SLOW RESOURCE ALLOCATION FOR HETEROGENEOUS NETWORKS

Michael Honig Department of EECS Northwestern University

Joint work with Binnan Zhuang, Dongning Guo

April 2016

Mobile Data Forecast

Source: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019 White Paper

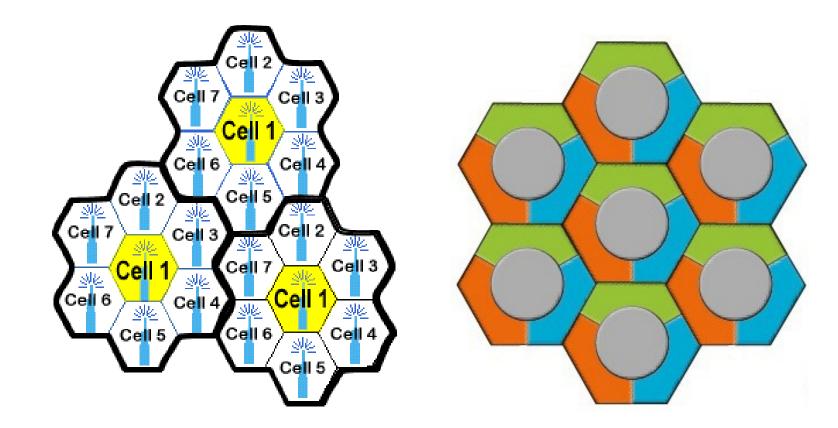
Evolution to 5G

- □ New spectrum (mm-wave, unlicensed)
- Physical layer advances
 massive MIMO, network coding, cooperation
- Smaller cells

Heterogeneous Network

Remote Radio Heads

Offline Frequency Planning (1G-4G)

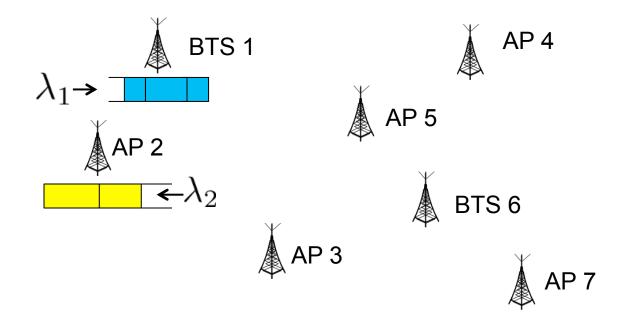


Slow Resource Allocation

- Over many packets (seconds)
 - Average channel gains, offered traffic
- Combined with fast scheduling (milliseconds)
- Traffic varies over space, stationary in time
- Centralized approach

Contribution: general optimization framework

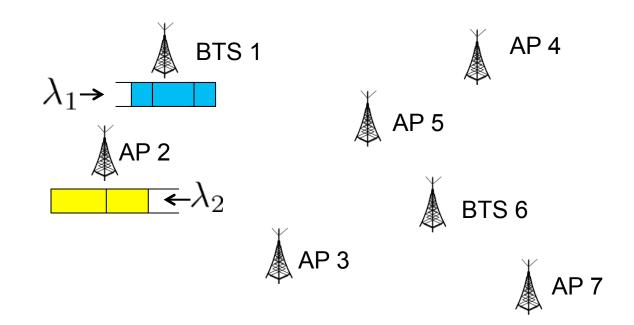
Downlink HetNet Model



Cells overlap, traffic varies.

How to allocate spectrum across cells?

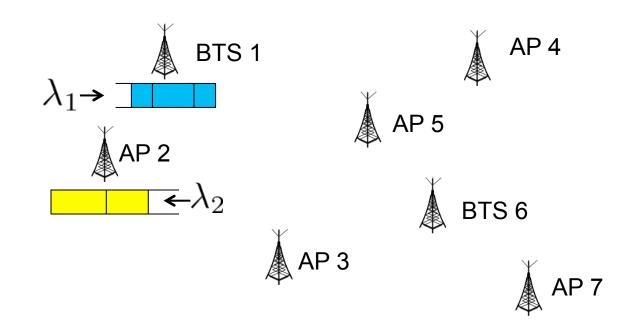
Assumptions



Resources within each cell are allocated via fast scheduling.

- Resources across cells are allocated over a slower time-scale.
- Centralized controller knows average traffic, average channels.

Traffic-Driven Resource Allocation

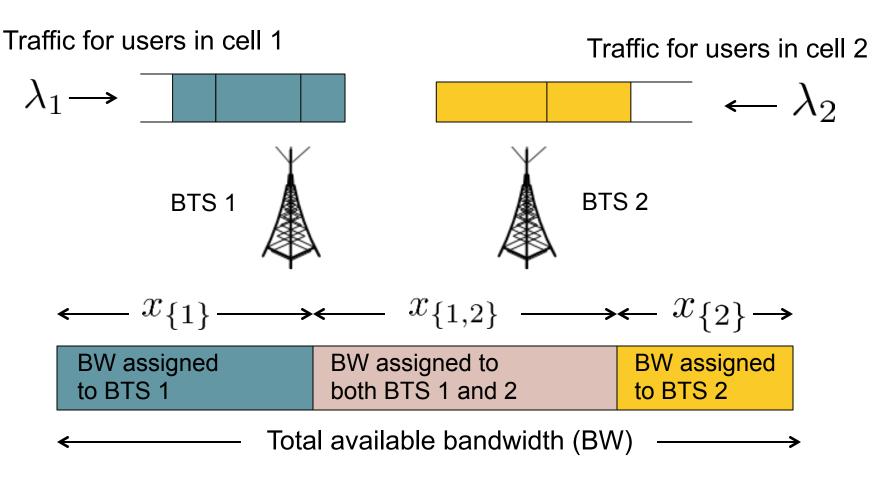


 Consider all possible ways the spectrum can be partitioned among BTS's.

Optimize over this partition.

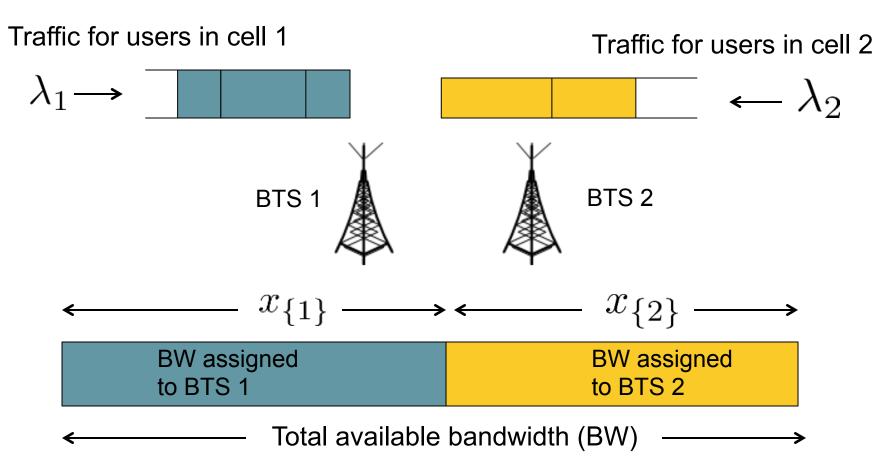
Two Base Stations

11



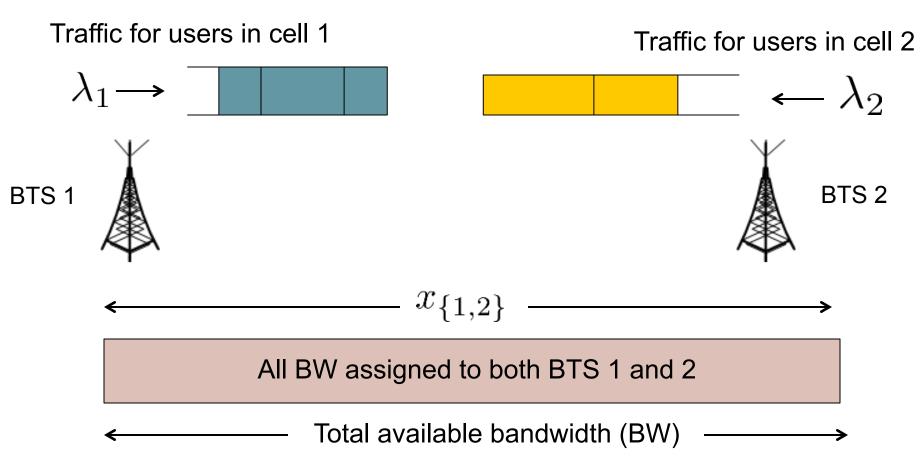
Orthogonal Allocation

12



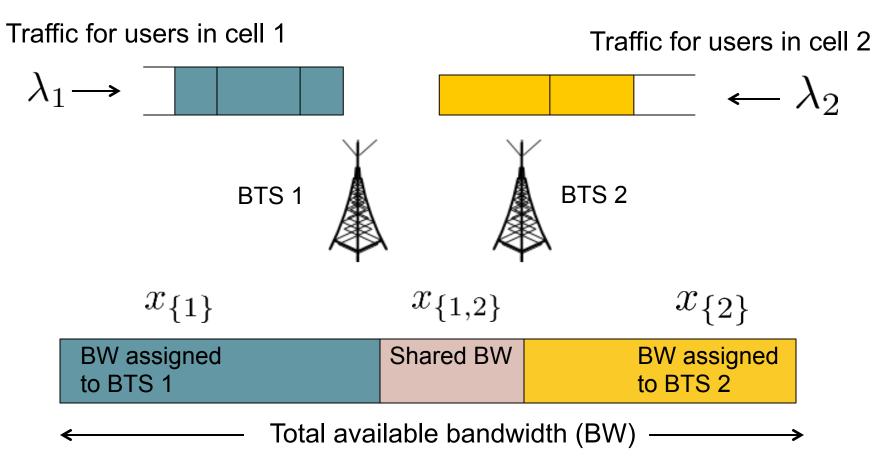
Full Frequency Reuse

13



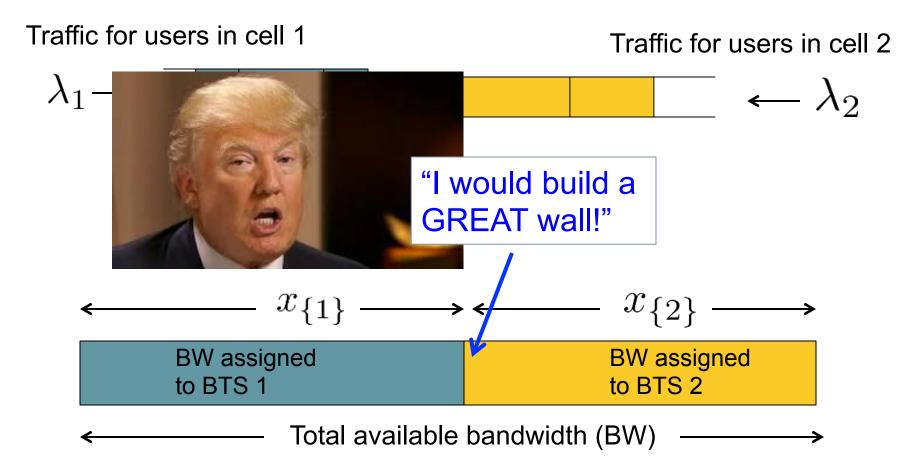
Partial Sharing

14

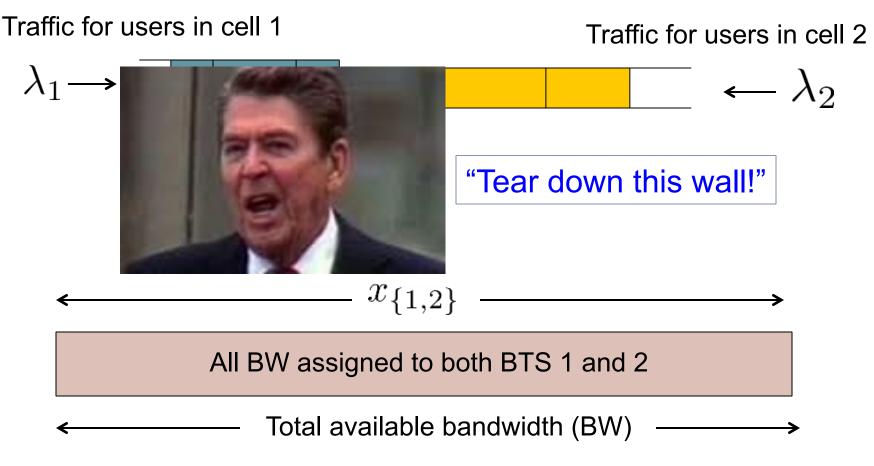


Orthogonal Allocation

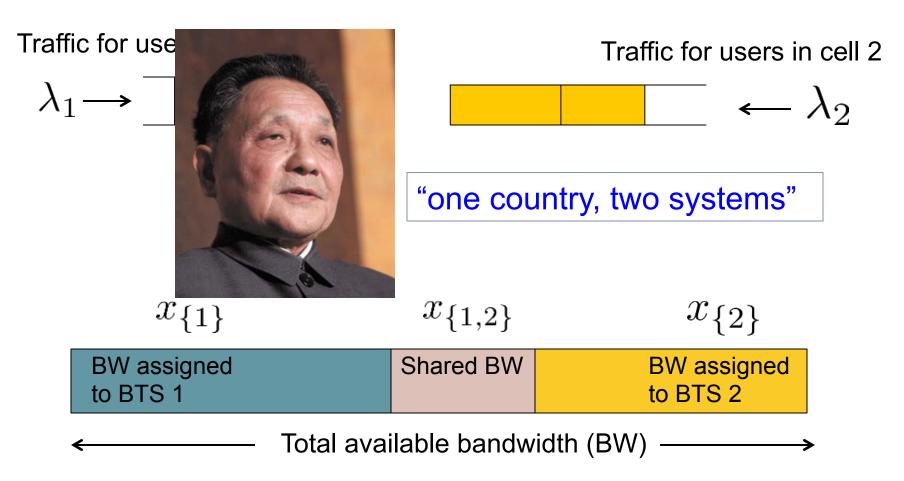
15



Full Frequency Reuse



Partial Sharing

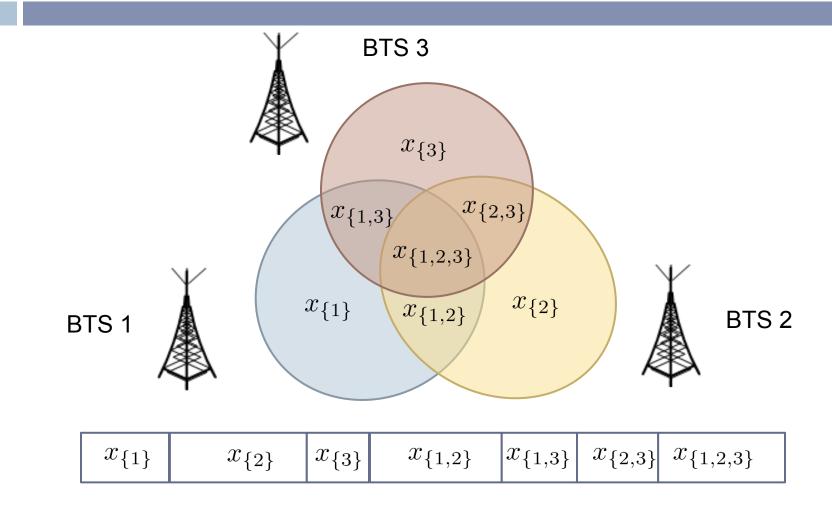


Partial Sharing



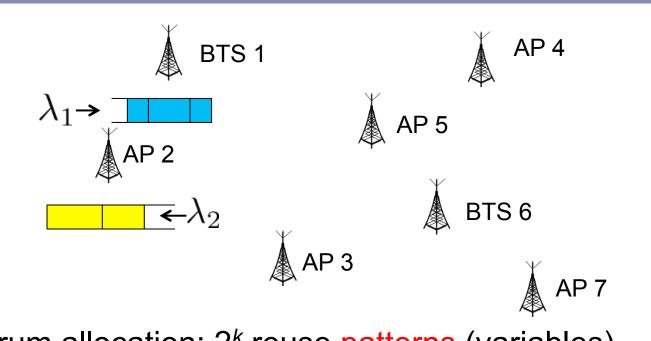
Partition should depend on traffic!

3-BTS Example



K Base Stations

20

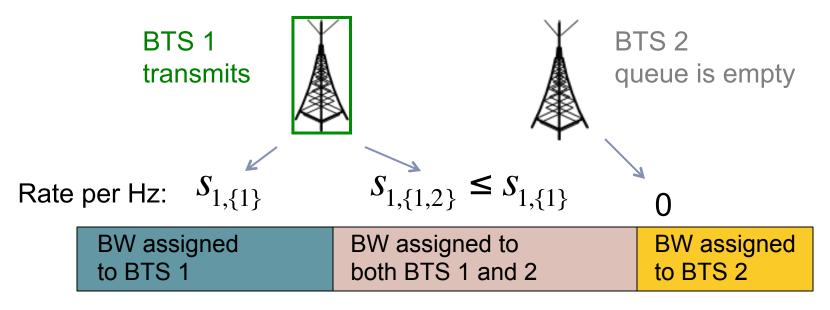


spectrum allocation: 2^{*k*} reuse patterns (variables)

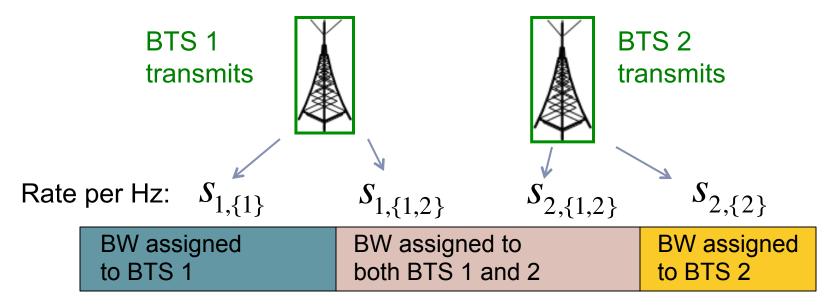
x_{\emptyset}	$x_{\{1\}}$	$x_{\{1,2\}}$		$x_{\{1,2,3,4,5,6,7\}}$
-----------------	-------------	---------------	--	-------------------------

Frequency

- Adjust partition to minimize average latency
- Take into account queuing delays and interference
- Interference affects achievable rates



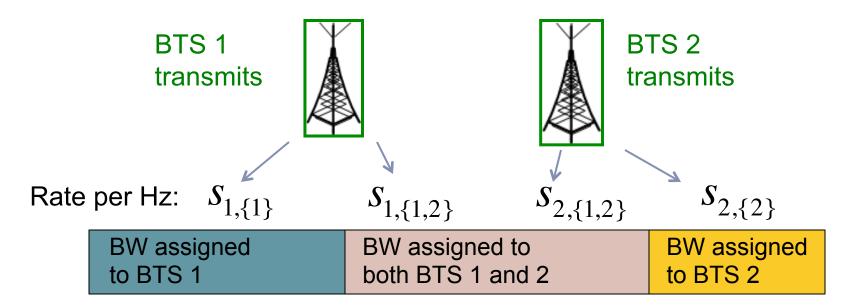
- Adjust partition to minimize average latency
- Take into account queuing delays and interference
- Interference affects achievable rates



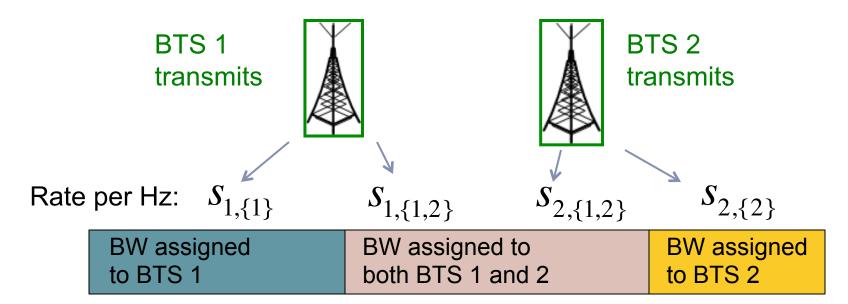
Spectral Efficiency

$$s_A^{i \to j} = \mathbf{1}_{i \in A} \frac{W}{L} \log \left(1 + \frac{p^{i \to j}}{I^{A \to j} + \sigma^2} \right)$$

Average powers, channels
Known to the optimizer



Total rates: $r_1 = s_{1,\{1\}} x_{\{1\}} + s_{1,\{1,2\}} x_{\{1,2\}}$ $r_2 = s_{2,\{2\}} x_{\{2\}} + s_{2,\{1,2\}} x_{\{1,2\}}$



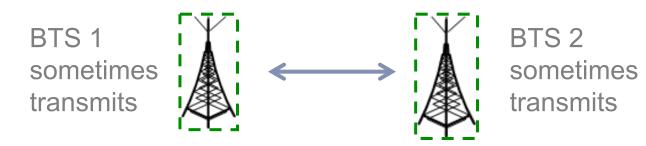
Total rate from BTS *i*:

$$r_i = \sum_{B \subset \mathcal{N}} S_{i,B} X_B$$

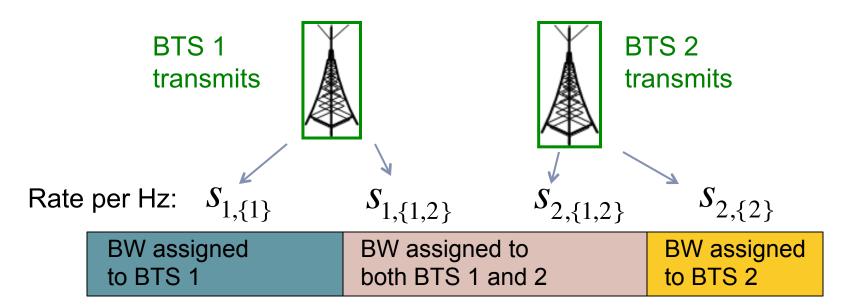
sum over all reuse patterns

 $\mathcal{N} = \{1, 2, \cdots, N\}$ set of BTSs

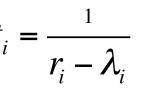
- Adjust partition to minimize average latency
- □ Take into account queuing delays and interference
- Interference affects achievable rates
- Queues at different BTS's are dependent complicates optimization!



Backlogged Traffic: Delay



Average packet sojourn time (M/M/1): $t_i = \frac{1}{r_i - \lambda_i}$



Conservative Optimization

$$\min_{\{\mathbf{x},\mathbf{r}\}} \sum_{i=1}^{N} \left(\frac{\lambda_i}{\sum_{i=1}^{N} \lambda_i} \right) \frac{1}{r_i - \lambda_i}$$

Subject to:
$$r_i > \lambda_i$$

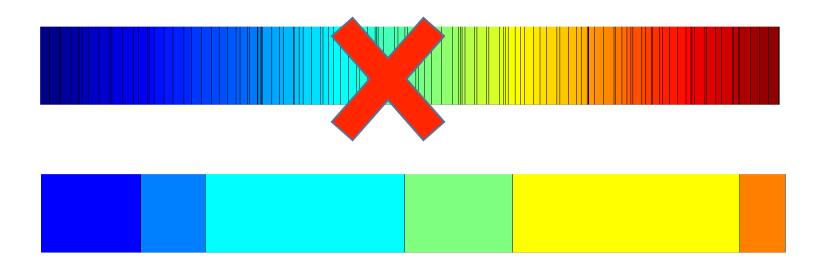
 $r_i = \sum_{B \subset \mathcal{N}} s_{i,B} x_B \quad \forall i \in \mathcal{N}$
 $x_B \ge 0 \quad \forall B \subset \mathcal{N}$
 $\sum_{B \subset \mathcal{N}} x_B = 1$

 \Box Convex, 2^N-1 variables

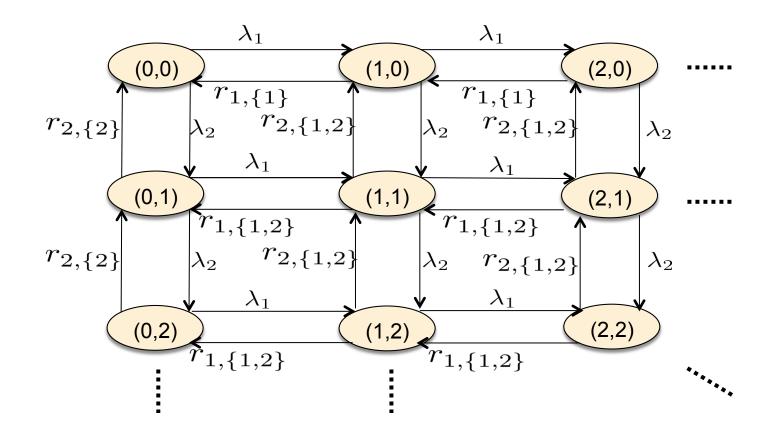
The solution achieves the maximum throughput region.

Property of Solution

- Theorem: The optimal allocation divides the spectrum into at most N segments (instead of 2^N).
 - Follows from Carathéodory's theorem.
- □ 7-BTS example:

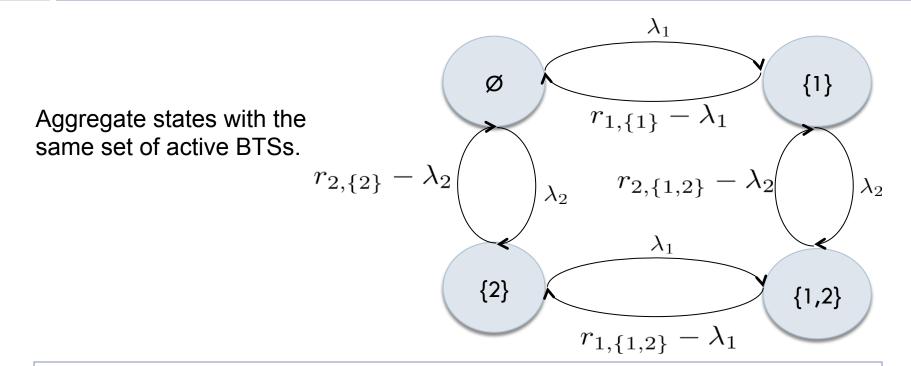


Interactive Queues (Two BTSs)



CUHK, April 2016

State Aggregation



Assumptions:

- The *N* queues are independent conditioned on the pattern.
- For the transition A \rightarrow A', the new state is chosen according to the steady-state distribution.

Refined Optimization

$$\min_{\{\mathbf{x},\mathbf{r},\mathbf{t}\}}\sum_{i=1}^{N}\frac{\lambda_{i}}{\sum_{j=1}^{n}\lambda_{j}}t_{i}$$

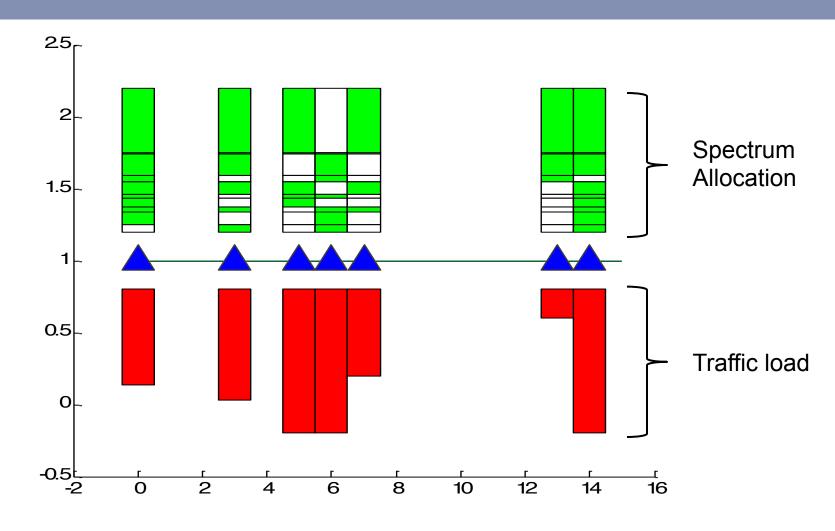
Subject to:
$$t_i = \sum_{A \ni i} \frac{p(A)r_{i,A}}{\lambda_i(r_{i,A} - \lambda_i)}$$

 $r_{i,A} = \sum_{B \subset \mathcal{N}} s_{i,B \cap A} x_B, \quad r_{i,N} > \lambda_i$

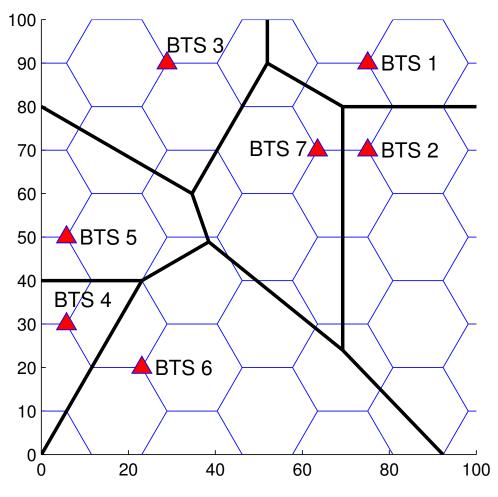
Not convex

The solution achieves the maximum throughput region.

One-Dimensional Example



Small-Cell Network

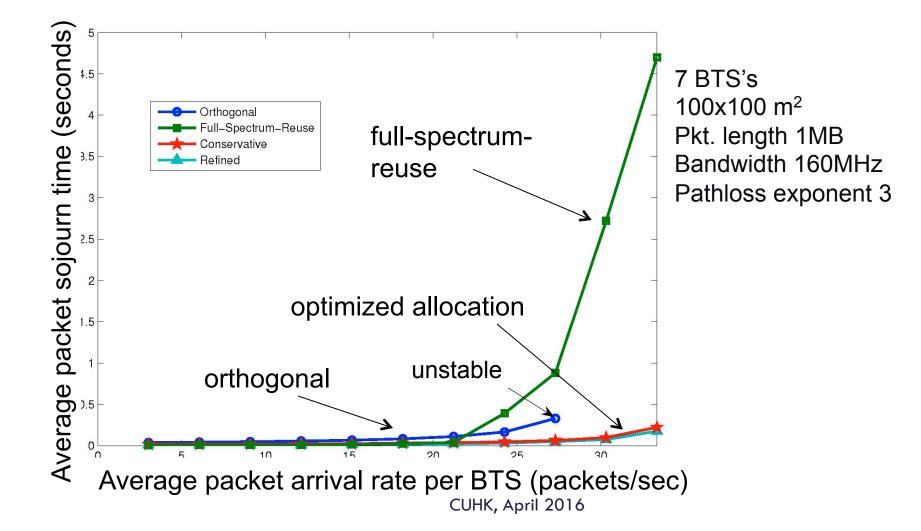


7 BTS's 100x100 m² Pkt. length 1MB Bandwidth 160MHz Pathloss exponent 3

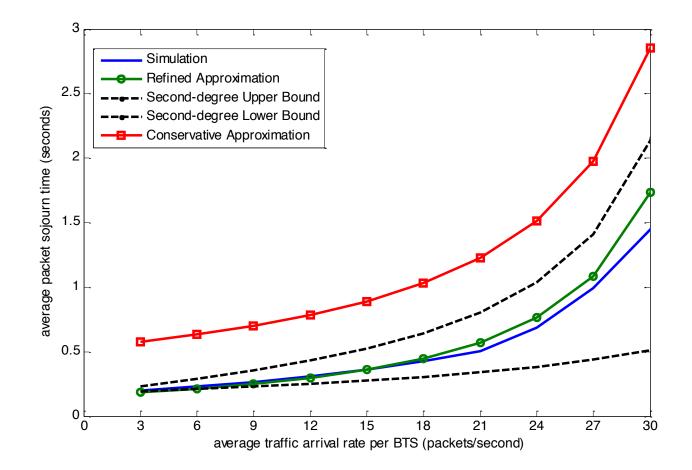
```
CUHK, April 2016
```

Delay vs. Traffic Intensity

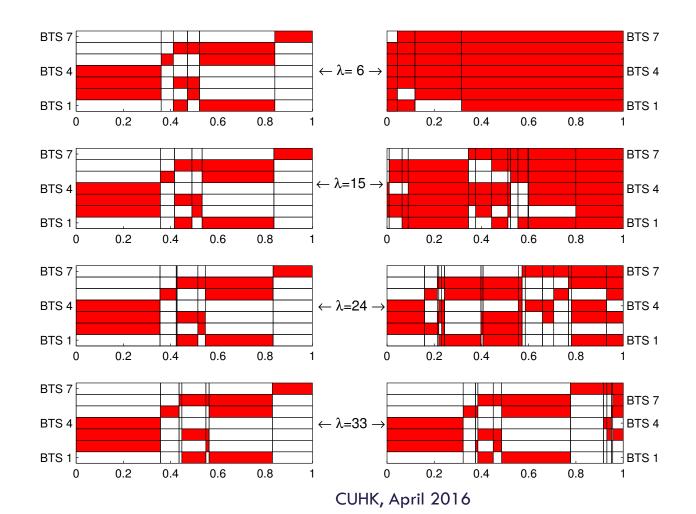
35



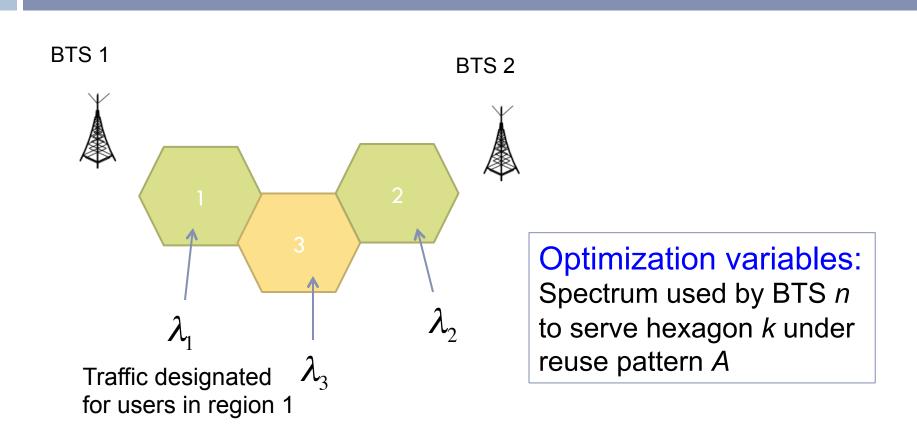
Approximation vs. Bounds



Conservative vs. Refined Allocations

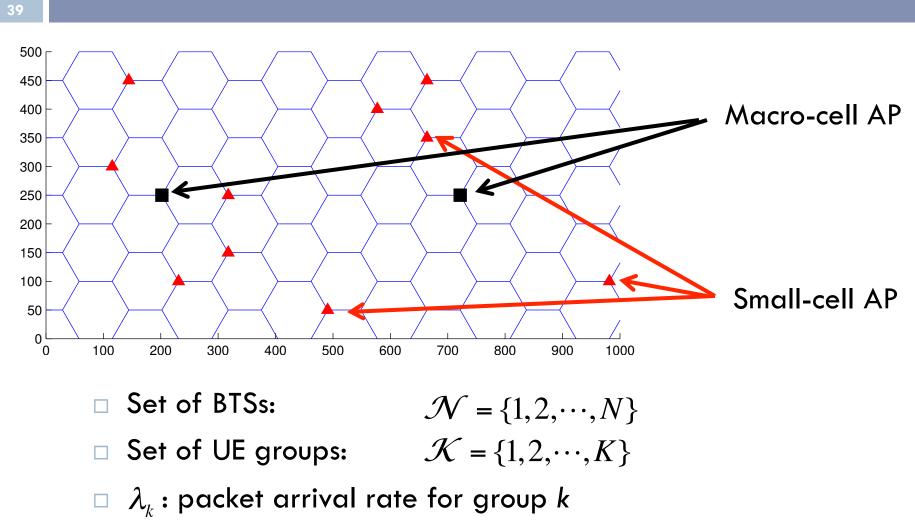


Load to BTS Assignment



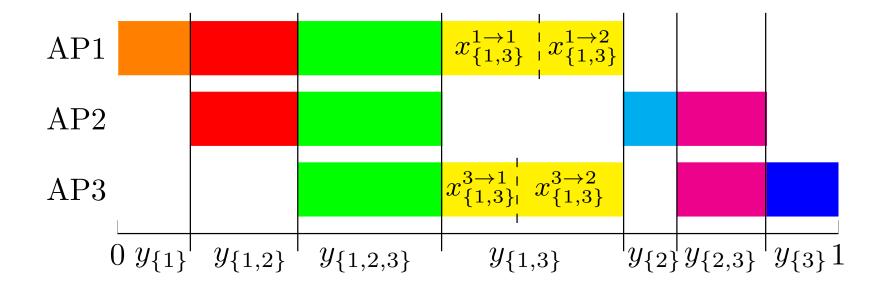
Problem: Jointly allocate traffic and bandwidth across base stations.

Load to BTS Assignment: Notation



Load to AP Assignment: Notation

- $\Box S_A^{i \rightarrow j}$: spectral efficiency of BTS *i* serving group *j* under reuse pattern A.
- $\Box \chi_A^{i \rightarrow j}$: spectrum resource used by BTS *i* to serve group *j* under reuse pattern A.
- \Box y_A : fraction of spectrum resources allocated to reuse pattern A.



Conservative Optimization (Original)

$$\min_{\{\mathbf{x},\mathbf{r}\}} \sum_{i=1}^{N} \left(\frac{\lambda_i}{\sum_{i=1}^{N} \lambda_i} \right) \frac{1}{r_i - \lambda_i}$$

Subject to:
$$r_i > \lambda_i$$

 $r_i = \sum_{B \subset \mathcal{N}} s_{i,B} x_B \quad \forall i \in \mathcal{N}$
 $x_B \ge 0 \quad \forall B \subset \mathcal{N}$
 $\sum_{B \subset \mathcal{N}} x_B = 1$

Conservative Optimization (Modified)

$$\max_{\mathbf{x},\mathbf{r}} U(\mathbf{x},\mathbf{r})$$

Subject to:
$$r_i > \lambda_i$$

 $r_i = \sum_{B \subset \mathcal{N}} s_{i,B} x_B \quad \forall i \in \mathcal{N}$
 $x_B \ge 0 \quad \forall B \subset \mathcal{N}$
 $\sum_{B \subset \mathcal{N}} x_B = 1$

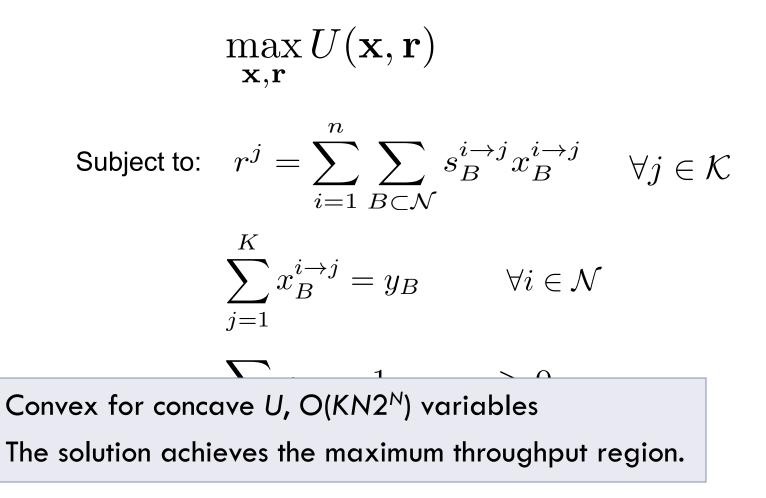
Conservative Optimization (Modified)

$$\max_{\mathbf{x},\mathbf{r}} U(\mathbf{x},\mathbf{r})$$

Subject to:
$$r^j = \sum_{i=1}^n \sum_{B \subset \mathcal{N}} s_B^{i \to j} x_B^{i \to j} \quad \forall j \in \mathcal{K}$$

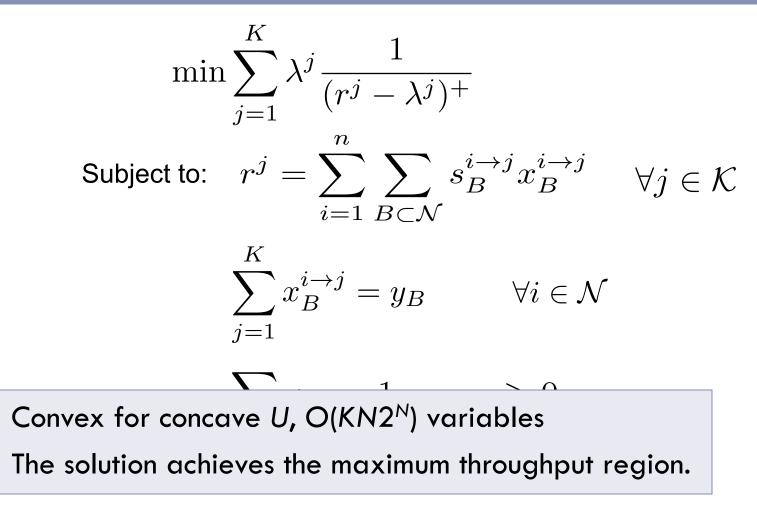
$$x_B \ge 0 \qquad \forall B \subset \mathcal{N}$$
$$\sum_{B \subset \mathcal{N}} x_B = 1$$

Conservative Optimization (Modified)



Average Delay Minimization

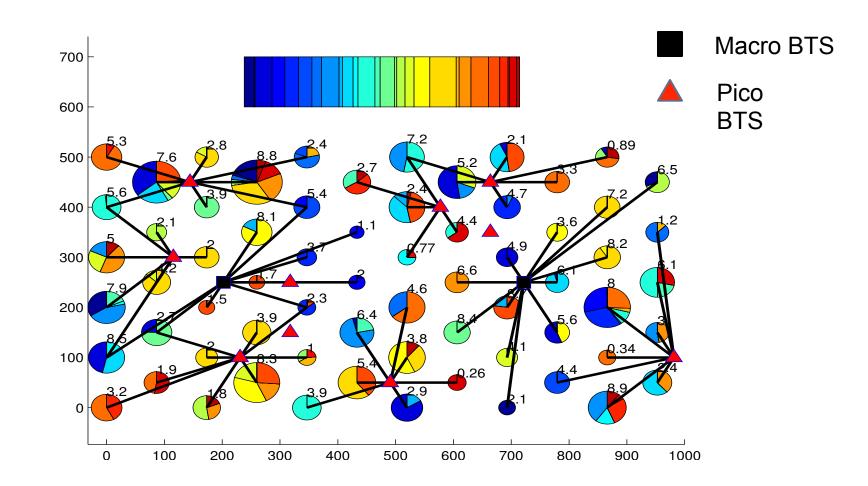
45



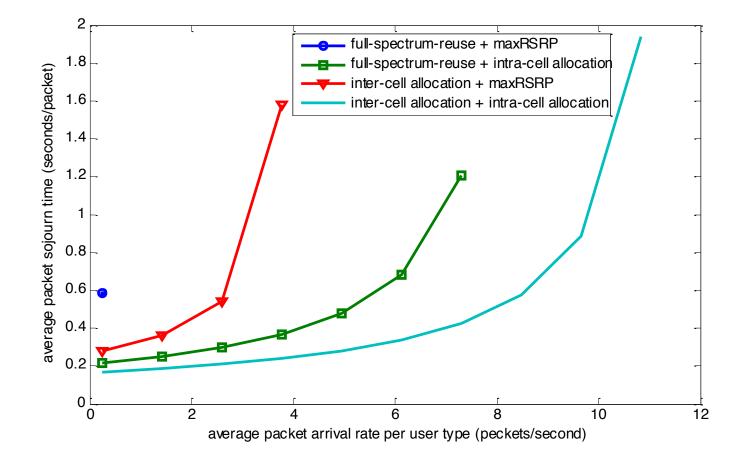
Properties of the Solution

- \Box Uses at most K of the 2^N reuse patterns
- \Box At most N-1 groups are jointly served by \geq 1 AP.
- Throughput optimal

Spectrum Allocation



Delay (2 macros, 8 small cells)



Energy Conservation

Tradeoff:

- Turning off an AP saves energy.
- Turning off an AP increases the load for neighbors.
- Problem: serve the offered traffic with the minimal number of active APs.
- Related work:
 [Pollakis, Cavalcante and Stanczak, '12]
 (no spectrum optimization)

Average Delay Minimization

 $B \subset \mathcal{N}$

50

$$\min \sum_{j=1}^{K} \lambda^{j} \frac{1}{(r^{j} - \lambda^{j})^{+}}$$

Subject to: $r^{j} = \sum_{i=1}^{n} \sum_{B \subset \mathcal{N}} s_{B}^{i \to j} x_{B}^{i \to j} \quad \forall j \in \mathcal{K}$
$$\sum_{j=1}^{K} x_{B}^{i \to j} = y_{B}$$
$$\sum_{B \in \mathcal{M}} y_{B} = 1, \quad \mathbf{x} \ge 0$$

Weighted Energy Minimization

$$\min_{\mathbf{z}} \sum_{i \in \mathcal{N}} c^i |z^i|_0$$

Subject to:

total bandwidth assigned to AP *i*

$$r^{j} = \sum_{i=1}^{n} \sum_{B \subset \mathcal{N}} s_{B}^{i \to j} x_{B}^{i \to j} \quad \forall j \in \mathcal{K}$$

$$\sum_{j=1}^{K} x_{B}^{i \to j} = y_{B}, \quad \sum_{B \subset \mathcal{N}} y_{B} = 1$$

$$\mathbf{x} \ge 0$$

Weighted Energy Minimization

 $\min_{\mathbf{z}} \sum_{i \in \mathcal{N}} c^i |z^i|_0$ Subject to: $\sum \sum x_B^{i \to j} \le z^i$ $\forall i \in \mathcal{N}$ $B \subset \mathcal{N} \ i \in \mathcal{K}$ $r^j - \lambda^j > 1/\tau^j$ $r^{j} = \sum_{a}^{n} \sum_{B} s_{B}^{i \to j} x_{B}^{i \to j} \quad \forall j \in \mathcal{K}$ $i=1 \ B \subset \mathcal{N}$ K $\sum x_B^{i \to j} = y_B, \quad \sum y_B = 1$ i=1 $B \subset \mathcal{N}$ $\mathbf{x} > 0$

Weighted Energy/Utility Minimization

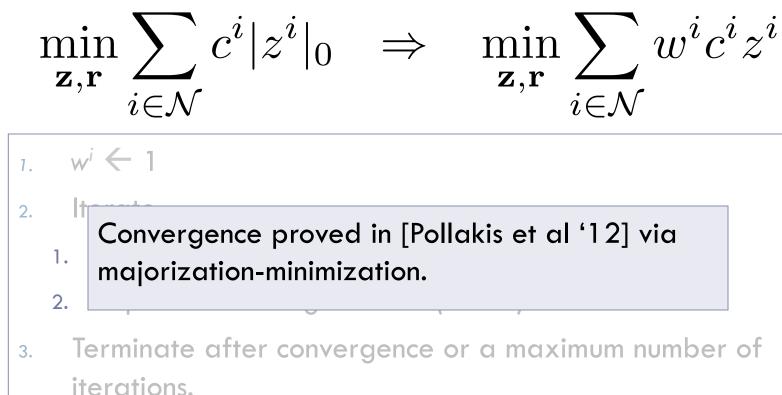
 $\min_{\mathbf{z},\mathbf{r}} \sum_{i \in \mathcal{N}} c^i |z^i|_0 + U(\mathbf{r})$ Subject to: $\sum \sum x_B^{i \to j} \le z^i$ $\forall i \in \mathcal{N}$ $B \subset \mathcal{N} j \in \mathcal{K}$ $r^j - \lambda^j \ge 1/\tau^j$ $r^{j} = \sum_{a}^{n} \sum_{B} s_{B}^{i \to j} x_{B}^{i \to j} \quad \forall j \in \mathcal{K}$ $i=1 \ B \subset \mathcal{N}$ K $\sum x_B^{i \to j} = y_B, \quad \sum y_B = 1$ j=1 $B \subset \mathcal{N}$ $\mathbf{x} \ge 0$ CUHK, April 2016

Reweighted l_1 Minimization

$$\min_{\mathbf{z},\mathbf{r}} \sum_{i \in \mathcal{N}} c^i |z^i|_0 \quad \Rightarrow \quad \min_{\mathbf{z},\mathbf{r}} \sum_{i \in \mathcal{N}} w^i c^i z^i$$

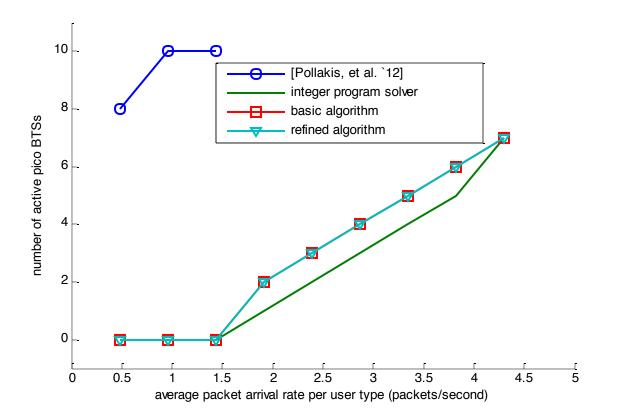
- 1. $w^i \leftarrow 1$
- 2. Iterate:
 - 1. Solve the linear program;
 - 2. Update the weights $w^i \leftarrow (z^i + \varepsilon)^{-1}$
- 3. Terminate after convergence or a maximum number of iterations.

Reweighted l_1 Minimization



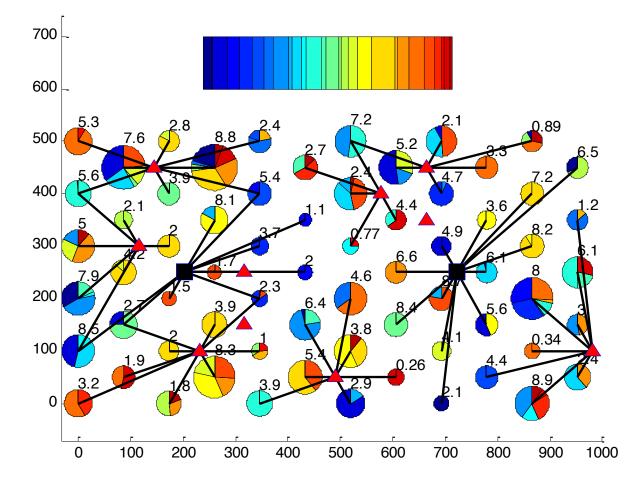
ations.

Energy vs. Traffic

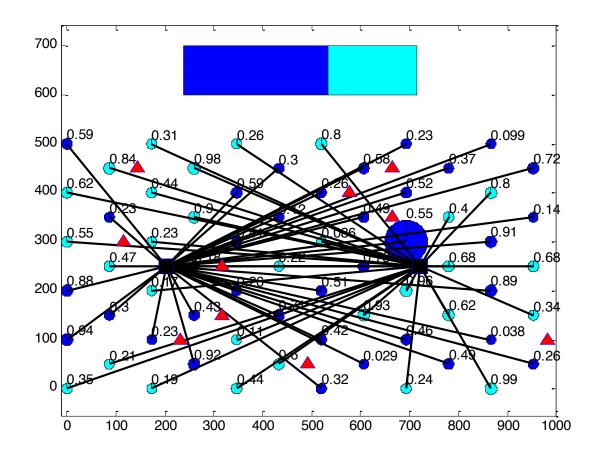


CUHK, April 2016

Spectrum Allocation (Heavy Traffic)



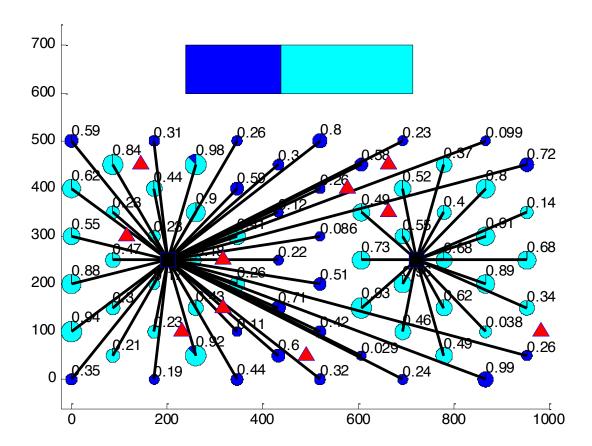
Spectrum Allocation (Light Traffic)



Post Processing

- □ Minimizing energy only finds a feasible solution.
- Once the set of active APs is determined, can further minimize average delay as before.

Post Processing (Light Traffic)



Scalability

- \Box Number of variables increases as O(KN2^N)
- □ Infeasible to find optimal allocation for N >> 20.
- To scale to large networks can exploit
 - Path loss: radio signals cause negligible interference over large enough distances;
 - Small node degrees: typically bounded by a constant

Node Neighborhood

62

E is the set of network links with non-negligible gain

 $\mathcal{A}_{j} = \{i | (i \to j) \in E\}$ $\mathcal{U}_{i} = \{j | (i \to j) \in E\}$ $\mathcal{N}_{i} = \{\bigcup_{j \in \mathcal{U}_{i}} \mathcal{A}_{j}\}$ $\mathcal{N}_{2} = \mathcal{A}_{a} \cup \mathcal{A}_{b}$ $1 \quad \mathcal{N}_{1} = \mathcal{A}_{a} \quad 2 \quad \mathcal{N}_{3} = \mathcal{A}_{b} \quad 3$ $\mathcal{U}_{1} \quad \mathcal{U}_{2} \quad b \quad \mathcal{U}_{3}$

Local Patterns and Variables

$$r^{j} = \sum_{A \subset \mathcal{N}} \sum_{i \in A} s_{A}^{i \to j} x_{A}^{i \to j} = \sum_{i \in \mathcal{A}_{j}} \sum_{B \subset \mathcal{N}_{i}} s_{B}^{i \to j} z_{B}^{i \to j}$$

- □ Local variables $z_B^{i \rightarrow i}$ are only defined for links in *E* and *B* in \mathcal{N}_i .
- □ Introduce local variables y_B^i defined for B in \mathcal{N}_i .
- \Box Number of local variables is O(N).
- Consistency constraint in overlapping neighborhoods:

$$\sum_{B \subset \mathcal{N}_i: B \cap \mathcal{N}_m = C} y_B^i = \sum_{B \subset \mathcal{N}_m: B \cap \mathcal{N}_i = C} y_B^m, \quad \forall i, m \in \mathcal{N}, \forall C \neq \emptyset$$

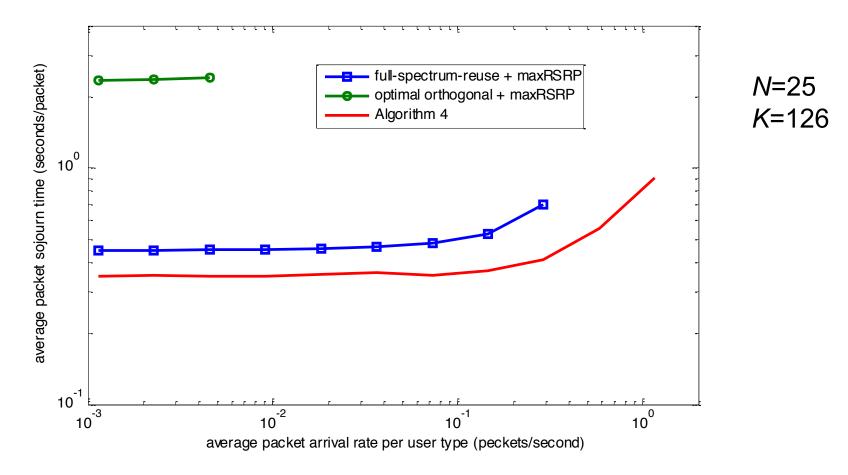
Relaxed Optimization

- Add previous constraint, optimize over z, y
- Relax total bandwidth constraint:

$$\sum_{B \subset \mathcal{N}} y_B \le 1$$

- Scale back bandwidth assignments to meet constraint
- \Box Need to satisfy additional alignment constraints \rightarrow strong variation problem on hypergraph
 - \rightarrow strong vertex coloring problem on hypergraph

Delay Example



Concluding Remarks

- Slow resource allocation can exploit spatial traffic variations.
- Centralized optimization
 - Requires gathering traffic statistics across cells
 - Re-optimize periodically
- Network size limited by computational complexity
 - Number of variables increases exponentially
 - Scalability facilitated by optimizing over local neighborhoods