 …  

 It is unknown whether every multicast network is asymptotically 

circular-shift linearly solvable. 
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Concluding Remarks 

Circular-shift LNC (of a degree 1) vs permutation-based LNC 

 L+1 vs L! 

 Random coding for both can yield an asymptotic linear 

solution with high probability; 

 No obvious disadvantage of circular-shift LNC w.r.t. 

successful probability of random construction. 

 Circular-shift LNC has advantage on shorter overheads for 

random coding.  
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Concluding Remarks 

In the deterministic framework, 

 For practical purpose, we only studied (L–1, L) circular-shift 

LNC over GF(2). 

 This work can be theoretically extended to  

 be over GF(p); 

 construct an (L, L) circular-shift linear solution.  

// once limL L/L = 1, we can prove “every multicast network 

is asymptotically circular-shift linearly solvable”. 
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 Q. T. Sun, et. al., “Circular-shift linear network coding,” ISIT’17.  

 H. Tang, et. al, “A random coding analysis of circular-shift linear network 

coding,” Poster session, ISIT’17 & Croucher IT summer school’17. 


