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Different types of LNC: a recap 
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Every edge transmits a binary sequence me of length L. 

For scalar linear coding:  

 me  GF(2L) 

 me, eOut(v), is determined by a linear 

function over GF(2L), i.e.,  

 Local encoding kernels  GF(2L) 

 Global encoding kernels  GF(2L) 

       // : total no. source binary sequences 

md1 md2 

me 

= kd1,emd1+kd2,emd2 



Different types of LNC: a recap 
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Every edge transmits a binary sequence me of length L. 

For vector linear coding:  

 me  GF(2)L 

 me, eOut(v), is determined by L different 

linear functions over GF(2), i.e.,  

 Local encoding kernels  GF(2)LL 

 Global encoding kernels  (GF(2)LL) 

md1 md2 

me 

= md1Kd1,e+md2Kd2,e 



 Reduce LNC implementation complexity  

There have been continuous attempts to design LNC schemes 

with low implementation complexities. 

 1st straightforward approach: reduce block length L. 

 [1, 2] Vector LNC may yield solutions with lower 

implementation complexities compared with scalar LNC. 

[1] Q. T. Sun et. al., “On vector linear solvability of multicast networks,” 

IEEE Trans. Comm., Dec. 2016. 

[2] T. Etzion, A. Wachter-Zeh, “Vector network coding based on subspace 

codes outperforms scalar linear network coding,” IEEE ISIT, 2016. 
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 Reduce LNC implementation complexity  

There have been continuous attempts to design LNC schemes 

with low implementation complexities. 

 2nd approach: choose appropriate LEKs 

 Ref. [3] studied permutation-based LNC: vector LNC with 

LEKs chosen from permutation matrices. 
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When L, randomly constructed permutation-based LNC 

schemes can asymptotically approach the multicast capacity. 

[3] S. Jaggi, Y. Cassuto, M. Effros, “Low complexity encoding for 

network codes,” IEEE ISIT, 2006 



From permutation to circular-shifts 

 When block  length L is long, even permutation operations on the 

binary sequences may not have computational complexity as low 

as desired for real-world implementation. 

 A natural further reduction is to choose circular-shift operations.  

 lower computational complexity; 

 amenable to implementation through atomic hardware 

operations. 
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Previous study of circular-shift LNC 

 There have been considerations of adopting circular-shifts (& 

bitwise addition) for LNC encoding [4-6]. 

 [4] focuses on (n, 2)-Combination Network, and constructs a 

linear solution involving circular-shift and bit truncation.   

 [5] shows the existence of an (L–1, L)-fractional circular-shift 

(rotation-and-add) linear solution for every multicast network.  

 [6] shows the existence of circular-shift-based regenerating 

codes. 
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[4] M. Xiao, M. Medard, T. Aulin, “A binary coding approach for combination 

networks and general erasure networks,” IEEE ISIT, 2007 

[5] A. Keshavarz-Haddad, M. A. Khojastepour, “Rotate-and-add coding: a novel 

algebraic network coding scheme,” IEEE ITW, 2010 

[6] H. Hou, K. W. Shum, M. Chen, H. Li, “BASIC codes: low-complexity 

regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory, 2016. 



Previous study of circular-shift LNC 

 There have been considerations of adopting circular-shifts (& 

bitwise addition) for LNC encoding [4-6]. 

 [4] focuses on (n, 2)-Combination Network, and constructs a 

linear solution involving circular-shift and bit truncation.   

 [5, 6] from the perspective of cyclic convolutional coding 
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Due to lack of a systematic model 

How to efficiently construct is unknown 

[4] M. Xiao, M. Medard, T. Aulin, “A binary coding approach for combination 

networks and general erasure networks,” IEEE ISIT, 2007 

[5] A. Keshavarz-Haddad, M. A. Khojastepour, “Rotate-and-add coding: a novel 

algebraic network coding scheme,” IEEE ITW, 2010 

[6] H. Hou, K. W. Shum, M. Chen, H. Li, “BASIC codes: low-complexity 

regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory, 2016. 



Highlight of this talk 

 Algebraically formulate circular-shift LNC as a special type of 

vector LNC. 

 Establish an intrinsic connection between scalar LNC and circular-

shift LNC for a general network. 

 Efficiently construct an (L–1, L)-fractional circular-shift linear 

solution for some L on multicast networks.  

 Insufficient to achieve the exact multicast capacity. 
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Algebraic formulation of circular-shift LNC 

 Let CL denote the cyclic permutation matrix of size L (over GF(2)) 

 

 

  

 

 

Lemma. Let  be a primitive Lth root of unity, where L is odd.  

10 

0 1 0 0

0 0 1 0

0 0

0 0 1

1 0 0 0

L

 
 
 

  
 
 
  

C
 

 
–1 1

1 1

, ,  ,

, ,  

  

, , ,

j

L L

j L

L

j

m m m

m m m m 









C

1     0L

j

L

j

L j

    C V V



Algebraic formulation of circular-shift LNC 

 Let CL denote the cyclic permutation matrix of size L (over GF(2)) 

 

 

  

 

 

 For 1    L, define C as 
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// matrices that are summation at most  cyclic-permutation matrices 

C1   C2   …  CL 
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Algebraic formulation of circular-shift LNC 

Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Remarks. 

CL forms a commutative subring of the (non-commutative) ring of 

LL binary matrices.  

 

 For 1    L, define C as 
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// matrices that are summation at most  cyclic-permutation matrices 

C1   C2   …  CL 



Algebraic formulation of circular-shift LNC 

Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Remarks. 

CL forms a commutative subring of the (non-commutative) ring of 

LL binary matrices.  

 Circular-shift LNC conforms to the assumption in the algebraic 

framework of vector LNC in [7]. 

 In the context of [8], a circular-shift linear code of order L can be 

regarded as a linear code over the CL-module GF(2)L.  
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[7] J. B. Ebrahimi, C. Fragouli, “Algebraic algorithm for vecor network coding” 

IEEE Trans. Inf. Theory, 2011. 

[8] J. Connelly, K. Zeger, “Linear network coding over rings part II: vector codes 

and non-commutative alphabets,” IEEE Trans. Inf. Theory, 2017. 



Algebraic formulation of circular-shift LNC 

Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Remarks. 

The rotate-and-add linear code in [5], can be regarded as a circular-

shift linear code of order 1 without 0 as LEK. 
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[5] A. Keshavarz-Haddad, M. A. Khojastepour, “Rotate-and-add coding: a novel 

algebraic network coding scheme,” IEEE ITW, 2010. 



Insufficiency of circular-shift LNC 
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Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Proposition. Both the (n, 2)-Combination Network (n  4) and the 

Swirl Network [9] with parameter   4 are not circular-shift linearly 

solvable of order L for any L ≥ 1. 

[9] Q. T. Sun et. al., “Multicast network coding and field sizes,” IEEE Trans. Inf. 

Theory, 2015 



Insufficiency of circular-shift LNC 

16 

Definition. An L-dimensional circular-shift linear code of order  is 

an L-dimensional vector linear code with LEKs selected from C . 

Proposition. Both the (n, 2)-Combination Network (n  4) and the 

Swirl Network [9] with parameter   4 are not circular-shift linearly 

solvable of order L for any L ≥ 1. They do not have permutation-

based linear solutions for any L ≥ 1 either.  

 Circular-shift LNC and permutation-based LNC are insufficient to 

achieve the exact multicast capacity.   

 The best to expect for circular-shift LNC is 1-bit redundancy per 

edge transmission.  It is feasible & can be efficiently constructed! 

Need review the concept of fractional LNC.  



Fractional LNC (on multicast networks) 

In an (L, L)-fractional linear code (over GF(2), L L) 

 Every edge transmits a binary sequence of length L. 

 The LEKs are selected from GF(2)LL.  

 The  binary sequences m1, m2, …, m generated at  

s are of length L. 

 The source needs an LL matrix Gs to generate the  

 binary sequences me of length L for Out(s). 

[me]eOut(s) = [mj]1j  Gs 

// L-dimensional vector linear codes are (L, L)-fractional linear 

codes with Gs = IL. 
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same as 

vector code 

additional 

settings at 

source s 



Fractional LNC (on multicast networks) 

In an (L, L)-fractional linear code (over GF(2), L L) 

 Every edge transmits a binary sequence of length L.  

 The LEKs are selected from GF(2)LL.  

 The  binary sequences m1, m2, …, m generated at  

s are of length L. 

 The source needs an LL matrix Gs to generate the  

 binary sequences me of length L for Out(s). 

[me]eOut(s) = [mj]1j  Gs 

Definition. An (L, L) circular-shift linear code of order  is an (L, 

L)-fractional linear code with LEKs chosen from C . 
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same as 

vector code 

additional 

settings at 

source s 



Construction of (L–1, L) circular-shift linear solutions 

Lemma. For each element k  GF(2L–1), there is a unique polynomial 

over GF(2)             g(x) = aL–1x
L–1 + … + a1x

1 + a0 s.t.  

()   k = g(), and it has at most (L–1)/2 nonzero coefficients.  
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  : a primitive Lth root of unity.   L: a prime with primitive root 2. 

Theorem. Consider an arbitrary scalar linear solution over GF(2L–1) 

with LEKs gd,e()  and decoding matrix Dt() for receiver t.  

Define an (L−1, L)-fractional linear code (over GF(2)): 

 Out(s) transmits [0 m1], …, [0 m]   // Gs = I  [0 IL−1] 

 LEKs Kd,e = gd,e(CL) 

This code is a circular-shift linear solution of order (L–1)/2.  

The decoding matrix for t is Dt(CL)(I  ÎL) 

1

1 1
ˆ/ / L

L

 
  
 

   I
I

 C(L–1)/2 



Construction of (L–1, L) circular-shift linear solutions 

Remarks. 

 The mapping from kd,e  GF(2L–1) to Kd,e  C(L–1)/2  is one-to-one 

correspondence. However, it is not an isomorphism.  

 The theorem holds for general networks as well.  
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Theorem. Consider an arbitrary scalar linear solution over GF(2L–1) 

with LEKs gd,e()  and decoding matrix Dt() for receiver t.  

Define an (L−1, L)-fractional linear code (over GF(2)): 

 Out(s) transmits [0 m1], …, [0 m]   // Gs = I  [0 IL−1] 

 LEKs Kd,e = gd,e(CL) 

This code is a circular-shift linear solution of order (L–1)/2.  

The decoding matrix for t is Dt(CL)(I  ÎL) 

1

1 1
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Construction of (L–1, L) circular-shift linear solutions 

Proof Key. 
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Theorem. Consider an arbitrary scalar linear solution over GF(2L–1) 

with LEKs gd,e()  and decoding matrix Dt() for receiver t.  

Define an (L−1, L)-fractional linear code (over GF(2)): 

 Out(s) transmits [0 m1], …, [0 m]   // Gs = I  [0 IL−1] 

 LEKs Kd,e = gd,e(CL) 

This code is a circular-shift linear solution of order (L–1)/2.  

The decoding matrix for t is Dt(CL)(I  ÎL) 

1

1 1
ˆ/ / L

L

 
  
 

   I
I

1     0L

j

L

j

L j

    C V V

If (gd,e()) is a scalar linear solution, 

then (gd,e( j)) is a scalar linear solution 

 1  j  L. 

 C(L–1)/2 



Example 

Let L = 3,  be a primitive 3rd root of unity. 
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Decoding matrix for the rightmost receiver:   
2 1

1


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Given a scalar linear solution over GF(22) w/ GEKs 
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Example 

Let L = 3,  be a primitive 3rd root of unity. 
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Decoding matrix for the rightmost receiver:   

Given a scalar linear solution over GF(22) w/ GEKs 

Establish a (2, 3)-fractional linear code w/ GEKs 
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Efficient construction of circular-shift LNC 

 When 2L–1  |T|, as a scalar linear solution over GF(2L–1) can be 

efficiently constructed, an (L–1, L) circular-shift linear solution of 

order (L–1)/2 can also be efficiently constructed.  

 For an arbitrary subset F of GF(2L–1), as long as |F|  |T|, a scalar 

linear solution with LEKs selected from F can be efficiently 

constructed.  

 For any 1    (L–1)/2, as long as  

an (L–1, L) circular-shift linear solution of order  can be obtained 

by efficiently constructing a scalar linear code over GF(2L–1) with 

LEKs selected from  

F = {aL–1
L–1 +… + a1

1 + a0 : at most  nonzero coefficients aj}  
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Complexity comparison 

 Theoretically compare the encoding and decoding complexity 

between circular-shift LNC and scalar LNC. 

 Same as in [6], ignore the complexity of computing mdCL
j  

(can be software implemented by modifying the pointer to the 

starting address in the sequence).  

 L binary operations for md(CL
j+CL

i) 

 For an (L–1, L) circular-shift linear solution of degree  : 

 Encoding: L( |In(v)|–1) binary operations for me = dIn(v)mdKd,e  

 Decoding: 2L(L–1)/2 binary operations  

// decoding matrix is Dt(CL)(I  ÎL) 
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[6] H. Hou, K. W. Shum, M. Chen, H. Li, “BASIC codes: low-complexity 

regenerating codes for distributed storage systems,” IEEE Trans. Inf. Theory, 2016. 

Each block entry  
in Dt(CL)  C(L–1)/2 



Complexity comparison 

 |T|  L < 2m , m+1, L+1 are primes with primitive root 2. 
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Number of Binary Operations per Source Information Bit 



Complexity comparison 

 |T|  L < 2m , m+1, L+1 are primes with primitive root 2. 
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Number of Binary Operations per Source Information Bit 

 The interesting tradeoff makes circular-shift LNC more flexible to 

be applied in networks with different computational constraints. 

 

 

 

 Reason: necessary block length is log2|T| vs |T|. 



Summary 

 Circular-shift LNC cannot achieve the exact capacity for some 

multicast networks.  

 For prime L with primitive root 2, an intrinsic connection is 

established between scalar LNC over GF(2L) and (L–1, L) 

circular-shift LNC for general networks.  

 For any 1    (L–1)/2, as long as  

an (L–1, L) circular-shift linear solution of order  can be 

efficiently constructed. 

 There is an interesting tradeoff between encoding and decoding 

complexity with different choice of degree . 
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Concluding Remarks 

 Circular-shift LNC cannot achieve the exact capacity for some 

multicast networks.  

 For prime L with primitive root 2, an intrinsic connection is 

established between scalar LNC over GF(2L) and (L–1, L) 

circular-shift LNC for general networks.  

 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 

149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 

373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 

557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 

787, 797 …  

 It is unknown whether every multicast network is asymptotically 

circular-shift linearly solvable. 
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Concluding Remarks 

Circular-shift LNC (of a degree 1) vs permutation-based LNC 

 L+1 vs L! 

 Random coding for both can yield an asymptotic linear 

solution with high probability; 

 No obvious disadvantage of circular-shift LNC w.r.t. 

successful probability of random construction. 

 Circular-shift LNC has advantage on shorter overheads for 

random coding.  
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Concluding Remarks 

In the deterministic framework, 

 For practical purpose, we only studied (L–1, L) circular-shift 

LNC over GF(2). 

 This work can be theoretically extended to  

 be over GF(p); 

 construct an (L, L) circular-shift linear solution.  

// once limL L/L = 1, we can prove “every multicast network 

is asymptotically circular-shift linearly solvable”. 
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 Q. T. Sun, et. al., “Circular-shift linear network coding,” ISIT’17.  

 H. Tang, et. al, “A random coding analysis of circular-shift linear network 

coding,” Poster session, ISIT’17 & Croucher IT summer school’17. 


