Achievable Error Probabilities for Composite Hypothesis Testing

Pierre Moulin
University of Illinois
Urbana, IL

Yen-Wei Huang
Microsoft
Redmond, WA

CUHK
November 17, 2014

Outline

I. Introduction
II. Likelihood Ratio Threshold Tests
III. Generalized NP Tests
IV. Asymptotics

I. Introduction

Simple Hypothesis Testing

- Observe length n sequence $\mathbf{y} \in \mathcal{Y}^{n}$, test simple hypotheses

$$
H_{0}: \mathbf{Y} \sim \mathbb{P} \quad \text { vs. } \quad H_{1}: \mathbf{Y} \sim \mathbb{Q}
$$

- Randomized decision rule $\delta(\mathbf{y}) \triangleq \operatorname{Pr}\left\{\right.$ Say $\left.H_{0} \mid \mathbf{Y}=\mathbf{y}\right\}, \mathbf{y} \in \mathcal{Y}^{n}$
- Neyman-Pearson test: minimize false-alarm error probability $\mathbb{E}_{Q}[\delta(\mathbf{Y})]$ subject to constraint $\mathbb{E}_{P}[\delta(\mathbf{Y})] \leq 1-\epsilon$ on miss prob.
- The value of the minimum is denoted by $\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q})$
- Randomized Likelihood Ratio Tests are Neyman-Pearson tests

$$
\delta(\mathbf{y})=\operatorname{Pr}\left\{\text { Say } H_{0} \mid \mathbf{Y}=\mathbf{y}\right\}=\left\{\begin{array}{lll}
1 & : L(\mathbf{y})>\eta \\
\gamma & : L(\mathbf{y})=\eta \\
0 & : L(\mathbf{y})<\eta
\end{array}\right.
$$

with likelihood ratio $L(\mathbf{Y})=\frac{d \mathbb{P}(\mathbf{Y})}{d \mathbb{Q}(\mathbf{Y})}$ and threshold η

Gaussian Hypothesis Testing

- Here $\mathcal{Y}=\mathbb{R}, \mathbb{P}=P^{n}, \mathbb{Q}=Q^{n}$ with $P=\mathcal{N}(0,1), Q=\mathcal{N}(\theta, 1)$

- Sample mean $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \quad \Rightarrow \mathcal{N}(0,1 / n)$ vs $\mathcal{N}(\theta, 1 / n)$
- Assume $\theta>0$
- NP test $\delta_{\mathrm{NP}}(\bar{Y})=\mathbb{1}\{\bar{Y} \leq \tau\}$, threshold $\tau=n^{-1 / 2} \mathcal{Q}^{-1}(\epsilon)$
- $\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q})=\mathbb{Q}\{\bar{Y} \leq \tau\}=\mathcal{Q}\left(\theta \sqrt{n}-\mathcal{Q}^{-1}(\epsilon)\right)$
- Asymptotics: use $\mathcal{Q}(t) \sim \frac{\exp \left\{-t^{2} / 2\right\}}{t \sqrt{2 \pi}}$ as $t \rightarrow \infty$, then

$$
\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q}) \sim \frac{\exp \left\{-\frac{n}{2} \theta^{2}+\theta \sqrt{n} \mathcal{Q}^{-1}(\epsilon)-\left[\mathcal{Q}^{-1}(\epsilon)\right]^{2} / 2\right\}}{\theta \sqrt{2 \pi n}}
$$

- Error exponent $=\frac{1}{2} \theta^{2}=D(P \| Q)$ (as expected from Stein's lemma)

Composite Hypothesis Testing

- Observe length- n sequence $\mathbf{y} \in \mathcal{Y}^{n}$, test simple hypothesis H_{0} against composite hypothesis H_{1} with k alternatives:

$$
\begin{array}{ll}
H_{0}: & \mathbf{Y} \sim \mathbb{P} \\
H_{1}: & \mathbf{Y} \sim \mathbb{Q}_{j} \text { for some } 1 \leq j \leq k
\end{array}
$$

- Applications to statistics, outlier hypothesis testing, and multiuser information theory.
- This work does not address problems where the number of alternatives is uncountable.
- Will assume $\mathbb{P}=\prod_{i=1}^{n} P_{i}$ and $\mathbb{Q}_{j}=\prod_{i=1}^{n} Q_{j i}$

Example: Gaussian hypothesis testing, $k=2$

- Here $\mathcal{Y}=\mathbb{R}, \mathbb{P}=P^{n}$, and $\mathbb{Q}_{j}=Q_{j}^{n}$ for $j=1,2$ with $P=\mathcal{N}(0,1), Q_{1}=\mathcal{N}\left(\theta_{1}, 1\right), Q_{2}=\mathcal{N}(-1,1)$.
- Consider tests that are functions of $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ and have power $1-\epsilon$

- $\epsilon_{1}+\epsilon_{2}=\epsilon \quad \Rightarrow$ free parameter ϵ_{1}
- What is an optimal test at significance level $1-\epsilon$?
- Compare with oracle LRT which "knows j "
- Asymptotics of oracle LRT:

$$
\begin{aligned}
& \beta_{1-\epsilon}\left(\mathbb{P}, \mathbb{Q}_{1}\right) \sim \frac{\exp \left\{-\frac{n}{2} \theta_{1}^{2}+\theta_{1} \sqrt{n} \mathcal{Q}^{-1}(\epsilon)-\left[\mathcal{Q}^{-1}(\epsilon)\right]^{2} / 2\right\}}{\theta_{1} \sqrt{2 \pi n}} \\
& \beta_{1-\epsilon}\left(\mathbb{P}, \mathbb{Q}_{2}\right) \sim \frac{\exp \left\{-\frac{n}{2}+\sqrt{n} \mathcal{Q}^{-1}(\epsilon)-\left[\mathcal{Q}^{-1}(\epsilon)\right]^{2} / 2\right\}}{\sqrt{2 \pi n}}
\end{aligned}
$$

GLRT

- Generalized Likelihood Ratio $L_{\mathrm{G}}(\mathbf{y})=\frac{d \mathbb{P}(\mathbf{y})}{\max _{1 \leq j \leq k} d \mathbb{Q}_{j}(\mathbf{y})}$
- (Deterministic) GLRT with threshold η :

$$
\delta_{\mathrm{GLRT}}(\mathbf{y})= \begin{cases}1 & : \quad L_{\mathrm{G}}(\mathbf{y}) \geq \eta \\ 0 & : \quad L_{\mathrm{G}}(\mathbf{y})<\eta\end{cases}
$$

- Equivalently,

$$
\delta_{\mathrm{GLRT}}(\mathbf{y})=\mathbb{1}\left\{\min _{1 \leq j \leq k} \frac{d \mathbb{P}(\mathbf{y})}{d \mathbb{Q}_{j}(\mathbf{y})} \geq \eta\right\}
$$

- Widely used, simple to implement, same error exponents as oracle LRT in some settings

GLRT in Gaussian setting

- GLRT test statistic $\Lambda_{\mathrm{GLRT}}(\bar{Y})=\mathbb{1}\left\{\min _{j=1,2} \log \frac{p(\bar{Y})}{q_{j}(\bar{Y})} \geq \tau_{\epsilon}\right\}$
$=\mathbb{1}\left\{-\frac{1}{\sqrt{n}} \mathcal{Q}^{-1}\left(\epsilon_{1}\right) \leq \bar{Y} \leq \frac{\theta_{1}^{2}-1}{2 \theta_{1}}+\frac{1}{\theta_{1} \sqrt{n}} \mathcal{Q}^{-1}\left(\epsilon_{1}\right)\right\}$
- Nonsymmetric case: assume $\theta_{1}>1$

- Asymptotics of false-positive error probabilities:

$$
\begin{aligned}
& e(1)=\exp \left\{-\frac{\left(\theta_{1}^{2}+1\right)^{2}}{8 \theta_{1}^{2}} n+O(\sqrt{n})\right\} \\
& e(2) \sim \beta_{1-\epsilon}\left(\mathbb{P}, \mathbb{Q}_{2}\right)
\end{aligned}
$$

- $e(2)$ is asymptotically same as for oracle LRT, but error exponent $\frac{\left(\theta_{1}^{2}+1\right)^{2}}{8 \theta_{1}^{2}}$ for $e(1)$ is worse than that for oracle $\operatorname{LRT}\left(\frac{\theta_{1}^{2}}{2}\right)$
- Can we do better?

II. Likelihood Ratio Threshold Tests

Loglikelihood Ratio Vector

- n component loglikelihood-ratio vectors

$$
\mathbf{L}_{i} \triangleq\left[\begin{array}{c}
\log d P_{i} / d Q_{i}^{1}\left(Y_{i}\right) \\
\vdots \\
\log d P_{i} / d Q_{i}^{k}\left(Y_{i}\right)
\end{array}\right], \quad 1 \leq i \leq n
$$

- loglikelihood-ratio vector

$$
\mathbf{Z}_{n}(\mathbf{Y})=\sum_{i=1}^{n} \mathbf{L}_{i}=\left[\begin{array}{c}
\log d \mathbb{P} / d \mathbb{Q}_{1}(\mathbf{Y}) \\
\vdots \\
\log d \mathbb{P} / d \mathbb{Q}_{k}(\mathbf{Y})
\end{array}\right]
$$

- mean vector $\mathbf{D}_{i}=\mathbb{E}_{P_{i}}\left[\mathbf{L}_{i}\right]=\left\{D\left(P_{i} \| Q_{j i}\right)\right\}_{j=1}^{k}$
- covariance matrix $\mathrm{V}_{i}=\operatorname{Cov}_{P_{i}}\left(\mathbf{L}_{i}\right), \quad i \geq 1$

Likelihood Ratio Threshold Test (LRTT)

- deterministic test with threshold vector $\boldsymbol{\tau}=\left[\tau_{1}, \tau_{2}, \cdots, \tau_{k}\right]^{\prime}$:

$$
\delta_{\mathrm{LRTT}}(\mathbf{y}) \triangleq \mathbb{1}\left\{\mathbf{Z}_{n}(\mathbf{y}) \geq \boldsymbol{\tau}\right\}
$$

- GLRT is a special case with $\boldsymbol{\tau}=[\tau, \tau, \cdots, \tau]^{\prime}$:

$$
\delta_{\mathrm{GLRT}}(\mathbf{y})=\mathbb{1}\left\{\min _{1 \leq j \leq k} \frac{d \mathbb{P}(\mathbf{y})}{d \mathbb{Q}_{j}(\mathbf{y})} \geq \eta\right\}, \quad \eta=e^{\tau}
$$

LRTT for Composite Gaussian HT, $k=2$

- Loglikelihood ratio vector \mathbf{Z}_{n} has two components

$$
Z_{n 1}=n\left(-\theta_{1} \bar{Y}+\theta_{1}^{2} / 2\right), \quad Z_{n 2}=n(\bar{Y}+1 / 2),
$$

- LRTT: choose ϵ_{1} and ϵ_{2} s.t. $\epsilon_{1}+\epsilon_{2}=\epsilon$ and thresholds

$$
\begin{aligned}
& \tau_{1}=\frac{n}{2} \theta_{1}^{2}-\theta_{1} \sqrt{n} \mathcal{Q}^{-1}\left(\epsilon_{1}\right), \quad \tau_{2}=\frac{n}{2}-\sqrt{n} \mathcal{Q}^{-1}\left(\epsilon_{2}\right), \\
& \text { then } \delta_{\mathrm{LRTT}}(\bar{Y})=\mathbb{1}\left\{-\mathcal{Q}^{-1}\left(\epsilon_{2}\right) \leq \sqrt{n} \bar{Y} \leq \mathcal{Q}^{-1}\left(\epsilon_{1}\right)\right\}
\end{aligned}
$$

- Recall asymptotics of oracle LRT:

$$
\begin{aligned}
& \beta_{1-\epsilon}\left(\mathbb{P}, \mathbb{Q}_{1}\right) \sim \frac{\exp \left\{-\frac{n}{2} \theta_{1}^{2}+\theta_{1} \sqrt{n} \mathcal{Q}^{-1}(\epsilon)-\left[\mathcal{Q}^{-1}(\epsilon)\right]^{2} / 2\right\}}{\theta_{1} \sqrt{2 \pi n}} \\
& \beta_{1-\epsilon}\left(\mathbb{P}, \mathbb{Q}_{2}\right) \sim \frac{\exp \left\{-\frac{n}{2}+\sqrt{n} \mathcal{Q}^{-1}(\epsilon)-\left[\mathcal{Q}^{-1}(\epsilon)\right]^{2} / 2\right\}}{\sqrt{2 \pi n}}
\end{aligned}
$$

- LRTT power $\mathbb{E}_{P}\left[\delta_{\mathrm{LRTT}}(\bar{Y})\right]=1-\epsilon$ and false-positive probs

$$
e(1) \sim \beta_{1-\epsilon_{1}}\left(\mathbb{P}, \mathbb{Q}_{1}\right), \quad e(2) \sim \beta_{1-\epsilon_{2}}\left(\mathbb{P}, \mathbb{Q}_{2}\right)
$$

- Same error exponents as "oracle" LRT but the 2nd-order terms are worse since $\epsilon_{1}, \epsilon_{2}<\epsilon \quad \Rightarrow \mathcal{Q}^{-1}\left(\epsilon_{1}\right), \mathcal{Q}^{-1}\left(\epsilon_{2}\right)>\mathcal{Q}^{-1}(\epsilon)$
- LRTT outperforms GLRT here

III. Generalized NP Tests

Error Probabilities for Composite HT

- Randomized decision rule $\delta(\mathbf{y}) \triangleq \operatorname{Pr}\left\{\right.$ Say $\left.H_{0} \mid \mathbf{Y}=\mathbf{y}\right\}, \mathbf{y} \in \mathcal{Y}^{n}$
- Constrain test power $\mathbb{E}_{\mathbb{P}}[\delta(\mathbf{Y})] \geq 1-\epsilon$ for some fixed $\epsilon \in(0,1)$
- False-positive error probabilities $e_{j}=\mathbb{E}_{\mathbb{Q}_{j}}[\delta(\mathbf{Y})], 1 \leq j \leq k$
- Set of achievable $\left\{e_{j}\right\}_{j=1}^{k}$ for power $(1-\epsilon)$ tests:

$$
\begin{array}{r}
\mathcal{E}_{\epsilon}\left(\mathbb{P},\left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right) \triangleq\left\{\left[e_{1}, \ldots, e_{k}\right]^{\prime}: \exists \text { test } \delta\right. \text { s.t. } \\
\left.\mathbb{E}_{\mathbb{P}}[\delta(\mathbf{Y})] \geq 1-\epsilon \text { and } \mathbb{E}_{\mathbb{Q}_{j}}[\delta(\mathbf{Y})]=e_{j}, 1 \leq j \leq k\right\} .
\end{array}
$$

- The point $\left\{\beta_{1-\epsilon}\left(\mathbb{P}, \mathbb{Q}_{j}\right)\right\}_{j=1}^{k}$ is achievable only in the rare problems where a Uniformly Most Powerful test exists.
- If $k=1$, then (Neyman-Pearson)

$$
\mathcal{E}_{\epsilon}\left(\mathbb{P}, \mathbb{Q}_{1}\right)=\left[\beta_{1-\epsilon}\left(\mathbb{P}, \mathbb{Q}_{1}\right), 1-\beta_{1-\epsilon}\left(\mathbb{P}, \mathbb{Q}_{1}\right)\right]
$$

Optimal (non-dominated) test is randomized likelihood ratio test (LRT).

- For $k \geq 2$, nondominated tests are of interest. They are "generalized NP tests" (Lehmann) but generally not LRTs.

$$
\Rightarrow \mathcal{E}_{\epsilon}^{\mathrm{GNP}}\left(\mathbb{P},\left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right) \subset \mathcal{E}_{\epsilon}\left(\mathbb{P},\left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right)
$$

- Problem here: derive precise asymptotics of nondominated set $\mathcal{E}_{\epsilon}^{\mathrm{GNP}}\left(\mathbb{P},\left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right)$ when $\mathbb{P}=\prod_{i=1}^{n} P_{i}$ and $\mathbb{Q}_{j}=\prod_{i=1}^{n} Q_{j i}$.
- Will do so by relating GNP tests to LRTTs
- Achievable error vectors for power $(1-\epsilon)$ LRTTs:

$$
\begin{gathered}
\mathcal{E}_{\epsilon}^{\mathrm{LRTT}}\left(\mathbb{P},\left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right) \triangleq\left\{\left[e_{1}, \ldots, e_{k}\right]^{\prime}: \exists \text { LRTT } \delta_{\text {LRTT }}\right. \text { s.t. } \\
\left.\mathbb{E}_{\mathbb{P}}\left[\delta_{\mathrm{LRTT}}(\mathbf{Y})\right] \geq 1-\epsilon \text { and } \mathbb{E}_{\mathbb{Q}_{j}}\left[\delta_{\mathrm{LRTT}}(\mathbf{Y})\right]=e_{j}, 1 \leq j \leq k\right\}
\end{gathered}
$$

- Clearly

$$
\mathcal{E}_{\epsilon}^{\mathrm{LRTT}}\left(\mathbb{P},\left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right) \subset \mathcal{E}_{\epsilon}\left(\mathbb{P},\left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right)
$$

- Achievable false-positive error probabilities for $k=2$:

Characterization of GNP Tests

- Proposition 1. (Variation on Lehmann's Theorem 3.6.1). The set \mathcal{E} of achievable error probabilities

$$
\left[\begin{array}{lll}
\mathbb{E}_{\mathbb{Q}_{1}}[\delta(\mathbf{Y})], & \cdots, & \mathbb{E}_{\mathbb{Q}_{k}}[\delta(\mathbf{Y})], \\
\left.1-\mathbb{E}_{\mathbb{P}}[\delta(\mathbf{Y})]\right]^{\prime} \in[0,1]^{k+1}
\end{array}\right.
$$

for some test δ is convex and closed. If $\left[e_{1}^{\mathrm{FP}}, \ldots, e_{k}^{\mathrm{FP}}, e^{\mathrm{FN}}\right]^{\prime}$ is a minimal point in \mathcal{E} with $e^{\mathrm{FN}} \in(0,1)$, then \exists a nonzero $\boldsymbol{\alpha} \triangleq\left[\alpha_{1}, \ldots, \alpha_{k}\right]^{\prime} \geq 0$ and a gen'd NP test $\delta_{\text {GNP }}$ satisfying

$$
\begin{aligned}
\mathbb{E}_{\mathbb{P}}\left[\delta_{\mathrm{GNP}}(\mathbf{Y})\right] & =1-e^{\mathrm{FN}} \\
\mathbb{E}_{\mathbb{Q}_{j}}\left[\delta_{\mathrm{GNP}}(\mathbf{Y})\right] & =e_{j}^{\mathrm{FP}}, \quad j=1, \ldots, k
\end{aligned}
$$

and

$$
\begin{array}{lll}
\delta_{\mathrm{GNP}}(\mathbf{y})=1 & \text { when } & d \mathbb{P}(\mathbf{y})>\sum_{j=1}^{k} \alpha_{j} d \mathbb{Q}_{j}(\mathbf{y}) \\
\delta_{\mathrm{GNP}}(\mathbf{y})=0 & \text { when } & d \mathbb{P}(\mathbf{y})<\sum_{j=1}^{k} \alpha_{j} d \mathbb{Q}_{j}(\mathbf{y})
\end{array}
$$

Relation to LRTTs

- By Prop. 1, any δ_{GNP} is parameterized by nonnegative $\left\{\alpha_{j}\right\}_{j=1}^{k}$.
- Fix arbitrarily small $\eta>0$. Consider two LRTTs $\delta_{\mathrm{LRTT}}^{\mathrm{in}}$ and $\delta_{\text {LRTT }}^{\text {out }}$ with threshold vectors

$$
\tau_{j}^{\text {in }}=\ln \left[(k+\eta) \alpha_{j}\right], \quad \tau_{j}^{\text {out }}=\ln \alpha_{j}, \quad 1 \leq j \leq k
$$

- Proposition 2. The power and the false-positive error vector of δ_{GNP} can be sandwiched as follows:

$$
\mathrm{E}_{\mathbb{P}}\left[\delta_{\mathrm{LRTT}}^{\mathrm{in}}(\mathbf{Y})\right] \leq \mathrm{E}_{\mathbb{P}}\left[\delta_{\mathrm{GNP}}(\mathbf{Y})\right] \leq \mathrm{E}_{\mathbb{P}}\left[\delta_{\mathrm{LRTT}}^{\text {out }}(\mathbf{Y})\right]
$$

and

$$
\mathbf{e}\left(\delta_{\mathrm{LRTT}}^{\mathrm{in}}\right) \leq \mathbf{e}\left(\delta_{\mathrm{GNP}}\right) \leq \mathbf{e}\left(\delta_{\mathrm{LRTT}}^{\mathrm{out}}\right)
$$

- Distributions of \mathbf{Z}_{n} when $k=2$:

$$
(k=2)
$$

IV. Asymptotics

Related LD Work

- $k=1$: Moulin (2013):

$$
\beta_{1-\epsilon}(\mathbb{P}, \mathbb{Q})=e^{-\sum_{i=1}^{n} D\left(P_{i} \| Q_{i}\right)+\sqrt{\sum_{i=1}^{n} V\left(P_{i} \| Q_{i}\right)} \mathcal{Q}^{-1}(\epsilon)-\frac{1}{2} \log n+c+o(1)}
$$

refining Theorem 3.1 by Strassen (1962) for deterministic tests

- Borovkov and Rogozin (1965), Iltis (1995), Petrovskii (1996), Chaganty and Sethuraman (1996) derived multidimensional strong large deviations theorems

$$
\mathbb{P}\left\{\sum_{i=1}^{n} \mathbf{Z}_{i} \in \mathcal{D}_{n}\right\}=\exp \{\cdots\}
$$

for rare events, where $\mathbf{Z}_{i}, i \geq 1$ are independent \mathbb{R}^{k} valued random variables, and \mathcal{D}_{n} is a sequence of subsets of \mathbb{R}^{k}.

The Set $\mathcal{Q}_{\mathrm{inv}}$

- Let $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathrm{K})$ and $\epsilon \in(0,1)$. Then

$$
\mathcal{Q}_{\mathrm{inv}}(\mathrm{~K}, \epsilon) \triangleq\left\{\boldsymbol{\tau} \in \mathbb{R}^{k}: \operatorname{Pr}(\mathbf{X} \leq \boldsymbol{\tau}) \geq 1-\epsilon\right\}
$$

Assumptions

(A1) (Bounded moments). There exists $\eta>0$ s.t. $\forall n \geq 1$,

$$
\begin{aligned}
\eta \mathbf{1}<\overline{\mathbf{D}}_{n} & \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{D}_{i}<\frac{1}{\eta} \mathbf{1}, \\
\eta \mathbf{I}_{k}<\overline{\mathrm{V}}_{n} & \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathrm{~V}_{i}<\frac{1}{\eta} \mathrm{I}_{k}, \\
\bar{T}_{n} & \triangleq \frac{1}{n} \mathbb{E}_{\mathbb{P}}\left[\left\|\mathbf{Z}_{n}-n \overline{\mathbf{D}}_{n}\right\|_{2}^{3}\right]<\frac{1}{\eta} .
\end{aligned}
$$

(A2) $\mathbf{L}_{i}, i \geq 1$ are strongly nonlattice random vectors.

LRTTs

Theorem 1: Let assumptions (A1) and (A2) hold. Then
$\mathbf{e} \in \mathcal{E}_{\epsilon}^{\mathrm{LRTT}}\left(\mathbb{P},\left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right) \quad \Leftrightarrow \mathbf{e}=\exp \left\{-n \overline{\mathbf{D}}_{n}+\sqrt{n} \mathbf{b}-\frac{1}{2} \log n \mathbf{1}+\mathbf{c}+o_{\mathbf{b}, \mathbf{c}}(1)\right\}$
where $\mathbf{b} \in \partial \mathcal{Q}_{\text {inv }}\left(\bar{V}_{n}, \epsilon\right)$ and \mathbf{c} satisfies a linear inequality constraint
Sketch of the Proof.

- Let $\mathbf{Z}_{n}^{*} \sim \mathcal{N}\left(n \overline{\mathbf{D}}_{n}, n \overline{\mathrm{~V}}_{n}\right)$.

By the multidimensional Berry-Esséen theorem,

$$
\forall \boldsymbol{\tau}_{n}: \quad\left|\mathbb{P}\left\{\mathbf{Z}_{n} \geq \boldsymbol{\tau}_{n}\right\}-\operatorname{Pr}\left\{\mathbf{Z}_{n}^{*} \geq \boldsymbol{\tau}_{n}\right\}\right| \leq \gamma_{n}=O\left(n^{-1 / 2}\right)
$$

- Consider any LRTT with threshold vector $\boldsymbol{\tau}_{n}$ and $\mathbb{P}\left\{\mathbf{Z}_{n} \geq \boldsymbol{\tau}_{n}\right\} \geq 1-\epsilon$. Then $\operatorname{Pr}\left\{\mathbf{Z}_{n}^{*} \geq \boldsymbol{\tau}_{n}\right\} \geq 1-\epsilon-\gamma_{n}$, hence

$$
\boldsymbol{\tau}_{n} \in n \overline{\mathbf{D}}_{n}-\sqrt{n} \mathcal{Q}_{\mathrm{inv}}\left(\overline{\mathrm{~V}}_{n}, \epsilon+\gamma_{n}\right)
$$

- Define $\mathbf{U}_{n}=n^{-1 / 2}\left(\mathbf{Z}_{n}-\boldsymbol{\tau}_{n}\right)$. For $1 \leq j \leq k$ we have

$$
\begin{aligned}
\mathbb{Q}_{j}\left[\mathbf{Z}_{n} \geq \boldsymbol{\tau}_{n}\right] & =\mathbb{E}_{\mathbb{Q}_{j}}\left[\mathbb{1}\left\{\mathbf{Z}_{n} \geq \boldsymbol{\tau}_{n}\right\}\right] \\
& =\mathbb{E}_{\mathbb{P}}\left[e^{-Z_{n j}} \mathbb{1}\left\{\mathbf{Z}_{n} \geq \boldsymbol{\tau}_{n}\right\}\right] \\
& =e^{-\tau_{j}} \mathbb{E}_{\mathbb{P}}\left[e^{-\sqrt{n} U_{n j}} \mathbb{1}\left\{\mathbf{U}_{n} \geq \mathbf{0}\right\}\right] \\
& \stackrel{(*)}{=} \exp \left\{-\tau_{j}-\frac{1}{2} \log n+O(1)\right\}
\end{aligned}
$$

where $\left(^{*}\right)$ is proven using a variation on Chaganty and Sethuraman (1996).

- Use $\boldsymbol{\tau}_{n} \in n \overline{\mathbf{D}}_{n}-\sqrt{n} \mathcal{Q}_{\mathrm{inv}}\left(\overline{\mathrm{V}}_{n}, \epsilon+\gamma_{n}\right)$ and Taylor expansion to conclude that the error vector

$$
\mathbf{e} \in \exp \left\{-n \overline{\mathbf{D}}_{n}+\sqrt{n} \mathcal{Q}_{\mathrm{inv}}\left(\overline{\mathrm{~V}}_{n}, \epsilon\right)-\frac{1}{2} \log n \mathbf{1}+O(1)\right\}
$$

GNP Tests

- Theorem 2: Let assumptions (A1) and (A2) hold. Then

$$
\begin{aligned}
& \mathbf{e} \in \mathcal{E}_{\epsilon}^{\operatorname{LRTT}}\left(\mathbb{P},\left\{\mathbb{Q}_{j}\right\}_{j=1}^{k}\right) \Leftrightarrow \\
& \mathbf{e}=\exp \left\{-n \overline{\mathbf{D}}_{n}+\sqrt{n} \mathbf{b}-\frac{1}{2} \log n \mathbf{1}+\mathbf{c}-\mathbf{d}_{n}+o_{\mathbf{b}, \mathbf{c}}(1)\right\}
\end{aligned}
$$

where $\mathbf{b} \in \partial \mathcal{Q}_{\mathrm{inv}}\left(\overline{\mathrm{V}}_{n}, \epsilon\right)$; \mathbf{c} satisfies a linear inequality constraint; and $\mathbf{0} \leq \mathbf{d}_{n} \leq \ln k \mathbf{1}$

- Proof: application of Theorem 1 and Prop. 2

Conclusion

- LRTTs are simple and powerful for composite HT with k alternatives
- While optimal decision rules for composite hypothesis testing are generally not LRTTs, precise asymptotic characterization of achievable errors is possible.
- Achievable error probabilities are asymptotically within $\ln k$ of achievable error probabilities for deterministic LRTTs.

