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1. Introduction

Cyclic LDPC codes form an important class of structured
LDPC codes.

I As cyclic codes, they can be simply encoded with shift register.

I As LDPC codes, they provide good performance under
iterative decoding with a reasonable decoding complexity.

I They have relatively large minimum distance.

I Some codes can be transformed into quasi-cyclic (QC) codes
through row and column permutations on the parity-check
matrix.
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1. Introduction

Some Known Constructions

I Construction based on finite geometries (Lin et al.)

I Construction based on idempotents (Shibuya et al., Tomlinson
et al.)

I Construction based on matrix decomposition (Lin et al.)
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1. Introduction

Code Features

I The defining parity-check matrix is a circulant matrix or a
column of circulant matrices.

I The party-check matrix is highly redundant.

I The column weight γ is relatively large.

I The corresponding Tanner graph is free of length-4 cycles.

I The minimum distance of the code is at least γ + 1. (Massey
bound)



On the Construction and Decoding of Cyclic LDPC Codes

2. Construction based on Idempotents and Modular Golomb Rulers

Idempotent

Definition: Let Rn be the ring of residue classes of Fq[x ] modulo
xn − 1. Then a polynomial e(x) of Rn is called an idempotent if
e2(x) = e(x).

Properties:

I For a cyclic code C , there exists a unique idempotent e(x)
that generates C , called the generating idempotent of C .

I Let e⊥(x) be the generating idempotent of C⊥, the dual code
of C , then e⊥(x) = 1− xne(x−1).
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2. Construction based on Idempotents and Modular Golomb Rulers

Modular Golomb Ruler

Definition: A set of integers {ai : 0 ≤ ai < n, 1 ≤ i ≤ γ} is called
a Golomb ruler modulo n with γ marks, if the differences (ai − aj)
mod n are distinct for all ordered pairs (i , j) with i 6= j .
An example:
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Some of these codes are further proved equivalent.
The paper is organized as follows. Section II gives some ba-

sic knowledge about idempotents and modular Golomb rulers.
In Section III, we propose our construction of nonbinary cyclic
LDPC codes. In Section IV, a search algorithm is presented
and the resulting codes are provided. In Section V, we discuss
the issue of code equivalence. Simulation results are given in
Section VI. Finally, we conclude the paper in Section VII.

II. PRELIMINARIES

A. Cyclic Codes and Idempotents

Let GF(q) denote a finite field with q elements, where q =
2m for some positive integer m. Let Rn = GF(q)[x]/(xn−1)
be the ring that consists of the residue classes of GF(q)[x]
modulo xn − 1. A cyclic code C of length n over GF(q) is
an ideal of Rn. The generator polynomial g(x) is defined to
be the unique monic polynomial of minimal degree in C. The
dimension of C is given by n− deg(g(x)). The dual code of
C is denoted by C⊥, which is also a cyclic code.

Let s be an integer such that 0 ≤ s < n. The 2-cyclotomic
coset of s modulo n is defined to be the set

Cs = {2ismodn : i = 0, 1, · · · ,ms − 1}, (1)

where ms is the smallest positive integer such that s2ms ≡
s (modn). If n is clear from the context, we simply call Cs

a 2-cyclotomic coset. Assume n and q are relatively prime,
then Ct = Cs if and only if t ∈ Cs. It is usual to take s
to be the smallest integer in Cs and call s the representative
of Cs. Let T be the set of representatives of all possible 2-
cyclotomic cosets, then Cs ∩ Ct = ∅ for s, t ∈ T, s �= t and⋃

s∈T Cs = {0, 1, · · · , n− 1}.
Definition (Idempotent): A polynomial e(x) of Rn is

called an idempotent if e2(x) = e(x).
The following propositions extracted from [16] provide

some basic properties of an idempotent.
Proposition 1: A polynomial e(x) of Rn is an idempotent

if and only if it can be written as

e(x) =
∑

s∈S

∑

i∈Cs

eix
i, (2)

where S is a subset of T , ei is a nonzero element of
GF(2m) such that e2i = e2i (subscripts mod n). Consequently,
ord(ei)|(2gcd(m,ms) − 1), where ord(ei) is the multiplicative
order of ei.

Besides g(x), there are many polynomials in C that can
generate C.

Proposition 2: A cyclic code C has a unique idempo-
tent e(x) that generates C. The idempotent is called the
generating idempotent. The e(x) and g(x) are related by
g(x) = gcd(e(x), xn − 1).

Note that C may contain several idempotents, but only one
of them generates C.

Proposition 3: Let e(x) and e⊥(x) be the generating idem-
potents of C and C⊥, respectively, then e⊥(x) = 1−xne(x−1).
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Fig. 1. A Golomb ruler with 6 marks that measures 15 distances.
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Fig. 2. A Golomb ruler modulo 31 with 6 marks that measures 30 distances.

B. Modular Golomb Rulers

Intuitively, a Golomb ruler can be thought of as a special
type of ruler. It is named after Solomon W. Golomb, and is
also occasionally called a Sidon set (or Sidon sequence) in the
mathematics literature [18], [19], [20].

Unlike a common ruler, a Golomb ruler has a set of marks
at integer positions such that no two pairs of marks are the
same distance apart. A Golomb ruler with γ marks measures
exactly

(
γ
2

)
= γ(γ−1)

2 distances. An example is illustrated in
Fig. 1.

This paper mainly concerns a modular Golomb ruler, which
can be visualized as a circle ruler. An example is illustrated
in Fig. 2. We now formally define it.

Definition (Modular Golomb Ruler): A set of integers
{ai : 0 ≤ ai < n, 1 ≤ i ≤ γ} is called a Golomb ruler
modulo n with γ marks, or simply a modular Golomb ruler
when n and γ are clear from the context, if the differences
(ai − aj)modn are distinct for all ordered pairs (i, j) with
i �= j.

The following two properties allow us to generate new
modular Golomb rulers from a given one.

Property 1 (Translation): If the set A = {ai : 1 ≤ i ≤ γ}
is a Golomb ruler modulo n with γ marks, then so is the set
A′ = {(b+ ai)modn : 1 ≤ i ≤ γ} for any integer b.

Property 2 (Multiplication): If the set A = {ai : 1 ≤ i ≤
γ} is a Golomb ruler modulo n with γ marks, then so is the
set A′ = {(bai)modn : 1 ≤ i ≤ γ} for any integer b with
gcd(b, n) = 1.

If two or more modular Golomb rulers can be obtained
from each other through the above transforms, they are called
equivalent.

A modular Golomb ruler with γ marks measures exactly
γ(γ−1) distances. Since a distance is measured under modulo
n, there are at most n − 1 possible distances that a modular
Golomb ruler can measure. So the following property holds.

Property 3: A Golomb ruler modulo n with γ marks
satisfies the inequality γ(γ − 1) ≤ n− 1.

For a fixed n, denote by γmax(n) the maximum number
of marks that a modular Golomb ruler can possibly have.
For small values of γ (relative to γmax(n)), it requires little
effort to construct such modular Golomb rulers. However, it

Figure: A Golomb ruler modulo 31 with 6 marks.

An inherent constraint: γ × (γ − 1) ≤ (n − 1).
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2. Construction based on Idempotents and Modular Golomb Rulers

Three Algebraic Constructions of Modular Golomb Rulers

I Singer construction (projective geometry plane)

I Bose construction (Euclidean geometry plane)

I Ruzza construction
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2. Construction based on Idempotents and Modular Golomb Rulers

Code Definition

Consider a cyclic LDPC code C of length n over Fq, whose
parity-check matrix is an n × n circulant

H =




c0 c1 · · · cn−1
cn−1 c0 · · · cn−2

...
...

. . .
...

c1 c2 · · · c0


 .

The above code is specified by the polynomial

c(x) = c0 + c1x + · · ·+ cn−1x
n−1

= ca1x
a1 + ca2x

a2 · · ·+ caγx
aγ ,

where γ is the row weight of H and cai 6= 0 (i = 1, · · · , γ).
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2. Construction based on Idempotents and Modular Golomb Rulers

Main Results

I If c(x) is an idempotent, then the minimum distance of C
satisfies

dmin ≤





γ + 1, if c0 = 0;
γ − 1, if c0 = 1;
γ, otherwise.

I The Tanner graph corresponding to H is free of length-4
cycles if and only if {a1, a2, · · · , aγ} is a Golomb ruler modulo
n with γ marks.

I According to Massey bound, if the Tanner graph is free of
length-4 cycles, then dmin ≥ γ + 1.

I If c(x) is an idempotent and {a1, a2, · · · , aγ} is a modular
Golomb ruler, then the minimum distance of C is exactly
γ + 1.
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3. Construction based on (n, 2) Pseudo-Cyclic MDS Codes

Preliminaries: Finite Field based Construction of QC-LDPC
Codes (Lin et al.)

Let α be a primitive element of Fq, then 0, α0, · · · , αq−2 give all
elements of Fq. Let β ∈ Fq, then it can be mapped to a
(q − 1)× (q − 1) binary matrix A(β), as shown below.

i

1

1
1

The i-th position

1

...

1

All-zero matrix

0 0

Circulant permutation matrix

( )iA  (0)A 

The matrix A(β) is called the matrix dispersion of β over F2.
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3. Construction based on (n, 2) Pseudo-Cyclic MDS Codes

Procedure for Finite Field based Construction
I First construct an m × n matrix over Fq, called the base

matrix.

W =




w0

w1
...

wm−1


 =




w0,0 w0,1 · · · w0,n−1
w1,0 w1,1 · · · w1,n−1

...
...

. . .
...

wm−1,0 wm−1,1 · · · wm−1,n−1


 .

I Then replace each entry of W by its matrix dispersion and
form the following matrix as the parity-check matrix

H(W) =




A(w0,0) A(w0,1) · · · A(w0,n−1)
A(w1,0) A(w1,1) · · · A(w1,n−1)

...
...

. . .
...

A(wm−1,0) A(wm−1,1) · · · A(wm−1,n−1)


 .
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3. Construction based on (n, 2) Pseudo-Cyclic MDS Codes

Design Constraint on W

For 0 ≤ i , j ≤ m − 1, i 6= j and 0 ≤ h, k ≤ q − 2,

d(αhwi , α
kwj) ≥ n − 1,

where d denotes the Hamming distance.

The constraint is called the α-multiplied row distance (RD)
constraint, which guarantees that the Tanner graph corresponding
to H(W) is free of length-4 cycles.
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3. Construction based on (n, 2) Pseudo-Cyclic MDS Codes

Pseudo-Cyclic Code and MDS Code

Definition: A linear block code of length n is a pseudo-cyclic code
with parameter β ∈ Fq, if for any codeword (c0, c1, · · · , cn−1), its
pseudo-cyclic (βcn−1, c0, · · · , cn−2) also forms a codeword.

Definition: An (n, k) linear block code is a
maximum-distance-separable (MDS) code, if the minimum
distance dmin = n − k + 1.
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3. Construction based on (n, 2) Pseudo-Cyclic MDS Codes

Code Construction

Consider the the following n × n matrix over Fq

W =




w0 w1 · · · wn−2 wn−1
αwn−1 w0 · · · wn−3 wn−2

...
...

. . .
...

...
αw2 αw3 · · · w0 w1

αw1 αw2 · · · αwn−1 w0



,

where the rows are codewords of a (n, 2) pseudo-cyclic MDS code
with β = α.

It can be proved that the W satisfies the α-multiplied RD
constraint.

Through matrix dispersion, the obtained H(W) defines a
QC-LDPC code.
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3. Construction based on (n, 2) Pseudo-Cyclic MDS Codes

Main Result

From the above QC-LDPC code, a cyclic LDPC code can be
obtained by transforming H(W) to a circulant parity-check matrix
through row and column permutations.



On the Construction and Decoding of Cyclic LDPC Codes

4. Iterative Decoding Using Automorphism Group of Cyclic Codes

Automorphism Group of a Code
Definition: Let C be a binary linear block code of length n. The
set of coordinate permutations that map C to itself forms a group
under composition operation. The group is called the
automorphism group of C , denoted by Aut(C ).

For a binary cyclic code of odd length n, the automorphism group
contains the following two cyclic subgroups:

I S0: The set of permutations τ0, τ1, · · · , τn−1, where

τk : j → (j + k)mod n.

I S1: The set of permutations ζ0, ζ1, · · · , ζm−1, where

ζk : j → (2k · j)mod n,

and m is the smallest positive integer such that 2m ≡ 1mod n.
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4. Iterative Decoding Using Automorphism Group of Cyclic Codes

Properties of Aut(C )

I Let C⊥ be the dual code of C , then Aut(C⊥) = Aut(C ).

I Let π ∈ Aut(C ). If H is a parity-check matrix of C , then πH
also forms a parity-check matrix of C .
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4. Iterative Decoding Using Automorphism Group of Cyclic Codes

Decoder Diversity

I Two party-check matrices are called non-equivalent if they
cannot be obtained from each other only by row permutations.

I The basic idea is to construct multiple non-equivalent
parity-check matrices based on Aut(C ). Different decoding
attempts can be made on these parity-check matrices, thus
providing decoder diversity gain.
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4. Iterative Decoding Using Automorphism Group of Cyclic Codes

Main Results

I For cyclic LDPC codes constructed from idempotents and
modular Golomb rulers, S0 and S1 cannot be used to generate
non-equivalent parity-check matrices.

I For cyclic LDPC codes constructed from pseudo-cyclic MDS
codes with two information symbols, S1 can be used to
generate non-equivalent parity-check matrices.
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5. Simulation Results

Simulation Results
A (341, 160) cyclic LDPC code is constructed from (31, 2)
pseudo-cyclic MDS code over F32. The BPSK modulation over
AWGN channel is assumed. The maximum number of iterations is
set to be 100.
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