Alphabet Size Reduction for Secure Network Coding:

A Graph Theoretic Approach

Xuan Guang

joint work with Raymond W. Yeung

Institute of Network Coding
The Chinese University of Hong Kong, Hong Kong SAR, China

INC Seminar
Dec. 7, 2016

Outline

(1) Preliminaries

- Secure Network Coding
- Alphabet Size Problem
(2) A New Lower Bound on Required Alphabet Size
(3) Efficient Algorithm for Computing the Lower Bound
- Primary Minimum Cut
- Algorithm

4 Conclusion Remarks

Outline

(1) Preliminaries

- Secure Network Coding
- Alphabet Size Problem
(2) A New Lower Bound on Required Alphabet Size
(3) Efficient Algorithm for Computing the Lower Bound
- Primary Minimum Cut
- Algorithm

4 Conclusion Remarks

Wiretap Network

- Let $G=(V, E)$ be a finite directed acyclic network with a single source node s and a set of sink nodes $T \subset V \backslash\{s\}$, where
- V is the set of nodes, and
- E is the set of edges.
- Parallel edges between two adjacent nodes are allowed.
- An index taken from an alphabet can be transmitted on each edge in E.

Wiretap Network

- Let $G=(V, E)$ be a finite directed acyclic network with a single source node s and a set of sink nodes $T \subset V \backslash\{s\}$, where
- V is the set of nodes, and
- E is the set of edges.
- Parallel edges between two adjacent nodes are allowed.
- An index taken from an alphabet can be transmitted on each edge in E.
- Let \mathscr{A} be a collection of subsets of E, where every edge set in \mathscr{A} is called a wiretap set.

Wiretap Network

A wiretap network is a quadruple (G, s, T, \mathscr{A}), where

- s generates a random source message M according to an arbitrary distribution on a message set \mathcal{M};
- each $t \in T$ is required to recover the source message M with zero error;
- arbitrary one wiretap set in \mathscr{A}, but no more than one, may be fully accessed by a wiretapper;
- \mathscr{A} is known by s and all $t \in T$ but which wiretap set in \mathscr{A} is actually eavesdropped is unknown.

Wiretap Network

- It is necessary to randomize the source message to combat the wiretapper.
- The random key K available at the source node is a random variable that takes values in a set of keys \mathcal{K} according to the uniform distribution.

Secure Network Codes

- Let \mathcal{F} be an alphabet.
- An \mathcal{F}-valued secure network code on a wiretap network (G, s, T, \mathscr{A}) consists of a set of local encoding mappings $\left\{\phi_{e}: e \in E\right\}$ such that
- if $e \in \operatorname{Out}(s)$,

$$
\phi_{e}: \mathcal{M} \times \mathcal{K} \rightarrow \mathcal{F}
$$

- otherwise, i.e., if $e \in \operatorname{Out}(v)$ for a node $v \in V \backslash\{s\}$,

$$
\phi_{e}: \mathcal{F}^{|\operatorname{In}(v)|} \rightarrow \mathcal{F} .
$$

Secure Network Codes

Definition 1

For a secure network code on the wiretap network (G, s, T, \mathscr{A}), $I\left(Y_{A} ; M\right)=0$ for every wiretap set $A \in \mathscr{A}$, where $I\left(Y_{A} ; M\right)$ denotes the mutual information between $Y_{A}=\left(Y_{e}: e \in A\right)$ and M.

The Required Alphabet Size

Proposition 1 ([Cai \& Yeung] ${ }^{1}$)

Let (G, s, T, \mathscr{A}) be a wiretap network and \mathcal{F} be an alphabet with $|\mathcal{F}| \geq|T|$, the number of sink nodes in G. Then there exists an \mathcal{F}-valued secure network code over (G, s, T, \mathscr{A}) provided that $|\mathcal{F}|>|\mathscr{A}|$.
${ }^{1}$ N. Cai and R. W. Yeung, "Secure Network Coding on a Wiretap Network," IEEE Trans. Inf. Theory, 2011.

The Required Alphabet Size

- The lower bound $|\mathscr{A}|$ on the required alphabet size is typically too large for implementation in terms of computational complexity and storage requirement.
- Reduction of the required alphabet size is a problem not only of theoretical interest but also of practical importance.

An Assumption

Assume that all wiretap sets are regular.

- A wiretap set A is said to be regular, if $|A|=\operatorname{mincut}(s, A)$.
- The collection of wiretap sets \mathscr{A} is said to be regular, if all wiretap sets in \mathscr{A} are regular.

An Assumption

Assume that all wiretap sets are regular.

- A wiretap set A is said to be regular, if $|A|=\operatorname{mincut}(s, A)$.
- The collection of wiretap sets \mathscr{A} is said to be regular, if all wiretap sets in \mathscr{A} are regular.
- Replace non-regular wiretap sets in \mathscr{A} by their minimum cuts (that are regular) to form \mathscr{A}^{\prime}.
- A secure network code that is secure for \mathscr{A}^{\prime} is also secure for \mathscr{A}.

Outline

(1) Preliminaries

- Secure Network Coding
- Alphabet Size Problem
(2) A New Lower Bound on Required Alphabet Size
(3) Efficient Algorithm for Computing the Lower Bound
- Primary Minimum Cut
- Algorithm

4 Conclusion Remarks

Equivalence Relation "~"

- Let (G, s, T, \mathscr{A}) be a wiretap network.
- The binary relation " \sim ":

For any two edge sets A and A^{\prime} in G, we write $A \sim A^{\prime}$ provided that

- there exists an edge set CUT that is a minimum cut between s and A and also between s and A^{\prime}.

Equivalence Relation "~"

Proposition 2 ([Guang et al.]²)

The binary relation " \sim " is an equivalence relation. To be specific, For any three edge sets A, A^{\prime}, and $A^{\prime \prime}$ in G :
(1) (Reflexivity) $A \sim A$;
(2) (Symmetry) if $A \sim A^{\prime}$ then $A^{\prime} \sim A$;
(3) (Transitivity) if $A \sim A^{\prime}$ and $A^{\prime} \sim A^{\prime \prime}, A \sim A^{\prime \prime}$.
${ }^{2}$ X. Guang, J. Lu, and F.-W. Fu, "Small field size for secure network coding", IEEE Commun. Lett., 2015.

Equivalence Relation "~"

Proposition 3

Let $A_{1}, A_{2}, \cdots, A_{m}$ be m equivalent edge sets under the equivalence relation " \sim ". Then

$$
\operatorname{mincut}\left(s, \cup_{i=1}^{m} A_{i}\right)=\operatorname{mincut}\left(s, A_{j}\right), \quad \forall j, 1 \leq j \leq m .
$$

Equivalence Relation "~"

Proposition 3

Let $A_{1}, A_{2}, \cdots, A_{m}$ be m equivalent edge sets under the equivalence relation " \sim ". Then

$$
\operatorname{mincut}\left(s, \cup_{i=1}^{m} A_{i}\right)=\operatorname{mincut}\left(s, A_{j}\right), \quad \forall j, 1 \leq j \leq m .
$$

- With " \sim ", the wiretap sets in \mathscr{A} can be partitioned into equivalence classes.
- All the wiretap sets in an equivalence class have a common minimum cut.

The Required Alphabet Size

Denote $N(\mathscr{A})$ by the number of the equivalence classes in \mathscr{A}.

Theorem 4

Let (G, s, T, \mathscr{A}) be a wiretap network and \mathcal{F} be an alphabet with $|\mathcal{F}| \geq|T|$. Then there exists an \mathcal{F}-valued secure network code over (G, s, T, \mathscr{A}) provided that

$$
|\mathcal{F}|>N(\mathscr{A})
$$

- This lower bound $N(\mathscr{A})$ was originally obtained in [Guang et al.] ${ }^{3}$ for r wiretap networks, but it also applies for general wiretap networks.

[^0]
Example

- Let the collection of wiretap sets \mathscr{A} be:

$$
\begin{aligned}
\mathscr{A}= & \left\{\left\{e_{6}\right\},\left\{e_{7}\right\},\left\{e_{8}\right\},\left\{e_{9}\right\},\left\{e_{12}\right\},\left\{e_{13}\right\},\right. \\
& \left\{e_{14}\right\},\left\{e_{15}\right\},\left\{e_{18}\right\},\left\{e_{19}\right\},\left\{e_{20}\right\},\left\{e_{21}\right\}, \\
& \left\{e_{6}, e_{18}\right\},\left\{e_{6}, e_{19}\right\},\left\{e_{7}, e_{18}\right\},\left\{e_{7}, e_{19}\right\},\left\{e_{8}, e_{11}\right\}, \\
& \left\{e_{8}, e_{16}\right\},\left\{e_{8}, e_{18}\right\},\left\{e_{9}, e_{10}\right\},\left\{e_{9}, e_{18}\right\},\left\{e_{9}, e_{19}\right\}, \\
& \left\{e_{10}, e_{14}\right\},\left\{e_{10}, e_{15}\right\},\left\{e_{10}, e_{19}\right\},\left\{e_{10}, e_{21}\right\},\left\{e_{11}, e_{14}\right\}, \\
& \left\{e_{11}, e_{15}\right\},\left\{e_{11}, e_{18}\right\},\left\{e_{11}, e_{20}\right\},\left\{e_{12}, e_{20}\right\},\left\{e_{12}, e_{21}\right\}, \\
& \left\{e_{13}, e_{17}\right\},\left\{e_{13}, e_{21}\right\},\left\{e_{14}, e_{20}\right\},\left\{e_{14}, e_{21}\right\},\left\{e_{15}, e_{20}\right\}, \\
& \left\{e_{15}, e_{21}\right\},\left\{e_{18}, e_{20}\right\},\left\{e_{18}, e_{21}\right\},\left\{e_{19}, e_{20}\right\},\left\{e_{19}, e_{21}\right\}, \\
& \left\{e_{1}, e_{3}, e_{16}\right\},\left\{e_{1}, e_{11}, e_{16}\right\},\left\{e_{2}, e_{10}, e_{16}\right\}, \\
& \left.\left\{e_{3}, e_{5}, e_{17}\right\},\left\{e_{4}, e_{10}, e_{17}\right\},\left\{e_{5}, e_{11}, e_{17}\right\}\right\} .
\end{aligned}
$$

- $|\mathscr{A}|=48$.
e.g., consider three wiretap sets $\left\{e_{12}, e_{20}\right\},\left\{e_{13}, e_{17}\right\},\left\{e_{14}, e_{21}\right\}$.

e.g., consider three wiretap sets $\left\{e_{12}, e_{20}\right\},\left\{e_{13}, e_{17}\right\},\left\{e_{14}, e_{21}\right\}$.

Example

- The equivalence classes of wiretap sets are:

$$
\begin{aligned}
& \mathrm{Cl}_{1}=\left\{\left\{e_{6}\right\},\left\{e_{7}\right\}\right\}, \quad \mathrm{Cl}_{2}=\left\{\left\{e_{8}\right\},\left\{e_{9}\right\}\right\}, \\
& \mathrm{Cl}_{3}=\left\{\left\{e_{12}\right\},\left\{e_{13}\right\}\right\}, \mathrm{Cl}_{4}=\left\{\left\{e_{14}\right\},\left\{e_{15}\right\}\right\}, \\
& \mathrm{Cl}_{5}=\left\{\left\{e_{18}\right\},\left\{e_{19}\right\}\right\}, \mathrm{Cl}_{6}=\left\{\left\{e_{20}\right\},\left\{e_{21}\right\}\right\}, \\
& \mathrm{Cl}_{7}=\left\{\left\{e_{8}, e_{11}\right\},\left\{e_{9}, e_{10}\right\}\right\}, \\
& \mathrm{Cl}_{8}=\left\{\left\{e_{10}, e_{19}\right\},\left\{e_{11}, e_{18}\right\}\right\}, \\
& \mathrm{Cl}_{9}=\left\{\left\{e_{10}, e_{21}\right\},\left\{e_{11}, e_{20}\right\}\right\}, \\
& \mathrm{Cl}_{10}=\left\{\left\{e_{10}, e_{14}\right\},\left\{e_{10}, e_{15}\right\},\left\{e_{11}, e_{14}\right\},\left\{e_{11}, e_{15}\right\}\right\}, \\
& \mathrm{Cl}_{11}=\left\{\left\{e_{18}, e_{20}\right\},\left\{e_{18}, e_{21}\right\},\left\{e_{19}, e_{20}\right\},\left\{e_{19}, e_{21}\right\}\right\} ;
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathrm{Cl}_{12}= & \left\{\left\{e_{6}, e_{18}\right\},\left\{e_{6}, e_{19}\right\},\left\{e_{7}, e_{18}\right\},\left\{e_{7}, e_{19}\right\},\right. \\
& \left.\left\{e_{8}, e_{16}\right\},\left\{e_{8}, e_{18}\right\},\left\{e_{9}, e_{18}\right\},\left\{e_{9}, e_{19}\right\}\right\}, \\
\mathrm{Cl}_{13}= & \left\{\left\{e_{12}, e_{20}\right\},\left\{e_{12}, e_{21}\right\},\left\{e_{13}, e_{17}\right\},\left\{e_{13}, e_{21}\right\},\right. \\
& \left.\left\{e_{14}, e_{20}\right\},\left\{e_{14}, e_{21}\right\},\left\{e_{15}, e_{20}\right\},\left\{e_{15}, e_{21}\right\}\right\}, \\
\mathrm{Cl}_{14}=\{ & \left.\left\{e_{1}, e_{3}, e_{16}\right\},\left\{e_{1}, e_{11}, e_{16}\right\},\left\{e_{2}, e_{10}, e_{16}\right\}\right\}, \\
\mathrm{Cl}_{15}= & \left\{\left\{e_{3}, e_{5}, e_{17}\right\},\left\{e_{4}, e_{10}, e_{17}\right\},\left\{e_{5}, e_{11}, e_{17}\right\}\right\},
\end{aligned}
$$

- Then $N(\mathscr{A})=15(<|\mathscr{A}|=48)$.

Furthermore, consider $\mathrm{Cl}_{5}=\left\{\left\{e_{18}\right\},\left\{e_{19}\right\}\right\}$ and $\left\{e_{1}, e_{3}, e_{16}\right\}$.

Wiretap-Set Domination

Definition 2 (Wiretap-Set Domination)

Let A_{1} and A_{2} be two wiretap sets in \mathscr{A} with $\left|A_{1}\right|<\left|A_{2}\right|$.
We say that A_{1} is dominated by A_{2}, denoted by $A_{1} \prec A_{2}$, if there exists a minimum cut between s and A_{2} that also separates A_{1} from s. In other words, upon deleting the edges in the minimum cut between s and A_{2}, s and A_{1} are also disconnected.

- Note that $A_{1} \prec A_{2}$ does not mean that A_{2} is at the "upstream" of A_{1}.

Let $A_{1}=\left\{e_{3}, e_{8}\right\}$ and $A_{2}=\left\{e_{6}, e_{10}, e_{18}\right\}$, and $A_{1} \prec A_{2}$.

Equivalence-Class Domination

Definition 3 (Equivalence-Class Domination)

For two distinct equivalence classes Cl_{1} and Cl_{2}, if there exists a common minimum cut of the wiretap sets in Cl_{2} that separates all the wiretap sets in Cl_{1} from s, we say that Cl_{1} is dominated by Cl_{2}, denoted by $\mathrm{Cl}_{1} \prec \mathrm{Cl}_{2}$.

Equivalence-Class Domination

Theorem 5

$$
\mathrm{Cl}\left(A_{1}\right) \prec \mathrm{Cl}\left(A_{2}\right) \text { if and only if } A_{1} \prec A_{2} .
$$

Equivalence-Class Domination

Theorem 6

The equivalence-class domination relation " \prec " amongst the equivalence classes in \mathscr{A} is a strict partial order. Specifically, let $\mathrm{Cl}_{1}, \mathrm{Cl}_{2}$, and Cl_{3} be three arbitrary equivalence classes, and then
(1) (Irreflexivity) $\mathrm{Cl}_{1} \nprec \mathrm{Cl}_{1}$;
(2) (Transitivity) if $\mathrm{Cl}_{1} \prec \mathrm{Cl}_{2}$ and $\mathrm{Cl}_{2} \prec \mathrm{Cl}_{3}$, then $\mathrm{Cl}_{1} \prec \mathrm{Cl}_{3}$;
(3) (Asymmetry) if $\mathrm{Cl}_{1} \prec \mathrm{Cl}_{2}$, then $\mathrm{Cl}_{2} \nprec \mathrm{Cl}_{1}$.

Maximal Equivalence Class

- Now, the set of all the equivalence classes in \mathscr{A} can be considered as a strictly partially ordered set.
- Thus, we can define its maximal equivalence classes.

Definition 4 (Maximal Equivalence Class)

For a collection of wiretap sets \mathscr{A}, an equivalence class Cl is a maximal equivalence class if there exists no other equivalence class Cl^{\prime} such that $\mathrm{Cl}^{\prime} \succ \mathrm{Cl}$.
Denote by $N_{\max }(\mathscr{A})$ the number of the maximal equivalence classes with respect to \mathscr{A}.

The Required Alphabet Size

Theorem 7

Let (G, s, T, \mathscr{A}) be a wiretap network and \mathcal{F} be an alphabet with $|\mathcal{F}| \geq|T|$. Then there exists an \mathcal{F}-valued secure network code on (G, s, T, \mathscr{A}) provided that the alphabet size

$$
|\mathcal{F}|>N_{\max }(\mathscr{A}) .
$$

- $N_{\max }(\mathscr{A}) \leq N(\mathscr{A}) \leq|\mathscr{A}|$.

Example (Cont.)

Example (Cont.)

The Hasse diagram of all 15 equivalence classes, ordered by the equivalence-class domination relation " \prec ".

Figure: $\mathrm{Cl}_{11}, \mathrm{Cl}_{14}$, and Cl_{15} are all of the maximal equivalence classes.

Example (Cont.)

The alphabet size $|\mathcal{F}|$
Lower Bound I: $|\mathscr{A}| \quad 48$

Lower Bound II: $N(\mathscr{A}) \quad 15$
Lower Bound III: $N_{\max }(\mathscr{A}) \quad 3$

- The improvement of $N_{\max }(\mathscr{A})$ over $N(\mathscr{A})$ can be unbounded.

New Problem Proposed

- $N_{\max }(\mathscr{A})$ is graph-theoretical.
- $N_{\max }(\mathscr{A})$ only depends on the topology of the network G and the collection \mathscr{A} of wiretap sets.

New Problem Proposed

- $N_{\max }(\mathscr{A})$ is graph-theoretical.
- $N_{\max }(\mathscr{A})$ only depends on the topology of the network G and the collection \mathscr{A} of wiretap sets.
- In general, computing the value of $N_{\max }(\mathscr{A})$, or characterizing the corresponding Hasse diagram, is nontrivial.
- Even in the simple example, its value is not obvious.

New Problem Proposed

- $N_{\max }(\mathscr{A})$ is graph-theoretical.
- $N_{\max }(\mathscr{A})$ only depends on the topology of the network G and the collection \mathscr{A} of wiretap sets.
- In general, computing the value of $N_{\max }(\mathscr{A})$, or characterizing the corresponding Hasse diagram, is nontrivial.
- Even in the simple example, its value is not obvious.
- How to efficiently compute $N_{\max }(\mathscr{A})$?

Outline

(1) Preliminaries

- Secure Network Coding
- Alphabet Size Problem
(2) A New Lower Bound on Required Alphabet Size
(3) Efficient Algorithm for Computing the Lower Bound
- Primary Minimum Cut
- Algorithm

4 Conclusion Remarks

Primary Minimum Cut

Definition 5 (Primary Minimum Cut)

A minimum cut between the source node s and a sink node t in G is primary, if it separates s and all the minimum cuts between s and t.

In other words, a primary minimum cut between s and t is a common minimum cut of all the minimum cuts between s and t.

- The notion of primary minimum cut is crucial to the development of our algorithm.

Existence and Uniqueness of Primary Minimum Cut

Theorem 8

The primary minimum cut is well-defined, that is, the primary minimum cut between the source node s and a sink node t exists and is unique.

- The concept of the primary minimum cut between the source node s and a sink node t can be extended to between s and a wiretap set $A \in \mathscr{A}$.

Cornerstone

Theorem 9

In a wiretap network (G, s, T, \mathscr{A}), let Cl be an arbitrary equivalence class of the wiretap sets. Then
(1) all the wiretap sets in Cl have the same primary minimum cut, which hence is called the primary minimum cut of the equivalence class Cl , and
(2) for every equivalence class Cl^{\prime} with $\mathrm{Cl}^{\prime} \prec \mathrm{Cl}$, the primary minimum cut of Cl separates all the wiretap sets in Cl^{\prime} from s.

Cornerstone

- To compute $N_{\max }(\mathscr{A})$, it suffices to compute the primary minimum cuts of all the maximal equivalence classes.
- With this, we bypass the complicated operations for determining the equivalence classes of wiretap sets and the domination relation among them.
- This is the key to the efficiency of the algorithm.

Algorithm

Algorithm for computing $N_{\max }(\mathscr{A})$:
(1) Define a set \mathscr{B}, and initialize \mathscr{B} to the empty set.
(2) Arbitrarily choose a wiretap set $A \in \mathscr{A}$ that has the largest cardinality in \mathscr{A}. Find the primary minimum cut between s and A, and call it CUT.
(3) Partition the edge set E into two disjoint subsets: $E_{\text {CUT }}$ and $E_{\mathrm{CUT}}^{c} \triangleq E \backslash$ $E_{\text {CUT }}$, where $E_{\text {CUT }}$ is the set of the edges reachable from the source node s upon deleting the edges in CUT.
(9) Remove all the wiretap sets in \mathscr{A} that are subsets of E_{CUT}^{c} and add the primary minimum cut CUT to \mathscr{B}.
(5) Repeat Steps 2) to 4) until \mathscr{A} is empty and output \mathscr{B}, where $N_{\max }(\mathscr{A})=|\mathscr{B}|$.

Algorithm

Algorithm for computing $N(\mathscr{A})$:
(1) Define a set \mathscr{B}, and initialize \mathscr{B} to the empty set.
(2) Arbitrarily choose a wiretap set $A \in \mathscr{A}$ that has the largest cardinality in \mathscr{A}. Find the primary minimum cut between s and A, and call it CUT.
(3) Partition the edge set E into two disjoint subsets: $E_{\text {CUT }}$ and $E_{\mathrm{CUT}}^{c} \triangleq E \backslash$ $E_{\text {CUT }}$, where $E_{\text {CUT }}$ is the set of the edges reachable from the source node s upon deleting the edges in CUT.
(9) Remove all the wiretap sets of the same cardinality as A in \mathscr{A} that are subsets of $E_{\text {CUT }}^{c}$. Add the primary minimum cut CUT to \mathscr{B}.
(5) Repeat Steps 2) to 4) until \mathscr{A} is empty and output \mathscr{B}, where $N(\mathscr{A})=|\mathscr{B}|$.

Example (Cont.)

Example (Cont.)

Example (Cont.)

Example (Cont.)

Algorithm (Without Regular Assumption)

Algorithm modified for computing $N_{\max }(\mathscr{A})$ without regular assumption:
(1) Define a set \mathscr{B}, and initialize \mathscr{B} to the empty set.
(2) Arbitrarily choose a wiretap set $A \in \mathscr{A}$ (\mathscr{A} is not necessary regular) that has the largest cardinality the largest minimum cut capacity in \mathscr{A}. Find the primary minimum cut between s and A, and call it CUT.
(3) Partition the edge set E into two disjoint subsets: $E_{\text {CUT }}$ and $E_{\text {CUT }}^{c} \triangleq E \backslash$ $E_{\text {CUT }}$, where $E_{\text {CUT }}$ is the set of the edges reachable from the source node s upon deleting the edges in CUT.
(9) Remove all the wiretap sets in \mathscr{A} that are subsets of $E_{\text {CUT }}^{c}$ and add the primary minimum cut CUT to \mathscr{B}.
(5) Repeat Steps 2) to 4) until \mathscr{A} is empty and output \mathscr{B}, where $N_{\max }(\mathscr{A})=|\mathscr{B}|$.

Algorithm (Without Regular Assumption)

However,

- This modification requires pre-computing the minimum cut capacity of every wiretap set in \mathscr{A}.
- This will significantly increase the computational complexity of the algorithm when $|\mathscr{A}|$ is large.

Algorithm (Without Regular Assumption)

Algorithm II modified for computing $N_{\max }(\mathscr{A})$ without regular assumption:

(1) Define a set \mathscr{B}, and initialize \mathscr{B} to the empty set.
(2) Arbitrarily choose a wiretap set $A \in \mathscr{A}$ (\mathscr{A} is not necessary regular) that has the largest cardinality in \mathscr{A}. Find the primary minimum cut between s and A, and call it CUT.
(3) Partition the edge set E into two disjoint subsets: $E_{\text {CUT }}$ and $E_{\text {CUT }}^{c} \triangleq E \backslash$ $E_{\text {CUT }}$, where $E_{\text {CUT }}$ is the set of the edges reachable from the source node s upon deleting the edges in CUT.
(c) Remove all the wiretap sets in \mathscr{A} all the wiretap or edge sets in $\mathscr{A} \cup \mathscr{B}$ that are subsets of $E_{\text {CUT }}^{c}$. Add the primary minimum cut CUT to \mathscr{B}.
(5) Repeat Steps 2) to 4) until \mathscr{A} is empty and output \mathscr{B}, where $N_{\max }(\mathscr{A})=|\mathscr{B}|$.

Verification of Modified Algorithm II

In Step 4), CUT_{A} is added to \mathscr{B}.

- If A has the largest minimum cut capacity in \mathscr{A} (e.g. Cl_{14}), then CUT_{A} will stay in \mathscr{B} until the algorithm terminates.
- If A does not have the largest minimum cut capacity in \mathscr{A},
(1) if A belongs to a maximal equivalence class (e.g. Cl_{11}), then CUT_{A} will stay in \mathscr{B} until the algorithm terminates;
(2) otherwise (e.g. Cl_{10}), CUT_{A} will eventually be replaced by a primary minimum cut of a maximal equivalence class Cl with $\mathrm{Cl} \succ \mathrm{Cl}(A)$.
- Algorithm II computes the minimum cut capacity at most $N(\mathscr{A})$ times (instead of exactly $|\mathscr{A}|$ times).

Example (Cont.)

Algorithm II (Without Regular Assumption)

```
Algorithm 1: Algorithm for Computing \(N_{\max }(\mathscr{A})\)
    Input: The wiretap network \((G, s, T, \mathscr{A})\), where \(G=(V, E)\).
    Output: \(N_{\max }(\mathscr{A})\), the number of maximal equivalence classes with re-
                spect to \((G, s, T, \mathscr{A})\).
    begin
        Set \(\mathscr{B}=\emptyset\);
        while \(\mathscr{A} \neq \emptyset\) do
            choose a wiretap set \(A\) of the largest cardinality in \(\mathscr{A}\);
            find the primary minimum cut CUT of \(A\);
            partition \(E\) into two parts \(E_{\mathrm{CUT}}\) and \(E_{\mathrm{CUT}}^{c}=E \backslash E_{\mathrm{CUT}}\);
            for each \(B \in \mathscr{A} \cup \mathscr{B}\) do
                        if \(B \subseteq E_{\text {CUT }}^{c}\) then
                remove \(B\) from \(\mathscr{A}\).
                        end
            end
                add CUT to \(\mathscr{B}\).
            end
            Return \(\mathscr{B}\). \(/ /\) Note that \(|\mathscr{B}|=N_{\max }(\mathscr{A})\).
    end
```


Line 5: Edge Partition

- Line 5 in Algorithm II can be implemented efficiently by slightly modifying existing search algorithms on directed graphs.
- The complexity is in $\mathcal{O}\left(\left|E_{\text {CUT }}\right|\right)$ time.

Algorithm for Edge Partition

```
Algorithm 2: Search Algorithm
    begin
        Unmark all nodes in \(V\);
        mark source node \(s\);
        \(\operatorname{pred}(s):=0 ; \quad / / \operatorname{pred}(i)\) refers to a predecessor node of node \(i\).
        set the edge-set \(\mathrm{SET}=\emptyset\);
        set the node-set LIST \(=\{s\}\);
        while LIST \(\neq \emptyset\) do
            select a node \(i\) in LIST;
            if node \(i\) is incident to an edge \((i, j)\) such that node \(j\) is unmarked
            then
                    mark node \(j\);
            \(\operatorname{pred}(j):=i\);
            add node \(j\) to LIST;
            add all parallel edges leading from \(i\) to \(j\) to SET;
            else
                delete node \(i\) from LIST;
            end
        end
        Return the edge-set SET.
    end
```


Line 4: Finding Primary Minimum Cut

- Instead of the primary minimum cut between s and an edge set A, we consider the primary minimum cut between s and a sink node t.

Line 4: Finding Primary Minimum Cut

- Instead of the primary minimum cut between s and an edge set A, we consider the primary minimum cut between s and a sink node t.
- Let f be a maximal flow from s to t. Then f can be decomposed into $n(=\operatorname{mincut}(s, t))$ edge-disjoint paths $P_{1}, P_{2}, \cdots, P_{n}$ from s to t such that for every edge e,

$$
f(e)= \begin{cases}1, & e \in P_{i} \text { for some } 1 \leq i \leq n \\ 0, & \text { otherwise }\end{cases}
$$

Algorithm for Finding Primary Minimum Cut

```
Algorithm 3: Algorithm for Finding the Primary Minimum Cut
    Input: An acyclic network \(G=(V, E)\) with a maximal flow \(f\) from the
                source node \(s\) to a sink node \(t\).
    Output: The primary minimum cut between \(s\) and \(t\).
    begin
        Set \(S=\{s\} ;\)
        for each node \(i \in S\) do
            if \(\exists\) a node \(j \in V \backslash S\) s.t. either \(\exists\) a forward edge \(e\) from \(i\) to \(j\)
                s.t. \(f(e)=0\) or \(\exists\) a reverse edge \(e\) from \(j\) to \(i\) s.t. \(f(e)=1\)
            then
                replace \(S\) by \(S \cup\{j\}\).
            end
        end
            Return CUT \(=\{e: \operatorname{tail}(e) \in S\) and \(\operatorname{head}(e) \in V \backslash S\}\).
    end
```


Example for Algorithm 3

Algorithm for Finding Primary Minimum Cut

Theorem 10

The output edge set CUT of Algorithm 3 is the primary minimum cut between s and t.

- The complexity of Algorithm 3 does not exceed $\mathcal{O}(|E|)$ time.

Outline

(1) Preliminaries

- Secure Network Coding
- Alphabet Size Problem
(2) A New Lower Bound on Required Alphabet Size
(3) Efficient Algorithm for Computing the Lower Bound
- Primary Minimum Cut
- Algorithm

4 Conclusion Remarks

Concluding Remarks

- Our lower bound is independent of constructions of secure network codes.
- Our lower bound is applicable to both linear and non-linear secure network codes.

Concluding Remarks

- Our lower bound is independent of constructions of secure network codes.
- Our lower bound is applicable to both linear and non-linear secure network codes.
- Many proofs are non-trivial, involving some new techniques.

Concluding Remarks

- Our lower bound is independent of constructions of secure network codes.
- Our lower bound is applicable to both linear and non-linear secure network codes.
- Many proofs are non-trivial, involving some new techniques.
- Whether the graph theoretic approach can help solve other alphabet size problems, such as in network error correction coding.

Concluding Remarks

- Our lower bound is independent of constructions of secure network codes.
- Our lower bound is applicable to both linear and non-linear secure network codes.
- Many proofs are non-trivial, involving some new techniques.
- Whether the graph theoretic approach can help solve other alphabet size problems, such as in network error correction coding.
- The concepts and results are of fundamental interest in graph theory and we expect that they will find applications in graph theory and beyond.

Happy Shannon＇s Centenary！！！

Happy Shannon’s Centenary!!!

Thanks for your attention!

[^0]: ${ }^{3}$ X. Guang, J. Lu, and F.-W. Fu, "Small field size for secure network coding", IEEE Commun. Lett., 2015.

