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Wiretap Network

Let 𝐺 = (𝑉,𝐸) be a finite directed acyclic network with a single source node

𝑠 and a set of sink nodes 𝑇 ⊂ 𝑉 ∖ {𝑠}, where

𝑉 is the set of nodes, and

𝐸 is the set of edges.

Parallel edges between two adjacent nodes are allowed.

An index taken from an alphabet can be transmitted on each edge in 𝐸.

Let A be a collection of subsets of 𝐸, where every edge set in A is called a

wiretap set.
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Wiretap Network

A wiretap network is a quadruple (𝐺, 𝑠, 𝑇,A ), where

𝑠 generates a random source message 𝑀 according to an arbitrary distribution

on a message set ℳ;

each 𝑡 ∈ 𝑇 is required to recover the source message 𝑀 with zero error;

arbitrary one wiretap set in A , but no more than one, may be fully accessed

by a wiretapper;

A is known by 𝑠 and all 𝑡 ∈ 𝑇 but which wiretap set in A is actually

eavesdropped is unknown.
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Wiretap Network

It is necessary to randomize the source message to combat the wiretapper.

The random key 𝐾 available at the source node is a random variable that

takes values in a set of keys 𝒦 according to the uniform distribution.
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Secure Network Codes

Let ℱ be an alphabet.

An ℱ-valued secure network code on a wiretap network (𝐺, 𝑠, 𝑇,A ) consists

of a set of local encoding mappings {𝜑𝑒 : 𝑒 ∈ 𝐸} such that

if 𝑒 ∈ Out(𝑠),

𝜑𝑒 : ℳ×𝒦 → ℱ ;

otherwise, i.e., if 𝑒 ∈ Out(𝑣) for a node 𝑣 ∈ 𝑉 ∖ {𝑠},

𝜑𝑒 : ℱ |In(𝑣)| → ℱ .
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Secure Network Codes

Definition 1

For a secure network code on the wiretap network (𝐺, 𝑠, 𝑇,A ), 𝐼(𝑌𝐴;𝑀) = 0

for every wiretap set 𝐴 ∈ A , where 𝐼(𝑌𝐴;𝑀) denotes the mutual information

between 𝑌𝐴 = (𝑌𝑒 : 𝑒 ∈ 𝐴) and 𝑀 .
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The Required Alphabet Size

Proposition 1 ([Cai & Yeung]1)

Let (𝐺, 𝑠, 𝑇,A ) be a wiretap network and ℱ be an alphabet with |ℱ| ≥ |𝑇 |, the
number of sink nodes in 𝐺. Then there exists an ℱ-valued secure network code

over (𝐺, 𝑠, 𝑇,A ) provided that |ℱ| > |A |.

1N. Cai and R. W. Yeung, “Secure Network Coding on a Wiretap Network,”

IEEE Trans. Inf. Theory, 2011.
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The Required Alphabet Size

The lower bound |A | on the required alphabet size is typically too large for im-

plementation in terms of computational complexity and storage requirement.

Reduction of the required alphabet size is a problem not only of theoretical

interest but also of practical importance.
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An Assumption

Assume that all wiretap sets are regular.

A wiretap set 𝐴 is said to be regular, if |𝐴| = mincut(𝑠,𝐴).

The collection of wiretap sets A is said to be regular, if all wiretap sets in A

are regular.

Replace non-regular wiretap sets in A by their minimum cuts (that are regular)

to form A ′.

A secure network code that is secure for A ′ is also secure for A .
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Equivalence Relation “∼”

Let (𝐺, 𝑠, 𝑇,A ) be a wiretap network.

The binary relation “∼”:

For any two edge sets 𝐴 and 𝐴′ in 𝐺, we write 𝐴 ∼ 𝐴′ provided that

there exists an edge set CUT that is a minimum cut between 𝑠 and 𝐴

and also between 𝑠 and 𝐴′.
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Equivalence Relation “∼”

Proposition 2 ([Guang et al.]2)

The binary relation “∼” is an equivalence relation. To be specific, For any three

edge sets 𝐴, 𝐴′, and 𝐴′′ in 𝐺:

1 (Reflexivity) 𝐴 ∼ 𝐴;

2 (Symmetry) if 𝐴 ∼ 𝐴′ then 𝐴′ ∼ 𝐴;

3 (Transitivity) if 𝐴 ∼ 𝐴′ and 𝐴′ ∼ 𝐴′′, 𝐴 ∼ 𝐴′′.

2X. Guang, J. Lu, and F.-W. Fu, “Small field size for secure network coding”,

IEEE Commun. Lett., 2015.
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Equivalence Relation “∼”

Proposition 3

Let 𝐴1, 𝐴2, · · · , 𝐴𝑚 be 𝑚 equivalent edge sets under the equivalence relation “∼”.

Then

mincut(𝑠,∪𝑚
𝑖=1𝐴𝑖) = mincut(𝑠,𝐴𝑗), ∀𝑗, 1 ≤ 𝑗 ≤ 𝑚.

With “∼”, the wiretap sets in A can be partitioned into equivalence classes.

All the wiretap sets in an equivalence class have a common minimum cut.
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The Required Alphabet Size

Denote 𝑁(A ) by the number of the equivalence classes in A .

Theorem 4

Let (𝐺, 𝑠, 𝑇,A ) be a wiretap network and ℱ be an alphabet with |ℱ| ≥ |𝑇 |. Then
there exists an ℱ-valued secure network code over (𝐺, 𝑠, 𝑇,A ) provided that

|ℱ| > 𝑁(A ).

This lower bound 𝑁(A ) was originally obtained in [Guang et al.]3 for 𝑟-

wiretap networks, but it also applies for general wiretap networks.

3X. Guang, J. Lu, and F.-W. Fu, “Small field size for secure network coding”,

IEEE Commun. Lett., 2015.
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Example
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Let the collection of wiretap sets A be:

A =
{︁
{𝑒6}, {𝑒7}, {𝑒8}, {𝑒9}, {𝑒12}, {𝑒13},

{𝑒14}, {𝑒15}, {𝑒18}, {𝑒19}, {𝑒20}, {𝑒21},

{𝑒6, 𝑒18}, {𝑒6, 𝑒19}, {𝑒7, 𝑒18}, {𝑒7, 𝑒19}, {𝑒8, 𝑒11},

{𝑒8, 𝑒16}, {𝑒8, 𝑒18}, {𝑒9, 𝑒10}, {𝑒9, 𝑒18}, {𝑒9, 𝑒19},

{𝑒10, 𝑒14}, {𝑒10, 𝑒15}, {𝑒10, 𝑒19}, {𝑒10, 𝑒21}, {𝑒11, 𝑒14},

{𝑒11, 𝑒15}, {𝑒11, 𝑒18}, {𝑒11, 𝑒20}, {𝑒12, 𝑒20}, {𝑒12, 𝑒21},

{𝑒13, 𝑒17}, {𝑒13, 𝑒21}, {𝑒14, 𝑒20}, {𝑒14, 𝑒21}, {𝑒15, 𝑒20},

{𝑒15, 𝑒21}, {𝑒18, 𝑒20}, {𝑒18, 𝑒21}, {𝑒19, 𝑒20}, {𝑒19, 𝑒21},

{𝑒1, 𝑒3, 𝑒16}, {𝑒1, 𝑒11, 𝑒16}, {𝑒2, 𝑒10, 𝑒16},

{𝑒3, 𝑒5, 𝑒17}, {𝑒4, 𝑒10, 𝑒17}, {𝑒5, 𝑒11, 𝑒17}
}︁
.

|A | = 48.
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e.g., consider three wiretap sets {𝑒12, 𝑒20}, {𝑒13, 𝑒17}, {𝑒14, 𝑒21}.
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Example

The equivalence classes of wiretap sets are:

Cl1 =
{︁
{𝑒6}, {𝑒7}

}︁
, Cl2 =

{︁
{𝑒8}, {𝑒9}

}︁
,

Cl3 =
{︁
{𝑒12}, {𝑒13}

}︁
, Cl4 =

{︁
{𝑒14}, {𝑒15}

}︁
,

Cl5 =
{︁
{𝑒18}, {𝑒19}

}︁
, Cl6 =

{︁
{𝑒20}, {𝑒21}

}︁
,

Cl7 =
{︁
{𝑒8, 𝑒11}, {𝑒9, 𝑒10}

}︁
,

Cl8 =
{︁
{𝑒10, 𝑒19}, {𝑒11, 𝑒18}

}︁
,

Cl9 =
{︁
{𝑒10, 𝑒21}, {𝑒11, 𝑒20}

}︁
,

Cl10 =
{︁
{𝑒10, 𝑒14}, {𝑒10, 𝑒15}, {𝑒11, 𝑒14}, {𝑒11, 𝑒15}

}︁
,

Cl11 =
{︁
{𝑒18, 𝑒20}, {𝑒18, 𝑒21}, {𝑒19, 𝑒20}, {𝑒19, 𝑒21}

}︁
;
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Example

Cl12 =
{︁
{𝑒6, 𝑒18}, {𝑒6, 𝑒19}, {𝑒7, 𝑒18}, {𝑒7, 𝑒19},

{𝑒8, 𝑒16}, {𝑒8, 𝑒18}, {𝑒9, 𝑒18}, {𝑒9, 𝑒19}
}︁
,

Cl13 =
{︁
{𝑒12, 𝑒20}, {𝑒12, 𝑒21}, {𝑒13, 𝑒17}, {𝑒13, 𝑒21},

{𝑒14, 𝑒20}, {𝑒14, 𝑒21}, {𝑒15, 𝑒20}, {𝑒15, 𝑒21}
}︁
,

Cl14 =
{︁
{𝑒1, 𝑒3, 𝑒16}, {𝑒1, 𝑒11, 𝑒16}, {𝑒2, 𝑒10, 𝑒16}

}︁
,

Cl15 =
{︁
{𝑒3, 𝑒5, 𝑒17}, {𝑒4, 𝑒10, 𝑒17}, {𝑒5, 𝑒11, 𝑒17}

}︁
.

Then 𝑁(A ) = 15 (< |A | = 48).
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Furthermore, consider Cl5 =
{︀
{𝑒18}, {𝑒19}

}︀
and {𝑒1, 𝑒3, 𝑒16}.

𝑠
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Wiretap-Set Domination

Definition 2 (Wiretap-Set Domination)

Let 𝐴1 and 𝐴2 be two wiretap sets in A with |𝐴1| < |𝐴2|.
We say that 𝐴1 is dominated by 𝐴2, denoted by 𝐴1 ≺ 𝐴2, if there exists a minimum

cut between 𝑠 and 𝐴2 that also separates 𝐴1 from 𝑠. In other words, upon deleting

the edges in the minimum cut between 𝑠 and 𝐴2, 𝑠 and 𝐴1 are also disconnected.

Note that 𝐴1 ≺ 𝐴2 does not mean that 𝐴2 is at the “upstream” of 𝐴1.
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Let 𝐴1 = {𝑒3, 𝑒8} and 𝐴2 = {𝑒6, 𝑒10, 𝑒18}, and 𝐴1 ≺ 𝐴2.
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Equivalence-Class Domination

Definition 3 (Equivalence-Class Domination)

For two distinct equivalence classes Cl1 and Cl2, if there exists a common minimum

cut of the wiretap sets in Cl2 that separates all the wiretap sets in Cl1 from 𝑠, we

say that Cl1 is dominated by Cl2, denoted by Cl1 ≺ Cl2.
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Equivalence-Class Domination

Theorem 5

Cl(𝐴1) ≺ Cl(𝐴2) if and only if 𝐴1 ≺ 𝐴2.
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Equivalence-Class Domination

Theorem 6

The equivalence-class domination relation “≺” amongst the equivalence classes in

A is a strict partial order. Specifically, let Cl1, Cl2, and Cl3 be three arbitrary

equivalence classes, and then

1 (Irreflexivity) Cl1 ⊀ Cl1;

2 (Transitivity) if Cl1 ≺ Cl2 and Cl2 ≺ Cl3, then Cl1 ≺ Cl3;

3 (Asymmetry) if Cl1 ≺ Cl2, then Cl2 ⊀ Cl1.
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Maximal Equivalence Class

Now, the set of all the equivalence classes in A can be considered as a strictly

partially ordered set.

Thus, we can define its maximal equivalence classes.

Definition 4 (Maximal Equivalence Class)

For a collection of wiretap sets A , an equivalence class Cl is a maximal equivalence

class if there exists no other equivalence class Cl′ such that Cl′ ≻ Cl.

Denote by 𝑁max(A ) the number of the maximal equivalence classes with respect

to A .
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The Required Alphabet Size

Theorem 7

Let (𝐺, 𝑠, 𝑇,A ) be a wiretap network and ℱ be an alphabet with |ℱ| ≥ |𝑇 |. Then
there exists an ℱ-valued secure network code on (𝐺, 𝑠, 𝑇,A ) provided that the

alphabet size

|ℱ| > 𝑁max(A ).

𝑁max(A ) ≤ 𝑁(A ) ≤ |A |.
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Example (Cont.)
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Example (Cont.)

The Hasse diagram of all 15 equivalence classes, ordered by the equivalence-class

domination relation “≺”.

Cl12 Cl7 Cl13 Cl10 Cl8 Cl9 Cl11

Cl14 Cl15

Cl1 Cl2 Cl3 Cl4 Cl5 Cl6

Figure: Cl11, Cl14, and Cl15 are all of the maximal equivalence classes.
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Example (Cont.)

The alphabet size |ℱ|
Lower Bound I: |A | 48

Lower Bound II: 𝑁(A ) 15

Lower Bound III: 𝑁max(A ) 3

The improvement of 𝑁max(A ) over 𝑁(A ) can be unbounded.
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New Problem Proposed

𝑁max(A ) is graph-theoretical.

𝑁max(A ) only depends on the topology of the network 𝐺 and the collection

A of wiretap sets.

In general, computing the value of 𝑁max(A ), or characterizing the corre-

sponding Hasse diagram, is nontrivial.

Even in the simple example, its value is not obvious.

How to efficiently compute 𝑁max(A )?
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Primary Minimum Cut

Definition 5 (Primary Minimum Cut)

A minimum cut between the source node 𝑠 and a sink node 𝑡 in 𝐺 is primary, if it

separates 𝑠 and all the minimum cuts between 𝑠 and 𝑡.

In other words, a primary minimum cut between 𝑠 and 𝑡 is a common minimum

cut of all the minimum cuts between 𝑠 and 𝑡.

The notion of primary minimum cut is crucial to the development of our

algorithm.
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Existence and Uniqueness of Primary Minimum Cut

Theorem 8

The primary minimum cut is well-defined, that is, the primary minimum cut between

the source node 𝑠 and a sink node 𝑡 exists and is unique.

The concept of the primary minimum cut between the source node 𝑠 and a

sink node 𝑡 can be extended to between 𝑠 and a wiretap set 𝐴 ∈ A .
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Cornerstone

Theorem 9

In a wiretap network (𝐺, 𝑠, 𝑇,A ), let Cl be an arbitrary equivalence class of the

wiretap sets. Then

1 all the wiretap sets in Cl have the same primary minimum cut, which hence

is called the primary minimum cut of the equivalence class Cl, and

2 for every equivalence class Cl′ with Cl′ ≺ Cl, the primary minimum cut of Cl

separates all the wiretap sets in Cl′ from 𝑠.
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Cornerstone

To compute 𝑁max(A ), it suffices to compute the primary minimum cuts of

all the maximal equivalence classes.

With this, we bypass the complicated operations for determining the equiva-

lence classes of wiretap sets and the domination relation among them.

This is the key to the efficiency of the algorithm.
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Algorithm

Algorithm for computing 𝑁max(A ):

1 Define a set B, and initialize B to the empty set.

2 Arbitrarily choose a wiretap set 𝐴 ∈ A that has the largest cardinality in A .

Find the primary minimum cut between 𝑠 and 𝐴, and call it CUT.

3 Partition the edge set 𝐸 into two disjoint subsets: 𝐸CUT and 𝐸𝑐
CUT , 𝐸 ∖

𝐸CUT, where 𝐸CUT is the set of the edges reachable from the source node 𝑠

upon deleting the edges in CUT.

4 Remove all the wiretap sets in A that are subsets of 𝐸𝑐
CUT and add the

primary minimum cut CUT to B.

5 Repeat Steps 2) to 4) until A is empty and output B, where𝑁max(A ) = |B|.
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Algorithm

Algorithm for computing 𝑁(A ):

1 Define a set B, and initialize B to the empty set.

2 Arbitrarily choose a wiretap set 𝐴 ∈ A that has the largest cardinality in A .

Find the primary minimum cut between 𝑠 and 𝐴, and call it CUT.

3 Partition the edge set 𝐸 into two disjoint subsets: 𝐸CUT and 𝐸𝑐
CUT , 𝐸 ∖

𝐸CUT, where 𝐸CUT is the set of the edges reachable from the source node 𝑠

upon deleting the edges in CUT.

4 Remove all the wiretap sets of the same cardinality as 𝐴 in A that are subsets

of 𝐸𝑐
CUT. Add the primary minimum cut CUT to B.

5 Repeat Steps 2) to 4) until A is empty and output B, where 𝑁(A ) = |B|.
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Example (Cont.)

Cl12 Cl7 Cl13 Cl10 Cl8 Cl9 Cl11

Cl14 Cl15

Cl1 Cl2 Cl3 Cl4 Cl5 Cl6
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Algorithm (Without Regular Assumption)

Algorithm modified for computing 𝑁max(A ) without regular assumption:

1 Define a set B, and initialize B to the empty set.

2 Arbitrarily choose a wiretap set 𝐴 ∈ A (A is not necessary regular) that has

the largest cardinality the largest minimum cut capacity in A . Find the

primary minimum cut between 𝑠 and 𝐴, and call it CUT.

3 Partition the edge set 𝐸 into two disjoint subsets: 𝐸CUT and 𝐸𝑐
CUT , 𝐸 ∖

𝐸CUT, where 𝐸CUT is the set of the edges reachable from the source node 𝑠

upon deleting the edges in CUT.

4 Remove all the wiretap sets in A that are subsets of 𝐸𝑐
CUT and add the

primary minimum cut CUT to B.

5 Repeat Steps 2) to 4) until A is empty and output B, where𝑁max(A ) = |B|.
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Algorithm (Without Regular Assumption)

However,

This modification requires pre-computing the minimum cut capacity of every

wiretap set in A .

This will significantly increase the computational complexity of the algorithm

when |A | is large.
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Algorithm (Without Regular Assumption)

Algorithm II modified for computing 𝑁max(A ) without regular assumption:

1 Define a set B, and initialize B to the empty set.

2 Arbitrarily choose a wiretap set 𝐴 ∈ A (A is not necessary regular) that has

the largest cardinality in A . Find the primary minimum cut between 𝑠 and

𝐴, and call it CUT.

3 Partition the edge set 𝐸 into two disjoint subsets: 𝐸CUT and 𝐸𝑐
CUT , 𝐸 ∖

𝐸CUT, where 𝐸CUT is the set of the edges reachable from the source node 𝑠

upon deleting the edges in CUT.

4 Remove all the wiretap sets in A all the wiretap or edge sets in A ∪B

that are subsets of 𝐸𝑐
CUT. Add the primary minimum cut CUT to B.

5 Repeat Steps 2) to 4) until A is empty and output B, where𝑁max(A ) = |B|.
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Verification of Modified Algorithm II

In Step 4), CUT𝐴 is added to B.

If 𝐴 has the largest minimum cut capacity in A (e.g. Cl14), then CUT𝐴 will

stay in B until the algorithm terminates.

If 𝐴 does not have the largest minimum cut capacity in A ,

1 if 𝐴 belongs to a maximal equivalence class (e.g. Cl11), then CUT𝐴 will

stay in B until the algorithm terminates;

2 otherwise (e.g. Cl10), CUT𝐴 will eventually be replaced by a primary

minimum cut of a maximal equivalence class Cl with Cl ≻ Cl(𝐴).

Algorithm II computes the minimum cut capacity at most 𝑁(A ) times (in-

stead of exactly |A | times).
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Example (Cont.)

Cl12 Cl7 Cl13 Cl10 Cl8 Cl9 Cl11

Cl14 Cl15

Cl1 Cl2 Cl3 Cl4 Cl5 Cl6
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Algorithm II (Without Regular Assumption)

Algorithm 1: Algorithm for Computing 𝑁max(A )

Input: The wiretap network (𝐺, 𝑠, 𝑇,A ), where 𝐺 = (𝑉,𝐸).

Output: 𝑁max(A ), the number of maximal equivalence classes with re-

spect to (𝐺, 𝑠, 𝑇,A ).

begin

1 Set B = ∅;
2 while A ̸= ∅ do

3 choose a wiretap set 𝐴 of the largest cardinality in A ;

4 find the primary minimum cut CUT of 𝐴;

5 partition 𝐸 into two parts 𝐸CUT and 𝐸𝑐
CUT = 𝐸 ∖ 𝐸CUT;

6 for each 𝐵 ∈ A ∪ B do

7 if 𝐵 ⊆ 𝐸𝑐
CUT then

8 remove 𝐵 from A .

end

end

9 add CUT to B.

end

10 Return B. // Note that |B| = 𝑁max(A ).

end
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Line 5: Edge Partition

Line 5 in Algorithm II can be implemented efficiently by slightly modifying

existing search algorithms on directed graphs.

The complexity is in 𝒪(|𝐸CUT|) time.
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Algorithm for Edge Partition

Algorithm 2: Search Algorithm

begin

1 Unmark all nodes in 𝑉 ;

2 mark source node 𝑠;

3 pred(𝑠) := 0; // pred(𝑖) refers to a predecessor node of node 𝑖.

4 set the edge-set SET = ∅;
5 set the node-set LIST = {𝑠};
6 while LIST ̸= ∅ do

7 select a node 𝑖 in LIST;

8 if node 𝑖 is incident to an edge (𝑖, 𝑗) such that node 𝑗 is unmarked

then

9 mark node 𝑗;

10 pred(𝑗) := 𝑖;

11 add node 𝑗 to LIST;

12 add all parallel edges leading from 𝑖 to 𝑗 to SET;

else

13 delete node 𝑖 from LIST;

end

end

14 Return the edge-set SET.

end
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Line 4: Finding Primary Minimum Cut

Instead of the primary minimum cut between 𝑠 and an edge set 𝐴, we consider

the primary minimum cut between 𝑠 and a sink node 𝑡.

Let 𝑓 be a maximal flow from 𝑠 to 𝑡. Then 𝑓 can be decomposed into

𝑛(= mincut(𝑠, 𝑡)) edge-disjoint paths 𝑃1, 𝑃2, · · · , 𝑃𝑛 from 𝑠 to 𝑡 such that

for every edge 𝑒,

𝑓(𝑒) =

{︃
1, 𝑒 ∈ 𝑃𝑖 for some 1 ≤ 𝑖 ≤ 𝑛;

0, otherwise.
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Algorithm for Finding Primary Minimum Cut

Algorithm 3: Algorithm for Finding the Primary Minimum Cut

Input: An acyclic network 𝐺 = (𝑉,𝐸) with a maximal flow 𝑓 from the

source node 𝑠 to a sink node 𝑡.

Output: The primary minimum cut between 𝑠 and 𝑡.

begin

1 Set 𝑆 = {𝑠};
2 for each node 𝑖 ∈ 𝑆 do

3 if ∃ a node 𝑗 ∈ 𝑉 ∖ 𝑆 s.t. either ∃ a forward edge 𝑒 from 𝑖 to 𝑗

s.t. 𝑓(𝑒) = 0 or ∃ a reverse edge 𝑒 from 𝑗 to 𝑖 s.t. 𝑓(𝑒) = 1

then

4 replace 𝑆 by 𝑆 ∪ {𝑗}.
end

end

5 Return CUT = {𝑒 : tail(𝑒) ∈ 𝑆 and head(𝑒) ∈ 𝑉 ∖ 𝑆}.
end
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Example for Algorithm 3

𝑠

𝑖1

𝑖2 𝑖3 𝑖4

𝑖6

𝑖5

𝑖7 𝑖8

𝑖9 𝑖10 𝑖11

𝑡

1

1 0 1

10

1 1 0

0

1
0

1

0
1 1 0 1

1 1 1
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Algorithm for Finding Primary Minimum Cut

Theorem 10

The output edge set CUT of Algorithm 3 is the primary minimum cut between 𝑠

and 𝑡.

The complexity of Algorithm 3 does not exceed 𝒪(|𝐸|) time.
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Concluding Remarks

Our lower bound is independent of constructions of secure network codes.

Our lower bound is applicable to both linear and non-linear secure network

codes.

Many proofs are non-trivial, involving some new techniques.

Whether the graph theoretic approach can help solve other alphabet size prob-

lems, such as in network error correction coding.

The concepts and results are of fundamental interest in graph theory and we

expect that they will find applications in graph theory and beyond.
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Happy Shannon’s Centenary!!!

Thanks for your attention!
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