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AWGN Channels

AWGN Channels

Input: xt ∈ A, where A ⊂ Rℓ is a signal constellation of finite size.

Output: yt = xt + wt , where wt is an ℓ-dimensional sample from a white
Gaussian noise process with power spectrum density (PSD) σ2.

The signal-to-noise ratio (SNR) is defined as

SNR =

∑

x∈A ||x ||2

ℓσ2|A|

The maximum transmission rate (bits/dimension) when the signal points are
used with equal probability is given by I (X ;Y ), which is naturally
upper-bounded by 0.5 log(1 + SNR).

Roughly speaking, by a good code, we mean a code that performs well within
one dB from the corresponding Shannon limit.
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Good Codes

Good Codes
Turbo codes:
parallel concatenated convolutional codes (PCCC) and serial concatenated
convolutional codes (SCCC);
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· · ·
Non-binary, BICM, · · ·
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any given target error performance (of interest), say, 10−4, 10−6, or 10−15.
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Any Signal Constellation Can Be Treated As A Group

A finite abelian group (A,+) is a finite set A along with a binary operation
+ : A ×A → A satisfying the following rules.
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Any Signal Constellation Can Be Treated As A Group

A finite abelian group (A,+) is a finite set A along with a binary operation
+ : A ×A → A satisfying the following rules.

1 For any α, β ∈ A, α + β = β + α.
2 For any α, β, γ ∈ A, (α + β) + γ = α + (β + γ).
3 There is a unique element θ ∈ A satisfying α + θ = α for all α ∈ A. We call θ

the identity element of A and denote it by 0 for convenience.
4 For each α ∈ A, there is a unique element β ∈ A such that α+ β = 0. We call

such a β the negative element of α and denote it by −α for convenience.
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set: A = Λ/Λ0, where Λ ⊂ Rℓ is a lattice with Λ0 as a sub-lattice;
add: α + β mod Λ0 for α, β ∈ Λ/Λ0.

2 Conventional M -ary phase-shift keying (M -PSK)

set: A =
{

exp
(
2rπ
√
−1

M

)

, 0 ≤ r ≤ M − 1
}

;
add: αβ for α, β ∈ A.
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set: A = Λ/Λ0, where Λ ⊂ Rℓ is a lattice with Λ0 as a sub-lattice;
add: α + β mod Λ0 for α, β ∈ Λ/Λ0.

2 Conventional M -ary phase-shift keying (M -PSK)

set: A =
{

exp
(
2rπ
√
−1

M

)

, 0 ≤ r ≤ M − 1
}

;
add: αβ for α, β ∈ A.

3 General constellation:
set: indexed (in an arbitrary order) by {0, 1, · · · , q − 1};
add: α + β mod q for two signal points α, β.
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RSPC Codes over Groups

Repetition (R) Codes over Groups

Consider an R code C [N , 1] over the group (A,+).
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1 Encoding: u ∈ A 7→ v = (u , v1, · · · , vN−1) = (u , u , · · · , u
︸       ︷︷       ︸

N

) ∈ AN

2 Decoding: The soft-in soft-out (SISO) decoding can be implemented in the
same way as the message processing at a generic variable node of an LDPC
code (binary or non-binary).

4
56 789 −: ;<= −>? @AB −: CDE−

…

…
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︸       ︷︷       ︸

N

) ∈ AN

2 Decoding: The soft-in soft-out (SISO) decoding can be implemented in the
same way as the message processing at a generic variable node of an LDPC
code (binary or non-binary).

F
GH IJK −L MNO −PQ RST −L UVW−

…

…

… … … …

3 Complexity: No computational load is required for encoding; O (|A|) per
coded symbol for decoding.
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RSPC Codes over Groups

Repetition (R) Codes over Groups

4 Performance:

For BPSK signalling over the AWGN channels, A = {−1,+1}, the
symbol-error-rate (SER) (i.e., the bit-error-rate (BER)) of the R code is given
by

pR(SNR) = Q





√

N

σ2



 , (1)

where

Q(x ) =
∫ ∞

x

1
√
2π

e−
y2

2 dy .
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For high-order constellations, the SER can be upper-bounded using the
techniques of random mapping as shown in [Zhuang13,Zhuang14].

[Zhuang13] Qiutao Zhuang, Jia Liu, and Xiao Ma,“Upper bounds on the ML decoding error probability of
general codes over AWGN channels,” [Online]. Available: http://arxiv.org/abs/1308.3303.

[Zhuang14] Qiutao Zhuang, Xiao Ma, and Aleksander Kavčić, “Bounds on the ML decoding error probability of

RS-Coded modulation over AWGN channels,” [Online]. Available: http://arxiv.org/abs/1401.5305.
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Figure: Performance of the R codes with N = 2, 3 over the BPSK-AWGN channels.
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Single-Parity-Check (SPC) Codes over Groups
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RSPC Codes over Groups

Single-Parity-Check (SPC) Codes over Groups

Consider an SPC code C [N ,N − 1] over the group (A,+).

1 Encoding: u = (u0, u1, · · · , uN−2) ∈ AN−1 7→ v = (u0, u1, · · · , uN−2, vN−1) ∈
AN , where vN−1 = −

∑N−2
i=0 ui and the summation is over the group A.
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2 Decoding: The SISO decoding can be implemented in the same way as the
message processing at a generic check node of an LDPC code (binary or
non-binary).
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Single-Parity-Check (SPC) Codes over Groups

Consider an SPC code C [N ,N − 1] over the group (A,+).

1 Encoding: u = (u0, u1, · · · , uN−2) ∈ AN−1 7→ v = (u0, u1, · · · , uN−2, vN−1) ∈
AN , where vN−1 = −

∑N−2
i=0 ui and the summation is over the group A.

2 Decoding: The SISO decoding can be implemented in the same way as the
message processing at a generic check node of an LDPC code (binary or
non-binary).

…
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3 Complexity: O (1) per coded symbol for encoding; O (|A|2) per coded symbol
for decoding.
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RSPC Codes over Groups

Single-Parity-Check (SPC) Codes over Groups

4 Performance:

For BPSK signalling over the AWGN channels, the SER (i.e., BER) of the SPC
code is bounded by

pSPC (SNR) ≤
N−1∑

i=1

i

N − 1

(

N − 1
i

)

Q





√

⌊2(i + 1)/2⌋
σ2



 , (2)

where ⌊x ⌋ stands for the maximum integer that is not greater than x .
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where ⌊x ⌋ stands for the maximum integer that is not greater than x .
For high-order constellations, the SER can be upper-bounded by using the
techniques of random mapping as shown in [Zhuang13,Zhuang14].
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Figure: Performance of the SPC codes with N = 3, 4 over the BPSK-AWGN channels.
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Figure: Performance of the SPC codes with N = 3, 5 over the 8-PSK-AWGN channels.
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Figure: Performance of the SPC codes with N = 3, 5 over the 8-PSK-AWGN channels.
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RSPC Codes over Groups

Time-Sharing

1 We have constructed a series of codes with rates

0 < · · · < 1

N
<

1

N − 1
< · · · < 1

3
<

1

2
<

2

3
< · · · < M − 2

M − 1
<

M − 1
M

< · · · < 1.
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2 These code rates partition the interval (0, 1) into small disjoint intervals.
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3 For any given code rate R = P
Q

(P and Q are co-prime), we can find a

(unique) small interval (KL

NL
,
KU

NU
) such that KL

NL
< P

Q
≤ KU

NU
.
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RSPC Codes over Groups

Time-Sharing

1 We have constructed a series of codes with rates

0 < · · · < 1
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1

N − 1
< · · · < 1

3
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1
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3
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M − 1
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2 These code rates partition the interval (0, 1) into small disjoint intervals.

¤ ¥
¦

§
¨

©
ª

«
¬

®
®

− ¯……… …

3 For any given code rate R = P
Q

(P and Q are co-prime), we can find a

(unique) small interval (KL

NL
,
KU

NU
) such that KL

NL
< P

Q
≤ KU

NU
.

4 By time-sharing, i.e., using the code C [NL,KL] α times and the C [NU ,KU ]
β times, we can construct a code with rate R = P

Q
.

⋯

α β

⋯ °±²³ ´°±²³ µ °±²³ ´°±²³ µ
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RSPC Codes over Groups

Time-Sharing

⋯

α β

⋯ ¶·¸¹ º¶·¸¹ » ¶·¸¹ º¶·¸¹ »

5 The time-sharing parameters α and β can be determined by

P

Q
=
αKL + βKU

αNL + βNU

. (3)
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RSPC Codes over Groups

Time-Sharing

⋯

α β

⋯ ¼½¾¿ À¼½¾¿ Á ¼½¾¿ À¼½¾¿ Á

5 The time-sharing parameters α and β can be determined by

P

Q
=
αKL + βKU

αNL + βNU

. (3)

6 These codes are referred to as the RSPC codes. An RSPC code with rate
R = P

Q
is denoted as C [Q ,P ] for convenience.
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RSPC Codes over Groups

Time-Sharing

⋯

α β

⋯ ÂÃÄÅ ÆÂÃÄÅ Ç ÂÃÄÅ ÆÂÃÄÅ Ç
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RSPC Codes over Groups

Time-Sharing

⋯

α β

⋯ ÈÉÊË ÌÈÉÊË Í ÈÉÊË ÌÈÉÊË Í

7 Encoding:

The left-most αKL symbols 7→ α codewords of C [NL,KL];
The remaining symbols 7→ β codewords of C [NU ,KU ].
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RSPC Codes over Groups

Time-Sharing

⋯

α β

⋯ ÎÏÐÑ ÒÎÏÐÑ Ó ÎÏÐÑ ÒÎÏÐÑ Ó

7 Encoding:

The left-most αKL symbols 7→ α codewords of C [NL,KL];
The remaining symbols 7→ β codewords of C [NU ,KU ].

8 Decoding: The decoding is equivalent to decoding separately α codewords of
C [NL,KL] and β codewords of C [NU ,KU ].
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RSPC Codes over Groups

Time-Sharing

⋯

α β

⋯ ÔÕÖ× ØÔÕÖ× Ù ÔÕÖ× ØÔÕÖ× Ù

7 Encoding:

The left-most αKL symbols 7→ α codewords of C [NL,KL];
The remaining symbols 7→ β codewords of C [NU ,KU ].

8 Decoding: The decoding is equivalent to decoding separately α codewords of
C [NL,KL] and β codewords of C [NU ,KU ].

9 Complexity: O (1) per coded symbol for encoding; O (|A|2) per coded symbol
for decoding.
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RSPC Codes over Groups

Time-Sharing

⋯

α β

⋯ ÚÛÜÝ ÞÚÛÜÝ ß ÚÛÜÝ ÞÚÛÜÝ ß

10 Performance: The performance of the RSPC code with R = P
Q

is given by

pRSPC (SNR) =
αKL

αKL + βKU

· pL(SNR) +
βKU

αKL + βKU

· pU (SNR), (4)

where pL(SNR) and pU (SNR) are the performance functions for the code
C [NL,KL] and the code C [NU ,KU ], respectively.
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RSPC Codes over Groups

Example

Table: Examples of RSPC codes over groups

Groups R = P
Q

(
KL

NL
,
KU

NU

)

α β Constructed codes

BPSK 3
8

(
1
3
, 1
2

)

2 1 C [3, 1]2 × C [2, 1]

BPSK 5
8

(
1
2
, 2
3

)

1 2 C [2, 1] × C [3, 2]2

8-PSK 2
5

(
1
3
, 1
2

)

1 1 C [3, 1] × C [2, 1]

8-PSK 3
5

(
1
2
, 2
3

)

1 1 C [2, 1] × C [3, 2]

16-QAM 239
255

(
14
15
, 15
16

)

1 15 C [15, 14] × C [16, 15]15
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RSPC Codes over BPSK
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Figure: Performance of the RSPC codes R = 3/8 and 5/8 over the BPSK-AWGN
channels.
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RSPC Codes over 8-PSK
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Figure: Performance of the RSPC codes with R = 2/5 and 3/5 over the 8-PSK-AWGN
channels.
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Figure: Performance of the RSPC codes with R = 2/5 and 3/5 over the 8-PSK-AWGN
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RSPC Codes over Groups

Summary

In summary, we are able to construct codes with

any given rational code rate;

analytic performance bounds;

over any alphabet;

but (usually) poor performance in terms of gap to the capacity.
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Repetition Increases Reliability
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u v

…

BI-

AWGNC

y
(0)

y
(1)

y
(m)

BI-

AWGNC

BI-

AWGNC

c
(0)

m

…

w
(1)

w
(m)

0 1 2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

once

SNR (dB)
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The codeword is transmitted once.

We assume a basic code C [n , k ], whose performance curve in terms of BER
versus SNR is available. In this talk, we assume that C = [N ,K ]B , the B-fold
Cartesian product of a short block code [N ,K ], consisting of all vectors of the
form (v0, v1, · · · , vB−1), where each v i is a codeword in the [N ,K ] code for
0 ≤ i ≤ B − 1.
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Repetition Increases Reliability
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The same codeword is transmitted twice.
The performance curve shifts to the left by 3 dB.
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Repetition Increases Reliability

Enc
u v

…

BI-

AWGNC

y
(0)

y
(1)

y
(m)

BI-

AWGNC

BI-

AWGNC

c
(0)

m

…

c
(1)

c
(m)

0 1 2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

oncetwice

 m+1 times

10log
10

(2)

10log
10

(m+1)

SNR (dB)

B
E

R
The same codeword is transmitted m + 1 times.
The performance curve shifts to the left by 10 log10(m + 1) dB.
Repetition increases reliability but decreases efficiency (code rate).
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Superposition Increases Efficiency
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The first transmission
Initially, the transmitter sends a codeword from the code C that corresponds to the
first data block.
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Superposition Increases Efficiency
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The second transmission
Since the short code is weak, the receiver is unable to recover reliably the data from
the current received block. Hence the transmitter transmits the codeword (possibly
in its interleaved version) one more time.

Xiao Ma (SYSU) Construct Good Codes Hong Kong, December, 2014 30 / 59



Superposition Increases Efficiency
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The second transmission
Since the short code is weak, the receiver is unable to recover reliably the data from
the current received block. Hence the transmitter transmits the codeword (possibly
in its interleaved version) one more time.

In the meanwhile, a fresh codeword from C that corresponds to the second data
block is superimposed on the second block transmission.
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Superposition Increases Efficiency
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The third transmission for encoding memory m = 1

In the third transmission, the current codeword v
(2) is superimposed to (“mixed

into”) the previous codeword v
(1) and then transmitted.

This system can be iteratively decoded by passing extrinsic messages between
adjacent layers. The performance is intuitively lower bounded by the repetition
system.
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Superposition Increases Efficiency
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Transmission with memory m

Generally, for a BMST system with memory m, the t-th transmission is a
superposition of the current codeword and the m consecutive past codewords, all in
their randomly-interleaved version.

The code rate remains almost the same, except that termination is needed, while
the minimum distance increases very likely by m times for large B ≫ m. Hence the
error floor can be predicted by shifting the performance curve to the left by
10 log10(m + 1) dB.
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Summary

The BMST system

The encoding diagram of a BMST system with memory m.
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The lower bound can be obtained by shifting the performance curve of the basic
code to the left by 10 log10(m + 1) dB.
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Summary

The BMST system

The encoding diagram of a BMST system with memory m.
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The normal graph for a BMST system with L = 4 and m = 2.
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The lower bound can be obtained by shifting the performance curve of the basic
code to the left by 10 log10(m + 1) dB.

Any code with fast encoding algorithm and SISO decoding algorithm can be
embedded in the BMST system.
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A General Procedure of Designing BMST-RSPC Codes

over Groups

With the genie-aided lower bound, to construct a BMST-RSPC code of a given
code rate R = P

Q
over a group (A,+) with a target SER ptarget, we can perform

the following steps.

1 Construct an RSPC code C [Q ,P ] over the group (A,+), whose
performance (or upper-bound) function SER = pRSPC (SNR) is available.
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n = QB large enough in our simulations;

Xiao Ma (SYSU) Construct Good Codes Hong Kong, December, 2014 36 / 59



A General Procedure of Designing BMST-RSPC Codes

over Groups

With the genie-aided lower bound, to construct a BMST-RSPC code of a given
code rate R = P

Q
over a group (A,+) with a target SER ptarget, we can perform

the following steps.

1 Construct an RSPC code C [Q ,P ] over the group (A,+), whose
performance (or upper-bound) function SER = pRSPC (SNR) is available.

2 Take the B-fold Cartesian product of the RSPC code C [Q ,P ]B as the basic
code. In order to approach the channel capacity, we set the code length
n = QB large enough in our simulations;

3 Replace the encoder ENC in the original BMST system by the RSPC

encoder and + by the addition over the associated group.
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A General Procedure of Designing BMST-RSPC Codes

over Groups

4 Find the required SNR to achieve the target SER. That is, find γtarget such
that pRSPC (γtarget) ≤ ptarget.
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5 Find the Shannon limit for the rate R log2(|A|), denoted by γlim;
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A General Procedure of Designing BMST-RSPC Codes

over Groups

4 Find the required SNR to achieve the target SER. That is, find γtarget such
that pRSPC (γtarget) ≤ ptarget.

5 Find the Shannon limit for the rate R log2(|A|), denoted by γlim;

6 Determine the encoding memory by 10 log10(m + 1) ≥ γtarget − γlim. That is,

m =

⌊

10
γtarget−γlim

10 − 1
⌉

, (5)

where ⌊x ⌉ stands for the integer that is closest to x .
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A General Procedure of Designing BMST-RSPC Codes

over Groups

4 Find the required SNR to achieve the target SER. That is, find γtarget such
that pRSPC (γtarget) ≤ ptarget.

5 Find the Shannon limit for the rate R log2(|A|), denoted by γlim;

6 Determine the encoding memory by 10 log10(m + 1) ≥ γtarget − γlim. That is,

m =

⌊

10
γtarget−γlim

10 − 1
⌉

, (5)

where ⌊x ⌉ stands for the integer that is closest to x .

7 Generate m + 1 interleavers randomly.
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Construction Examples – BMST-RSPC codes over BPSK
Table: The encoding memories required to approach the corresponding Shannon limits using BMST-RSPC
codes at given target BERs

R = P/Q Basic codes ptarget γtarget (dB) γlim (dB) γtarget−γlim (dB) m

1/8 R [8,1]1250 10−3 0.77 −7.23 8.00 6

1/8 R [8,1]1250 10−6 4.51 −7.23 11.74 14

1/4 R [4,1]2500 10−3 3.78 −3.80 7.58 5

1/4 R [4,1]2500 10−6 7.52 −3.80 11.32 13

3/8 RSPC [8,3]1250 10−3 6.0 −1.6 7.6 5

3/8 RSPC [8,3]1250 10−6 10.1 −1.6 11.7 14

1/2 R [2,1]5000 10−3 6.79 0.19 6.60 4

1/2 R [2,1]5000 10−6 10.53 0.19 10.34 10

1/2 R [2,1]5000 10−15 14.99 0.19 14.80 30

5/8 RSPC [8,5]1250 10−3 7.2 1.8 5.4 2

5/8 RSPC [8,5]1250 10−6 10.7 1.8 8.9 7

3/4 SPC [4, 3]2500 10−3 7.62 3.39 4.23 2

3/4 SPC [4, 3]2500 10−6 10.91 3.39 7.52 5

7/8 SPC [8, 7]1250 10−3 8.18 5.27 2.91 1

7/8 SPC [8, 7]1250 10−6 11.20 5.27 5.93 3

C. Liang, X. Ma, Q. Zhuang, and B. Bai, “Spatial coupling of generator matrix: A general approach to design
Xiao Ma (SYSU) Construct Good Codes Hong Kong, December, 2014 39 / 59
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A Construction Example – BMST-RSPC over BPSK with

rate-1/2
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Figure: Performance of the BMST systems with the R code [2, 1]5000 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.
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Figure: Performance of the BMST systems with the R code [2, 1]5000 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST-RSPC codes over BPSK
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Figure: Performance of the BMST systems with the R code [8, 1]1250 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST-RSPC codes over BPSK
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Figure: Performance of the BMST systems with the R code [4, 1]2500 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST-RSPC codes over BPSK

−2 −1.5 −1 −0.5 0 0.5 1 1.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
Shannon limit of rate 3/8

BMST,  m = 5,  d = 15,  p
target

 = 10−3

BMST,  m = 14,  d = 42,  p
target

 = 10−6

Lower bound for  m = 5
Lower bound for  m = 14

Figure: Performance of the BMST systems with the RSPC [8, 3]1250 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST-RSPC codes over BPSK
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Figure: Performance of the BMST systems with the RSPC [8, 5]1250 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST-RSPC codes over BPSK
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Figure: Performance of the BMST systems with the SPC [4, 3]2500 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.

Xiao Ma (SYSU) Construct Good Codes Hong Kong, December, 2014 45 / 59



Construction Examples – BMST-RSPC codes over BPSK
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Figure: Performance of the BMST systems with the SPC [8, 7]1250 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.

Xiao Ma (SYSU) Construct Good Codes Hong Kong, December, 2014 46 / 59



Construction Examples – BMST-RSPC codes over BPSK
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Figure: The required SNRs (1/σ2) for the BMST-RPSC codes to achieve the BER of
10−6 over the BPSK-AWGN channels.
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Construction Examples – BMST-RSPC codes over BPSK
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Figure: Performance of the BMST system with the R code [2, 1]5000 as the basic code.
The target BER is 10−15. The system encodes L = 100000 sub-blocks of data with the
encoding memory m = 30 and decodes with a decoding delay d = 60 and a maximum
iteration Imax = 18. At the SNR of 0.5 dB, pI = 7.2 × 10−6. Hence, according to the
genie-aided bound, pII = 4.2 × 10−17.
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Construction Examples – BMST-RSPC codes over 8-PSK

Example

Table: The encoding memories required to approach the corresponding Shannon limits
using BMST-RSPC codes with rates 1

5
, 2
5
, 3
5
, 4
5
at the target SER ptarget = 10−4 over the

8-PSK-AWGN channels

Rates R ptarget γtarget (dB) γlim (dB) Gap γtarget−γlim (dB) Memory m

1/5 10−4 10.1 −2.8 12.9 18

2/5 10−4 13.7 1.3 12.4 16

3/5 10−4 14.3 4.7 9.6 8

4/5 10−4 14.8 8.1 6.7 4
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Construction Examples – BMST-RSPC codes over 8-PSK
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Figure: Performance of the BMST-RSPC codes using the RSPC code [5, 2]150 to achieve
the target SER ptarget = 10−4 over the 8-PSK-AWGN channels, where the encoder
terminates every L = 1000 sub-blocks and the maximum iteration number Imax = 18.
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Figure: Performance of the BMST-RSPC codes using the RSPC codes
[5,K ]150(K = 1, 2, 3, 4) to achieve the target SER ptarget = 10−4 over the 8-PSK-AWGN
channels, where the encoder terminates every L = 1000 sub-blocks and the maximum
iteration number Imax = 18.
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Figure: The required SNRs for the BMST-RSPC codes using the RSPC codes
[5,K ]150(K = 1, 2, 3, 4) to achieve the target SER ptarget = 10−4 over the 8-PSK-AWGN
channels, where the encoder terminates every L = 1000 sub-blocks.
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Construction Examples – BMST-RSPC codes over

16-QAM

Table: The encoding memory required to approach the Shannon limit using BMST-RSPC
codes with rates R = 239

255
at the target SER ptarget = 10−3 over 16-QAM-AWGN channels

Rates R ptarget γtarget (dB) γlim (dB) Gap γtarget−γlim (dB) Memory m

239/255 10−3 16.0 12.7 3.3 1
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Figure: Performance of the BMST system using the RSPC code [255, 239]4 to achieve
the target SER ptarget = 10−3 over the 16-QAM-AWGN channels, where the encoder
terminates every L = 1000 sub-blocks and the maximum iteration number Imax = 18.
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Conclusions

Conclusions

We have presented a simple (also deterministic) procedure to construct codes

for any rational code rate;
over any alphabet;
performing well at any given target error rate;
having linear complexity with the code length.

Generalization to other ergodic channels is possible.
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