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Different types of LNC: a recap

Every edge transmits a binary sequence m, of length L.

mdl\ /mdz

M,

= Ky eMg1+Kgo Mg,

For scalar linear coding:

m, € GF(2})

m,, eeOut(v), Is determined by a linear
function over GF(24), i.e.,

Local encoding kernels € GF(24)

Global encoding kernels € GF(2L)®

Il ®: total no. source binary sequences



Different types of LNC: a recap

Every edge transmits a binary sequence m, of length L.

\ / For vector linear coding:
m m
d1 a2 B M, € GF(Z)L

m M, ecOut(v), Is determined by L different

linear functions over GF(2), i.e.,

M,

m Local encoding kernels e GF(2)-t
m Global encoding kernels e (GF(2)-L)e

=My, Ky o tMp Ko



Reduce LNC implementation complexity

There have been continuous attempts to design LNC schemes
with low implementation complexities.

m 1St straightforward approach: reduce block length L.

e [1, 2] Vector LNC may yield solutions with lower
Implementation complexities compared with scalar LNC.

[1] Q. T. Sun et. al., “On vector linear solvability of multicast networks,”
IEEE Trans. Comm., Dec. 2016.

[2] T. Etzion, A. Wachter-Zeh, “Vector network coding based on subspace
codes outperforms scalar linear network coding,” IEEE ISIT, 2016.



Reduce LNC implementation complexity

There have been continuous attempts to design LNC schemes
with low implementation complexities.

m 2"d approach: choose appropriate LEKS

o Ref. [3] studied permutation-based LNC: vector LNC with
LEKSs chosen from permutation matrices.

[3] S. Jaggi, Y. Cassuto, M. Effros, “Low complexity encoding for
network codes,” IEEE ISIT, 2006

When L—o0, randomly constructed permutation-based LNC
schemes can asymptotically approach the multicast capacity.



From permutation to circular-shifts

m When block length L is long, even permutation operations on the

binary sequences may not have computational complexity as low
as desired for real-world implementation.

m A natural further reduction is to choose circular-shift operations.
o lower computational complexity;

o amenable to implementation through atomic hardware
operations.



Previous study of circular-shift LNC

m There have been considerations of adopting circular-shifts (&
bitwise addition) for LNC encoding [4-6].

o [4] focuses on (n, 2)-Combination Network, and constructs a
linear solution involving circular-shift and bit truncation.

e [5] shows the existence of an (L-1, L)-fractional circular-shift
(rotation-and-add) linear solution for every multicast network.

o [6] shows the existence of circular-shift-based regenerating
codes.

[4] M. Xiao, M. Medard, T. Aulin, “A binary coding approach for combination
networks and general erasure networks,” IEEE ISIT, 2007

[5] A. Keshavarz-Haddad, M. A. Khojastepour, “Rotate-and-add coding: a novel
algebraic network coding scheme,” IEEE ITW, 2010

[6] H. Hou, K. W. Shum, M. Chen, H. Li, “BASIC codes: low-complexity
regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory, 2016.



Previous study of circular-shift LNC

m There have been considerations of adopting circular-shifts (&
bitwise addition) for LNC encoding [4-6].

o [4] focuses on (n, 2)-Combination Network, and constructs a
linear solution involving circular-shift and bit truncation.

e [5, 6] from the perspective of cyclic convolutional coding

Due to lack of a systematic model
How to efficiently construct is unknown

[4] M. Xiao, M. Medard, T. Aulin, “A binary coding approach for combination
networks and general erasure networks,” IEEE ISIT, 2007

[5] A. Keshavarz-Haddad, M. A. Khojastepour, “Rotate-and-add coding: a novel
algebraic network coding scheme,” IEEE ITW, 2010

[6] H. Hou, K. W. Shum, M. Chen, H. Li, “BASIC codes: low-complexity

regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory, 2016.
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Highlight of this talk

Algebraically formulate circular-shift LNC as a special type of
vector LNC.

Establish an intrinsic connection between scalar LNC and circular-
shift LNC for a general network.

Efficiently construct an (L—1, L)-fractional circular-shift linear
solution for some L on multicast networks.

Insufficient to achieve the exact multicast capacity.



Algebraic formulation of circular-shift LNC

m Let C, denote the cyclic permutation matrix of size L (over GF(2))

0 1 0 ... 0
00 1 - 0 (thrnL_l,...,ﬁH).(:i
C. =0 =0 :(mj’“"ml’mL’ ""mi+1)
o -. . 0 1
10 - 0 O

Lemma. Let « be a primitive L™ root of unity, where L is odd.
Cl=V -A .V Vvj=0

1 1 1 1 0 0 7
1 o . a1 0 a
VL=1. : : A = . :
: S : |
1 of! | L-DE-) 0 . 0 okt
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Algebraic formulation of circular-shift LNC

m Let C, denote the cyclic permutation matrix of size L (over GF(2))

0 1 0 .- 0
0 0 1 0 (”h’nhfv .“,ﬂh)°c%
c =lo . - 0 :(mj,,,.,ml,mL, ---1mj+1)
0 - 0 1
1 0 0 0

m Forl<o<L,define Csas

L—1 L—-1
Cs = {Z%Ci ca; € {0.11) a; < ei} C,cCc..cq

j=0 j=0
/[ matrices that are summation at most o cyclic-permutation matrices
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Algebraic formulation of circular-shift LNC
Definition. An L-dimensional circular-shift linear code of order o'is
an L-dimensional vector linear code with LEKSs selected from Cj.

Remarks.
C, forms a commutative subring of the (non-commutative) ring of

LxL binary matrices.

m Forl<o<L,define Csas

L—1 L—-1
Cs = {Zajci ca; € {0.11) a; < d} C,cCc..cq

j=0 j=0
/[ matrices that are summation at most o cyclic-permutation matrices

12



Algebraic formulation of circular-shift LNC

Definition. An L-dimensional circular-shift linear code of order J'1s
an L-dimensional vector linear code with LEKSs selected from C.

Remarks.
C, forms a commutative subring of the (non-commutative) ring of

LxL binary matrices.

m Circular-shift LNC conforms to the assumption in the algebraic
framework of vector LNC in [7].

m In the context of [8], a circular-shift linear code of order L can be
regarded as a linear code over the C,-module GF(2)".

[7] J. B. Ebrahimi, C. Fragouli, “Algebraic algorithm for vecor network coding”
IEEE Trans. Inf. Theory, 2011.

[8] J. Connelly, K. Zeger, “Linear network coding over rings part II: vector codes
and non-commutative alphabets,” IEEE Trans. Inf. Theory, 2017.
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Algebraic formulation of circular-shift LNC

Definition. An L-dimensional circular-shift linear code of order J'1s
an L-dimensional vector linear code with LEKSs selected from Cj.

Remarks.
The rotate-and-add linear code in [5], can be regarded as a circular-

shift linear code of order 1 without O as LEK.

[5] A. Keshavarz-Haddad, M. A. Khojastepour, “Rotate-and-add coding: a novel
algebraic network coding scheme,” IEEE ITW, 2010.
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Insufficiency of circular-shift LNC

Definition. An L-dimensional circular-shift linear code of order J'1s
an L-dimensional vector linear code with LEKSs selected from Cj.

Proposition. Both the (n, 2)-Combination Network (n > 4) and the
Swirl Network [9] with parameter @ > 4 are not circular-shift linearly
solvable of order L for any L > 1.

[9] Q. T. Sun et. al., “Multicast network coding and field sizes,” IEEE Trans. Inf.
Theory, 2015 .



Insufficiency of circular-shift LNC

Definition. An L-dimensional circular-shift linear code of order J'1s
an L-dimensional vector linear code with LEKSs selected from Cj.

Proposition. Both the (n, 2)-Combination Network (n > 4) and the
Swirl Network [9] with parameter @ > 4 are not circular-shift linearly
solvable of order L for any L > 1. They do not have permutation-
based linear solutions for any L > 1 either.

m Circular-shift LNC and permutation-based LNC are insufficient to
achieve the exact multicast capacity.

m The best to expect for circular-shift LNC iIs 1-bit redundancy per
edge transmission. It is feasible & can be efficiently constructed!

Need review the concept of fractional LNC.

16



Fractional LNC (on multicast networks)

Inan (L', L)-fractional linear code (over GF(2), L' <L)
m Every edge transmits a binary sequence of length L. } same as
m The LEKS are selected from GF(2)LL. vector code

m The o binary sequences m;,", m,’, ..., m_’ generated at -
s are of length L.

m The source needs an wlL'xwl matrix G to generate the | additional
 binary sequences m, of length L for Out(s). Settings at

source s
[me]eeOut(s) = [mj’]lsta) ) Gs

/[ L-dimensional vector linear codes are (L, L)-fractional linear
codeswith G, =1 .



Fractional LNC (on multicast networks)

Inan (L', L)-fractional linear code (over GF(2), L' <L)
m Every edge transmits a binary sequence of length L. } same as
m The LEKS are selected from GF(2)LL. vector code

m The o binary sequences m;,", m,’, ..., m_’ generated at -
s are of length L.

m The source needs an wlL'xwl matrix G to generate the | additional
 binary sequences m, of length L for Out(s). Settings at

source s
[me]eeOut(s) = [mj’]lsta) ) Gs

Definition. An (L', L) circular-shift linear code of order ¢'is an (L',
L)-fractional linear code with LEKSs chosen from Cj.

18



Construction of (L—1, L) circular-shift linear solutions
m L: a prime with primitive root 2. = «: a primitive L™ root of unity.

Lemma. For each element k € GF(2-1), there is a unique polynomial
over GF(2) g(x)=a_x-t+ ... +axt+a,s.t.
(*) k=g(a), and it has at most (L—1)/2 nonzero coefficients.

Theorem. Consider an arbitrary scalar linear solution over GF(2-1)
with LEKSs g4 () and decoding matrix D(«) for receiver t.

Define an (L—1, L)-fractional linear code (over GF(2)):

m Out(s) transmits [Om,'], ..., [O0m ] //G,=1,&[01,_,]
m LEKS Kje = 04e(Cp) € Gy

This code is a circular-shift linear solution of order (L-1)/2.
The decoding matrix for tis D(C)-(1,® 1) // | = F"'l}

I L
L1



Construction of (L—1, L) circular-shift linear solutions

Remarks.
m The mapping fromk,, € GF(2-*) to K, € Cy 4y, is one-to-one
correspondence. However, it Is not an iIsomorphism.

m The theorem holds for general networks as well.
Theorem. Consider an arbitrary scalar linear solution over GF(2-1)
with LEKSs g4 () and decoding matrix D(«) for receiver t.

Define an (L—1, L)-fractional linear code (over GF(2)):

m Out(s) transmits [Om,'], ..., [O0m ] //G,=1,&[01,_,]

m LEKS Ky, =04.(C € Cayp

This code is a circular-shift linear solution of order (L-1)/2.

The decoding matrix for tis D(C)-(1, ® T) // | - F“ﬂ

I L
L-1



Construction of (L—1, L) circular-shift linear solutions

Proof Key. C. =V, -Al-V' Vvj=0

10 ... 0 7 _ . :
| _ If (9q4.(0)) Is a scalar linear solution,
A, = [_} R ' then (g4.())) is a scalar linear solution
P :
0 ... 0 oF! visj<L.

Theorem. Consider an arbitrary scalar linear solution over GF(2-1)
with LEKSs g4 () and decoding matrix D(«) for receiver t.

Define an (L—1, L)-fractional linear code (over GF(2)):

m Out(s) transmits [Om,'], ..., [O0m ] //G,=1,&[01,_,]
m LEKS Kye =946(Cp) € Caye

This code is a circular-shift linear solution of order (L-1)/2.
The decoding matrix for tis D(C)-(1,® 1) // | = F”'l}

I L
L-1



Example

Let L =3, « be a primitive 3" root of unity.

Given a scalar linear solution over GF(22) w/ GEKs (0

2
Decoding matrix for the rightmost receiver: {0& ﬂ

//[11

2
a o

§

(mll’ m12)
(m21’ m22)
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S (O’ mll’ le)
Example (0,m,,,m,,)

Let L =3, « be a primitive 3" root of unity.

Given a scalar linear solution over GF(22) w/ GEKSs (O) (1) (1) ( 1 j

2
Decoding matrix for the rightmost receiver: {Oé( ﬂ

Establish a (2, 3)-fractional linear code w/ GEKSs O} (1) (1 |32
1,) 10/ \C;) \C:

For the rightmost receiver: (0,m,,,m,,,0,m,,,m,, ) (|:33 =(m,,,m;,,m, +m,,),

|
(O’mll’m12’0’ m21’m22) C3§ :(m21’m11+m22’m12)

C? | <
(m22! mlli m12 + m211 m211 mll + m221 le)I:Cz Iz:l(lz ® |3) — (mlli m121m211 m22)
3

2



Efficient construction of circular-shift LNC

s When 21 > |T|, as a scalar linear solution over GF(2-1) can be
efficiently constructed, an (L1, L) circular-shift linear solution of
order (L—1)/2 can also be efficiently constructed.

m For an arbitrary subset F of GF(2-1), as long as |F| > [T|, a scalar

linear solution with LEKSs selected from F can be efficiently
constructed.

L L L
m Forany 1< 6<(L-1)/2, as long as (0) + (1) +..F (5) > |T]
an (L—1, L) circular-shift linear solution of order o can be obtained

by efficiently constructing a scalar linear code over GF(2-1) with
LEKSs selected from

F={a_ja-*+...+aa" +a,:at most 5 nonzero coefficients a;}
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Complexity comparison

m Theoretically compare the encoding and decoding complexity
between circular-shift LNC and scalar LNC.

m Same as in [6], ignore the complexity of computing m,C,
(can be software implemented by modifying the pointer to the
starting address in the sequence).

e L binary operations for m,(CJ+C, /)
m Foran (L-1, L) circular-shift linear solution of degree o'
e Encoding: L(o|In(v)|-1) binary operations for m, = Zde,n(\,)ded,e
e Decoding: m?L(L-1)/2 binary operations  Each block entry
/l decoding matrix is D,(C,)-(1,® T) In D(C,) € Gy 1ye

[6] H. Hou, K. W. Shum, M. Chen, H. Li, “BASIC codes: low-complexity
regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory, 2016.



Complexity comparison

m [T|<L<2™, m+1, L+1 are primes with primitive root 2.

Number of Binary Operations per Source Information Bit

Encoding
— e —

Decodmfc‘-r

Scalar over GF(2™)

> Q'T}TTN /fw(Qm 1)~

(m, m 4+ 1) circular-shift
y T
of degree =

(L, L + 1) circular-shift
of degree 1

n—1

%w(L+1) <

2

1 w2m




Complexity comparison

m [T|<L<2™, m+1, L+1 are primes with primitive root 2.

Number of Binary Operations per Source Information Bit

Encoding Decoding
Scalar over GF(2™) > 2nm >w(2m+1)
(m, m 4+ 1) circular-shift 1
of degree = | sw(m +1)
(L, L + 1) circular-shift || 1 1 am
of degree 1 \_ ! gl +1) < 5w2

\/ v

= Reason: necessary block length is | log,|T| [ vs [T|.

m The interesting tradeoff makes circular-shift LNC more flexible to
be applied in networks with different computational constraints.

27



Summary

Circular-shift LNC cannot achieve the exact capacity for some
multicast networks.

For prime L with primitive root 2, an intrinsic connection is
established between scalar LNC over GF(2b) and (L-1, L)
circular-shift LNC for general networks.

L L L
Forany 1 < o< (L-1)/2, as long as <0> + (1) +...+ <5> > |T|
an (L—1, L) circular-shift linear solution of order o can be
efficiently constructed.

There is an interesting tradeoff between encoding and decoding
complexity with different choice of degree o.



Concluding Remarks

Circular-shift LNC cannot achieve the exact capacity for some
multicast networks.

For prime L with primitive root 2, an intrinsic connection is
established between scalar LNC over GF(2b) and (L-1, L)
circular-shift LNC for general networks.

3,9, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139,
149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349,
373,379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547,
557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773,
787,797 ...

It is unknown whether every multicast network is asymptotically
circular-shift linearly solvable.



Concluding Remarks

Circular-shift LNC (of a degree 1) vs permutation-based LNC

L+1 vs LI

Random coding for both can yield an asymptotic linear
solution with high probability;

No obvious disadvantage of circular-shift LNC w.r.t.
successful probability of random construction.

Circular-shift LNC has advantage on shorter overheads for
random coding.



Concluding Remarks

In the deterministic framework,

m For practical purpose, we only studied (L—1, L) circular-shift
LNC over GF(2).

m This work can be theoretically extended to

o be over GF(p);
e construct an (L', L) circular-shift linear solution.

/I once lim_, L'/L =1, we can prove “every multicast network
Is asymptotically circular-shift linearly solvable”.

m Q. T. Sun, et. al., “Circular-shift linear network coding,” ISIT’17.
m H. Tang, et. al, “A random coding analysis of circular-shift linear network
coding,” Poster session, ISIT 17 & Croucher IT summer school’17.
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