A Computationally Informed Hierarchical Theory of Network Coding Rate Regions

John MacLaren Walsh
Department of Electrical and Computer Engineering
Drexel University
Philadelphia, PA
jwalsh@ece.drexel.edu

Thanks to NSF CCF-1421828 \& NSF CCF-1053702.

Collaborators \& Co-Authors

Yirui Liu

Ph.D. Candidate, ASPITRG
Drexel University
Common information based network combination operators

Congduan Li, Ph.D.
Postdoctoral Fellow,
City Univ. of Hong Kong
rate region database network operators
forbidden net. minors

Steven Weber, Ph.D.
Professor, Dept. of ECE Drexel University
co-advisor for
Congduan Li

Alejandro Erick Trofimoff Ph.D. Candidate, ASPITRG
Drexel University ordering probabilistic supports for mapping nonlinear EVs

Jayant Apte, Ph.D.
Data Scientist,
HVH Precision Analytics
network symmetry
software: ITCP \& ITAP

Yunshu Liu, Ph.D.
Senior Applied Researcher eBay
nonlinear entropic
vectors \& codes

What is a network coding problem?

What is a Network Coding Problem?

What is a network coding problem?

What is a Network Coding Problem?

network coding problem

A labelled directed acyclic hypergraph, including:

What is a network coding problem?

What is a Network Coding Problem?

A labelled directed acyclic hypergraph, including:

1. independent sources

What is a network coding problem?

What is a Network Coding Problem?

A labelled directed acyclic hypergraph, including:

1. independent sources
2. messages: outgoing encoded from incoming

What is a network coding problem?

What is a Network Coding Problem?

A labelled directed acyclic hypergraph, including:

1. independent sources
2. messages: outgoing encoded from incoming
3. sinks: subsets of sources decoded from messages

What is a network coding problem?

What is a Network Coding Problem?

A labelled directed acyclic hypergraph, including:

1. independent sources
2. messages: outgoing encoded from incoming
3. sinks: subsets of sources decoded from messages

What is a network coding problem?

What is a Network Coding Problem?

A labelled directed acyclic hypergraph, including:

1. independent sources
2. messages: outgoing encoded from incoming
3. sinks: subsets of sourcesidecoded from messages

What is a network coding problem?

What is a Network Coding Problem?

By drawing the right graph, this includes:

1. index coding
2. Distributed storage (exact \& functional repair)
3. Coded Caching

What is a network coding problem?

What is a Network Coding Problem?

$\substack{\text { network coding } \\ \text { nroblem }}$	A labelled directed acyclic hypergraph, including:

Also, core class of multiterminal information theory problems: embedded special cases

1. no noise. messages overheard perfectly
2. sources independent
3. sources reproduced perfectly

What is a network coding capacity region?

What is a Network Coding_Capacity Region?

What is a network coding capacity region?

What is a Network Coding_Capacity Region?

Source rates $H\left(Y_{k}\right), k \in\{1, \ldots, K\}$ and edge rates $R_{e}, e \in\{K+1, \ldots, N\}$ are achievable if:

What is a network coding capacity region?

What is a Network Coding Capacity Region?

Source rates $H\left(Y_{k}\right), k \in\{1, \ldots, K\}$ and edge rates
$R_{e}, e \in\{K+1, \ldots, N\}$ are achievable if:
\exists sequence of codes: edge encoders $\&$ sink decoders s.t.

What is a network coding capacity region?

What is a Network Coding Capacity Region?

Source rates $H\left(Y_{k}\right), k \in\{1, \ldots, K\}$ and edge rates
$R_{e}, e \in\{K+1, \ldots, N\}$ are achievable if:
\exists sequence of codes: edge encoders \& sink decoders s.t. source k has $n H\left(Y_{k}\right)$ bits,

What is a network coding capacity region?

What is a Network Coding Capacity Region?

Source rates $H\left(Y_{k}\right), k \in\{1, \ldots, K\}$ and edge rates $R_{e}, e \in\{K+1, \ldots, N\}$ are achievable if:
\exists sequence of codes: edge encoders \& sink decoders s.t.
source k has $n H\left(Y_{k}\right)$ bits,
message on edge $e \in\{k+1, \ldots, N\}, U_{e}=f_{e}\left(\boldsymbol{X}_{\ln (e)}\right)$, $n R_{e}$ bits encoding incoming messages \& source bits,

What is a network coding capacity region?

What is a Network Coding Capacity Region?

Source rates $H\left(Y_{k}\right), k \in\{1, \ldots, K\}$ and edge rates $R_{e}, e \in\{K+1, \ldots, N\}$ are achievable if:
\exists sequence of codes: edge encoders \& sink decoders s.t. source k has $n H\left(Y_{k}\right)$ bits,
message on edge $e \in\{k+1, \ldots, N\}, U_{e}=f_{e}\left(\boldsymbol{X}_{\ln (e)}\right)$, $n R_{e}$ bits encoding incoming messages \& source bits, $\lim _{n \rightarrow \infty} \mathbb{P}[$ decoding error $]=0$.

What is a network coding capacity region?

What is a Network Coding Capacity Region?

Source rates $H\left(Y_{k}\right), k \in\{1, \ldots, K\}$ and edge rates $R_{e}, e \in\{K+1, \ldots, N\}$ are achievable if:
\exists sequence of codes: edge encoders $\&$ sink decoders s.t. source k has $n H\left(Y_{k}\right)$ bits,
message on edge $e \in\{k+1, \ldots, N\}, U_{e}=f_{e}\left(\boldsymbol{X}_{\ln (e)}\right)$, $n R_{e}$ bits encoding incoming messages \& source bits, $\lim _{n \rightarrow \infty} \mathbb{P}[$ decoding error $]=0$.
Closure of set of all such achievable vectors $\mathbf{r}=\left[H\left(Y_{k}\right), R_{e} \mid k \in\{1, \ldots, K\}, e \in\{K+1, \ldots, N\}\right]$
is capacity region, \mathcal{R}^{*}, a convex cone.

What is a network coding capacity region?

What is a network coding capacity region?

	rate region

Computationally Enabled Research Agenda: \#1 = Prove Regions

The Information Theoretic Converse Prover - ITCP (github)

The Information Theoretic Converse Prover - ITCP is a GAP package!

SAPS Sysen toc Com	
$\leftarrow \rightarrow$ ¢ ©	
Find us on Github	Welcome to
Sitemap	
Navigation Tree	GAP - Groups, Algorithms, Programming a System for Computational Discrete Algebra
$\frac{\text { Start }}{\text { Downloads }}$	
$\frac{\text { Downloads }}{\text { Instalation }}$	The current version is GAP 4.8.10 released on 15 January 2018.
Overview	
Data Libraries	
Packages	What is GAP?
Contacts	GAP is a system for computational discrete algebra, with particular emphasis on Computational Group Theory. GAP provides a programming language, a library of thousands of functions implementing algebraic algorithms written in the GAP language as well as large data libraries of algebraic objects. See also the overview and the description of the mathematical capabilities. GAP is used in research and teaching for studying groups and theirrepresentations, rings, vector spaces, algebras, combinatorial structures, and more. The system, including source, is distributed freely. You can study and easily modify or extend it for your special use.
EAQ	
GAP3	
Tweets by @gap_systeme	
A gap-system.org ${ }^{\text {che }}$	

The Information Theoretic Converse Prover - ITCP (github)

```
l
```

l
gap> G:-NetSymGroup(idsc);
gap> G:-NetSymGroup(idsc);
Group ([(5,8) (6,7), (4,5) (6,8), (4,6) (7,8), (1,2)])
Group ([(5,8) (6,7), (4,5) (6,8), (4,6) (7,8), (1,2)])
gap> Size(G);
gap> Size(G);
20
20
gap> rlist1:-NCRateRegionOB2(idsc,true, [1) ; ;
gap> rlist1:-NCRateRegionOB2(idsc,true, [1) ; ;
gap> Display(xlist1[2]);
gap> Display(xlist1[2]);
0 >- -w2
0 >- -w2
0 >- -w3
0 >- -w3
+R4 >- 0
+R4 >- 0
+R4 +R6 >- +w3
+R4 +R6 >- +w3
+R4 +R5 >- +w1 +w2
+R4 +R5 >- +w1 +w2
+R4 +1/2 R5 +1/2 R8 >- +w1 +w2 +1/2 w3
+R4 +1/2 R5 +1/2 R8 >- +w1 +w2 +1/2 w3
+1/2 R4 +1/2 R5 +1/2 R6 +1/2 R7 >- +w1 +w2 +1/2 w3
+1/2 R4 +1/2 R5 +1/2 R6 +1/2 R7 >- +w1 +w2 +1/2 w3
+2/3 R4 +2/3 R5 +1/3 R6 +1/3 R8 >- +w1 +w2 +2/3 w3
+2/3 R4 +2/3 R5 +1/3 R6 +1/3 R8 >- +w1 +w2 +2/3 w3
+2/3 R4 +1/3 R5 +1/3 R6 +1/3 R7 +1/3 R8 >- +w1 +w2 +2/3 w3
+2/3 R4 +1/3 R5 +1/3 R6 +1/3 R7 +1/3 R8 >- +w1 +w2 +2/3 w3
+1/2 R4 +1/2 R5 +1/2 R6 +1/4 R7 +1/4 R8 >- +w1 +w2 +3/4 w3
+1/2 R4 +1/2 R5 +1/2 R6 +1/4 R7 +1/4 R8 >- +w1 +w2 +3/4 w3
+R4 +1/2 R5 +1/2 R6 +1/2 R7 >- +w1 +w2 +w3
+R4 +1/2 R5 +1/2 R6 +1/2 R7 >- +w1 +w2 +w3
+R4 +1/2 R5 +1/2 R6 +1/2 RB >- +w1 +w2 +w3
+R4 +1/2 R5 +1/2 R6 +1/2 RB >- +w1 +w2 +w3
+R4 +1/3 R5 +1/3 R6 +1/3 R7 +1/3 R8 >- +w1 +w2 +w3
+R4 +1/3 R5 +1/3 R6 +1/3 R7 +1/3 R8 >- +w1 +w2 +w3
+2/3 R4 +2/3 R5 +1/3 R6 +2/3 R7 +1/3 R8 >- +w1 +w2 +4/3 w3
+2/3 R4 +2/3 R5 +1/3 R6 +2/3 R7 +1/3 R8 >- +w1 +w2 +4/3 w3
+R4 +1/2 R5 +1/2 R6 +R7 >- +w1 +w2 +3/2 w3
+R4 +1/2 R5 +1/2 R6 +R7 >- +w1 +w2 +3/2 w3
+R4 +1/2 R5 +1/2 R6 +1/2 R7 +1/2 R8 >- +w1 +w2 +3/2 w3
+R4 +1/2 R5 +1/2 R6 +1/2 R7 +1/2 R8 >- +w1 +w2 +3/2 w3
+2 R4 +R6 +R7 >- +w1 +w2 +2 w3
+2 R4 +R6 +R7 >- +w1 +w2 +2 w3
+R4 +R5 +R6 +R7 >- +w1 +w2 +2 w3

```
+R4 +R5 +R6 +R7 >- +w1 +w2 +2 w3
```


The Information Theoretic Achievability Prover (ITAP)

The Information Theoretic Achievability Prover (ITAP) - Rate Vector Verification

Verification user interface shown. Listing interface available as well. Although enumeration oriented, when used as a verification algorithm (w / specified rate vector) it can still be faster than the Groebner basis (w/ Singular) based path-gain verification of Subramanian \& Thangaraj! (also included)

The Information Theoretic Achievability Prover (ITAP) - Rate Vector Verification

Computationally Enabled Research Agenda: \#1 = Prove Regions

Computationally Enabled Research Agenda:

1. Train a computer to calculate network coding capacity regions and their proofs.
2. Build a database of all network coding capacity regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Computationally Enabled Research Agenda:

Computationally Enabled Research/Agenda:

 1. Train a computer to calculate network soc capacity regions and their proofs. regions up to a certain size.
3. Organize this database te learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

(2) Develop Algorithm to List only Canonical \& Minimal Problems

Computationally Enabled Res

1. Train a computer to calculd capacity regions an

Network Coding Rate Region Database			
rate region - : extremal codes - : converse proof - :		" : "	$\begin{aligned} & 1 \geqslant \bigcirc_{4}^{3} \bigcirc \rightarrow 1 \\ & 2 \end{aligned}$ rate region extremal codes - : converse proof - :
Database of $\sim \mathbf{7 0 0 0}$ Rate Regions of $\mathbf{> 1 0 0 k}$ Networks (Trans IT Jan. '17) Database of $\mathbf{\sim 7 4 4 k}$ Rate Regions of $\mathbf{> 7 M}$ or $\mathbf{\sim 2 . 3 T}$ Minimal Networks (Trans IT Nov. '17)			

2. Build a database of all network coding capacity regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Computationally Enabled Res

1. Train a computer to calculd capacity regions an

Database of $\boldsymbol{\sim} \mathbf{7 0 0 0}$ Rate Regions of $\mathbf{> 1 0 0 k}$ Networks (Trans IT Jan. '17) Database of $\boldsymbol{\sim} \mathbf{7 4 4 k}$ Rate Regions of $\mathbf{>} \mathbf{7 M}$ or $\boldsymbol{\sim} \mathbf{2 . 3 T}$ Minimal Networks (Trans IT Nov. '17)

What now? regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Computationally Enabled Res

1. Train a computer to calculd capacity regions an

Network Coding Rate Region Database

Database of $\sim \mathbf{7 0 0 0}$ Rate Regions of $>\mathbf{1 0 0 k}$ Networks (Trans IT Jan. '17) Database of $\boldsymbol{\sim} \mathbf{7 4 4} \mathrm{k}$ Rate Regions of $>\mathbf{7 M}$ or $\boldsymbol{\sim 2 . 3 T}$ Minimal Networks (Trans IT Nov. '17)

What now? Submit 744,000 transactions papers? regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Computationally Enabled Res

1. Train a computer to calculd capacity regions an

Network Coding Rate Region Database

Database of $\boldsymbol{\sim 7 0 0 0}$ Rate Regions of $>\mathbf{1 0 0 k}$ Networks (Trans IT Jan. '17) Database of $\boldsymbol{\sim 7 4 4}$ k Rate Regions of $>\mathbf{7 M}$ or $\boldsymbol{\sim 2 . 3 T}$ Minimal Networks (Trans IT Nov. '17)

What now? Analyze, learn, and explain something! Can't read and remember 744,000 network proofs.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Computationally Enabled Res

1. Train a computer to calculd capacity regions an
2. Build a database of all nety regions up to a certain si
3. Organize this database to I and then to use it to cred networks too large for th calculate directly.

Network Coding Rate Region Database

Database of $\boldsymbol{\sim} \mathbf{7 0 0 0}$ Rate Regions of $>\mathbf{1 0 0 k}$ Networks (Trans IT Jan. '17) Database of $\boldsymbol{\sim 7 4 4}$ k Rate Regions of $>\mathbf{7 M}$ or $\boldsymbol{\sim 2 . 3 T}$ Minimal Networks (Trans IT Nov. '17)

What now? Analyze, learn, and explain something! Can't read and remember 744,000 network proofs.

Software handles only small nets (max 8-10 edges).
Community taste (caching, storage) is for large graphs and low dim. projections of rate regions

Computationally Enabled Res

1. Train a computer to calculd capacity regions an

Network Coding Rate Region Database

Database of $\sim \mathbf{7 0 0 0}$ Rate Regions of $>\mathbf{1 0 0 k}$ Networks (Trans IT Jan. '17) Database of $\boldsymbol{\sim} \mathbf{7 4 4} \mathrm{k}$ Rate Regions of $>\mathbf{7 M}$ or $\boldsymbol{\sim 2 . 3 T}$ Minimal Networks (Trans IT Nov. '17)

Investigate Structure through Network Hierarchy regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Computationally Enabled Research Agenda:

1. Train a computer to calculate network coding capacity regions and their procts.

2. Build a database of all network coding capacity regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly. \qquad

Background: Inspiration for Hierarchy - Well quasi-ordering of Graphs

Definition 1 (Graph Minor): A graph $\mathcal{G}_{1}\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ is a minor of another graph $\mathcal{G}_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$ if \mathcal{G}_{1} can be obtained through a sequence of node deletions, edge deletions, and contractions.

Background: Inspiration for Hierarchy - Well quasi-ordering of Graphs

Definition 1 (Graph Minor): A graph $\mathcal{G}_{1}\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ is a minor of another graph $\mathcal{G}_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$ if \mathcal{G}_{1} can be obtained through a sequence of node deletions, edge deletions, and contractions.

Theorem 1 (Kuratowski/ Wagner): A graph $(\mathcal{V}, \mathcal{E})$ is planar if and only if it has no $K_{3,3}$ or K_{5} minor.

Background: Inspiration for Hierarchy - Well quasi-ordering of Graphs

Definition 1 (Graph Minor): A graph $\mathcal{G}_{1}\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ is a minor of another graph $\mathcal{G}_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$ if \mathcal{G}_{1} can be obtained through a sequence of node deletions, edge deletions, and contractions.

Theorem 1 (Kuratowski/ Wagner): A graph $(\mathcal{V}, \mathcal{E})$ is planar if and only if it has no $K_{3,3}$ or K_{5} minor.

Observe: the set of planar graphs is closed under the operation of taking minors.

Background: Inspiration for Hierarchy - Well quasi-ordering of Graphs

Definition 1 (Graph Minor): A graph $\mathcal{G}_{1}\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ is a minor of another graph $\mathcal{G}_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$ if \mathcal{G}_{1} can be obtained through a sequence of node deletions, edge deletions, and contractions.

Theorem 1 (Kuratowski/ Wagner): A graph $(\mathcal{V}, \mathcal{E})$ is planar if and only if it has no $K_{3,3}$ or K_{5} minor.

Observe: the set of planar graphs is closed under the operation of taking minors.

+ series of 20 papers over 20 years $=$

Background: Inspiration for Hierarchy - Well quasi-ordering of Graphs

Definition 1 (Graph Minor): A graph $\mathcal{G}_{1}\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ is a minor of another graph $\mathcal{G}_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$ if \mathcal{G}_{1} can be obtained through a sequence of node deletions, edge deletions, and contractions.

Theorem 1 (Kuratowski/ Wagner): A graph $(\mathcal{V}, \mathcal{E})$ is planar if and only if it has no $K_{3,3}$ or K_{5} minor.

Observe: the set of planar graphs is closed under the operation of taking minors. + series of 20 papers over 20 years $=$

Theorem 2 (Robertson-Seymour Theorem): Any family of graphs that is closed under the operation of taking minors has at most a finite series of forbidden minors.

Background: Inspiration for Hierarchy - Well quasi-ordering of Graphs

Definition 1 (Graph Minor): A graph $\mathcal{G}_{1}\left(\mathcal{V}_{1}, \mathcal{E}_{1}\right)$ is a minor of another graph $\mathcal{G}_{2}=\left(\mathcal{V}_{2}, \mathcal{E}_{2}\right)$ if \mathcal{G}_{1} can be obtained through a sequence of node deletions, edge deletions, and contractions.

Theorem 1 (Kuratowski/ Wagner): A graph $(\mathcal{V}, \mathcal{E})$ is planar if and only if it has no $K_{3,3}$ or K_{5} minor.

Observe: the set of planar graphs is closed under the operation of taking minors. + series of 20 papers over 20 years $=$

Theorem 2 (Robertson-Seymour Theorem): Any family of graphs that is closed under the operation of taking minors has at most a finite series of forbidden minors.

Equivalent to stating that there are no infinite anti-chains (any infinite sequence of graphs must have a pair with a minor relationship) and no infinite descending chains (WQO).

Background: Inspiration for Hierarchy - Forbidden Minors Continued

- network coding problems are part graph based (already enough)

Background: Inspiration for Hierarchy - Forbidden Minors Continued

- network coding problems are part graph based (already enough)
- Network coding rate regions are built not only from labelled graphs, but also from entropy functions, which are polymatroids, \supseteq matroids \supseteq independence in graphs

Background: Inspiration for Hierarchy - Forbidden Minors Continued

- network coding problems are part graph based (already enough)
- Network coding rate regions are built not only from labelled graphs, but also from entropy functions, which are polymatroids, \supseteq matroids \supseteq independence in graphs
- roughly, set sources $=$ independent uniform RV s, call what is set on an edge e a $\mathrm{RV} U_{e}$. Collect all RV.s into $\mathbf{X}=\left(Y_{s}, U_{e} \mid s \in \mathcal{S}, e \in \mathcal{E}\right)$.

Background: Inspiration for Hierarchy - Forbidden Minors Continued

- network coding problems are part graph based (already enough)
- Network coding rate regions are built not only from labelled graphs, but also from entropy functions, which are polymatroids, \supseteq matroids \supseteq independence in graphs
- roughly, set sources $=$ independent uniform RV s, call what is set on an edge e a RV U_{e}. Collect all RV.s into $\mathbf{X}=\left(Y_{s}, U_{e} \mid s \in \mathcal{S}, e \in \mathcal{E}\right)$.

$$
\begin{equation*}
h(\mathcal{A})=H\left(\mathbf{X}_{\mathcal{A}}\right), \mathcal{A} \subseteq \mathcal{N}=\mathcal{S} \cup \mathcal{E} \tag{4}
\end{equation*}
$$

is a polymatroid.

Background: Inspiration for Hierarchy - Forbidden Minors Continued

- network coding problems are part graph based (already enough)
- Network coding rate regions are built not only from labelled graphs, but also from entropy functions, which are polymatroids, \supseteq matroids \supseteq independence in graphs
- roughly, set sources $=$ independent uniform RV s, call what is set on an edge e a $\mathrm{RV} U_{e}$. Collect all RV.s into $\mathbf{X}=\left(Y_{s}, U_{e} \mid s \in \mathcal{S}, e \in \mathcal{E}\right)$.

$$
\begin{equation*}
h(\mathcal{A})=H\left(\mathbf{X}_{\mathcal{A}}\right), \mathcal{A} \subseteq \mathcal{N}=\mathcal{S} \cup \mathcal{E} \tag{5}
\end{equation*}
$$

is a polymatroid.
Definition 2 (polymatroid): A set function $\rho: 2^{\mathcal{N}} \rightarrow \mathbb{R}_{\geq 0}$ is a polymatroid if $\forall \mathcal{A}, \mathcal{B}$, $\rho(\mathcal{A})+\rho(\mathcal{B}) \geq \rho(\mathcal{A} \cup \mathcal{B})+\rho(\mathcal{A} \cap \mathcal{B})$ - submodular, and for any $\mathcal{C} \subseteq \mathcal{D}, \rho(\mathcal{C}) \leq \rho(\mathcal{D})-$ non-decreasing.

Background: Inspiration for Hierarchy - Forbidden Minors Continued

- network coding problems are part graph based (already enough)
- Network coding rate regions are built not only from labelled graphs, but also from entropy functions, which are polymatroids, \supseteq matroids \supseteq independence in graphs
- roughly, set sources $=$ independent uniform RV s, call what is set on an edge e a RV U_{e}. Collect all RV.s into $\mathbf{X}=\left(Y_{s}, U_{e} \mid s \in \mathcal{S}, e \in \mathcal{E}\right)$.

$$
\begin{equation*}
h(\mathcal{A})=H\left(\mathbf{X}_{\mathcal{A}}\right), \mathcal{A} \subseteq \mathcal{N}=\mathcal{S} \cup \mathcal{E} \tag{6}
\end{equation*}
$$

is a polymatroid.
Definition 2 (polymatroid): A set function $\rho: 2^{\mathcal{N}} \rightarrow \mathbb{R}_{\geq 0}$ is a polymatroid if $\forall \mathcal{A}, \mathcal{B}$, $\rho(\mathcal{A})+\rho(\mathcal{B}) \geq \rho(\mathcal{A} \cup \mathcal{B})+\rho(\mathcal{A} \cap \mathcal{B})$ - submodular, and for any $\mathcal{C} \subseteq \mathcal{D}, \rho(\mathcal{C}) \leq \rho(\mathcal{D})-$ non-decreasing.

Definition 3 (matroid): A matroid is a polymatroid ρ taking values in $\mathbb{Z}_{\geq 0}$ for whom $\rho(\mathcal{A}) \leq|\mathcal{A}|$.

Background: Inspiration for Hierarchy - Rota's Conjecture
Definition 4 (Matroid Deletion): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by deleting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$.
Definition 5 (Matroid contraction): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by contracting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A} \cup\{e\})-\rho(\{e\}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$. (condition entropy on X_{e}).

Background: Inspiration for Hierarchy - Rota's Conjecture

Definition 4 (Matroid Deletion): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by deleting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$.
Definition 5 (Matroid contraction): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by contracting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A} \cup\{e\})-\rho(\{e\}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$. (condition entropy on X_{e}).

Definition 6 (Matroid Minor): ρ^{\prime} is a minor of ρ if it can be obtained by a series of deletions and contractions.

Background: Inspiration for Hierarchy - Rota's Conjecture

Definition 4 (Matroid Deletion): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by deleting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$.
Definition 5 (Matroid contraction): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by contracting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A} \cup\{e\})-\rho(\{e\}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$. (condition entropy on X_{e}).

Definition 6 (Matroid Minor): ρ^{\prime} is a minor of ρ if it can be obtained by a series of deletions and contractions.

Matroids do not exhibit WQO (\exists infinite antichains). HOWEVER
Theorem 3 (Tutte (1958)): A matroid is binary if and only if it has no $U_{2,4}$ minor $\left(\rho_{U_{2,4}}(\mathcal{A})=\min \{|\mathcal{A}|, 2\},|\mathcal{N}|=4\right.$.

Background: Inspiration for Hierarchy - Rota's Conjecture
Definition 4 (Matroid Deletion): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by deleting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$.
Definition 5 (Matroid contraction): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by contracting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A} \cup\{e\})-\rho(\{e\}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$. (condition entropy on X_{e}).
Definition 6 (Matroid Minor): ρ^{\prime} is a minor of ρ if it can be obtained by a series of deletions and contractions.

Matroids do not exhibit WQO (\exists infinite antichains). HOWEVER
Theorem 3 (Tutte (1958)): A matroid is binary if and only if it has no $U_{2,4}$ minor $\left(\rho_{U_{2,4}}(\mathcal{A})=\min \{|\mathcal{A}|, 2\},|\mathcal{N}|=4\right.$.

Similar lists for $\mathbb{F}_{3} \& \mathbb{F}_{4}$: Seymour in 1979 \& Geelen Gerards Kapoor in 2000, resp.

Background: Inspiration for Hierarchy - Rota's Conjecture
Definition 4 (Matroid Deletion): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by deleting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$.
Definition 5 (Matroid contraction): $\rho^{\prime}: 2^{\mathcal{N}^{\prime}} \rightarrow \mathbb{Z}_{\geq 0}$ is obtained by contracting $e \in \mathcal{N}$ from ρ if $\mathcal{N}=\mathcal{N} \backslash\{e\}$ and $\rho^{\prime}(\mathcal{A})=\rho(\mathcal{A} \cup\{e\})-\rho(\{e\}), \forall \mathcal{A} \subseteq \mathcal{N}^{\prime}$. (condition entropy on X_{e}).
Definition 6 (Matroid Minor): ρ^{\prime} is a minor of ρ if it can be obtained by a series of deletions and contractions.

Matroids do not exhibit WQO (\exists infinite antichains). HOWEVER
Theorem 3 (Tutte (1958)): A matroid is binary if and only if it has no $U_{2,4}$ minor $\left(\rho_{U_{2,4}}(\mathcal{A})=\min \{|\mathcal{A}|, 2\},|\mathcal{N}|=4\right.$.

Similar lists for $\mathbb{F}_{3} \& \mathbb{F}_{4}$: Seymour in 1979 \& Geelen Gerards Kapoor in 2000, resp.

Theorem 4 (Rota's Conjecture (1970) Proved 2013 by Geelen, Gerards, Whittle): The set of matroids representable over \mathbb{F}_{q} (translation: set of $h(\mathcal{A})$ arising from scalar codes over \mathbb{F}_{q}) has a most a finite number of forbidden minors.

Computationally Enabled Research Agenda:

1. Train a computer to calculate network coding capacity regions and their procts.

2. Build a database of all network coding capacity regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly. \qquad

Computationally Enabled Research Agenda - Hierarchy: Embedding Operators edge deletion

source deletion

edge contraction

- Rate region (bound) of embedded network can be directly obtained from rate region (bound) of parent network.
- Insufficiency of class of codes of small \Longrightarrow insufficiency of class of codes of big. (forbidden network minor)

Computationally Enabled Research Agenda - Hierarchy: Embedding Operators

- First database: 5438 canonical MDCS for which scalar binary codes are insufficient can be boiled down to 12 forbidden minor networks.

Computationally Enabled Research Agenda - Hierarchy: Combination Operators

Node Merge

- rate region of big directly expressible from rate regions of smalls

Computationally Enabled Research Agenda - Hierarchy: Combination Operators

Computationally Enabled Research Agenda - Hierarchy: Operator Concatenation

Computationally Enabled Research Agenda - Hierarchy: Operator Concatenation

Use operators together to get RR for big networks. Partial Network Closure.

Computationally Enabled Research Agenda - Hierarchy: Operator Concatenation

Start with the single $(1,1)$, single $(2,1)$, and the four $(1,2)$ networks; These 6 tiny networks can generate new 11635 networks w/ small cap!

size 4 cap	combination operators only			embedding and combinations		
	$(3,3)$	$(3,4)$	$(4,4)$	$(3,3)$	$(3,4)$	$(4,4)$
$(1,3)$	4	4	4	4	4	4
$(1,4)$	0	10	10	0	10	10
$(2,2)$	3	3	3	8	15	16
$(2,3)$	13	16	16	30	131	155
$(2,4)$	0	97	101	0	516	648
$(3,2)$	2	3	2	4	10	11
$(3,3)$	24	24	24	42	353	833
$(3,4)$	0	135	135	0	2361	5481
$(4,2)$	0	0	3	0	0	3
$(4,3)$	0	0	17	0	0	44
$(4,4)$	0	0	253	0	0	4430
all	46	292	568	88	3400	11635

Computationally Enabled Research Agenda - Hierarchy: Operator Concatenation

 With the increase of cap size, number of new networks increases!| size\cap | combination operators only | | | embedding and combinations | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $(3,3)$ | $(3,4)$ | $(4,4)$ | $(3,3)$ | $(3,4)$ | $(4,4)$ |
| $(1,3)$ | 4 | 4 | 4 | 4 | 4 | 4 |
| $(1,4)$ | 0 | 10 | 10 | 0 | 10 | 10 |
| $(2,2)$ | 3 | 3 | 3 | 8 | 15 | 16 |
| $(2,3)$ | 13 | 16 | 16 | 30 | 131 | 155 |
| $(2,4)$ | 0 | 97 | 101 | 0 | 516 | 648 |
| $(3,2)$ | 2 | 3 | 2 | 4 | 10 | 11 |
| $(3,3)$ | 24 | 24 | 24 | 42 | 353 | 833 |
| $(3,4)$ | 0 | 135 | 135 | 0 | 7361 | 5481 |
| $(4,2)$ | 0 | 0 | 3 | 0 | 0 | 3 |
| $(4,3)$ | 0 | 0 | 17 | 0 | 0 | 44 |
| $(4,4)$ | 0 | 0 | 253 | 0 | 0 | 4430 |
| all | 46 | 292 | 568 | 88 | 3400 | 11635 |

Computationally Enabled Research Agenda - Hierarchy: Operator Concatenation Embedding operations are important in the process!

	combination operators only			embedding and combinations		
size $\\) cap & \((3,3)$	$(3,4)$	$(4,4)$	$(3,3)$	$(3,4)$	$(4,4)$	
$(1,3)$	4	4	4	4	4	4
$(1,4)$	0	10	10	0	10	10
$(2,2)$	3	3	3	8	15	16
$(2,3)$	13	16	16	30	131	155
$(2,4)$	0	97	101	0	516	648
$(3,2)$	2	3	2	4	10	11
$(3,3)$	24	24	24	42	353	833
$(3,4)$	0	135	135	0	2361	5481
$(4,2)$	0	0	3	0	0	3
$(4,3)$	0	0	17	0	0	44
$(4,4)$	0	0	253	0	0	4430
all	46	292	568	88	3400	11635

Come see me for more detailed slides about:

Computationally Enabled Research Agenda:

1. Train a computer to calculate network coding capacity regions and their proofs.
2. Build a database of all network coding capacity regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Come see me for more detailed slides about:

View these as listing discrete objects that

 are inequivalent under symmetry. Study that notion of symmetry.Con putationally Enabled Research Agenda:

1. Train a computer to calculate network coding capacity regions and their proofs.
2. Build a database of all network coding capacity regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Come see me for more detailed slides about:

View these as listing discrete objects that are inequivalent under symmetry. Study that notion of symmetry.

Con putationally Enabled Research Agenda:

1. Train a computer to calculate network coding capacity regions and their proofs.
2. Build a database of all network coding capacity regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Propose a new rate region combination operator for connecting multiple sinks to multiple sources based on common information

What is a network coding capacity region?

Substitutes outer/inner bounds to Γ_{N}^{*} into Yan, Yeung, Zhang '12

$$
\begin{equation*}
\mathcal{R}_{*}=\operatorname{proj}_{R_{\mathcal{E}},\left[H\left(Y_{s}\right) \mid s \in \mathcal{S}\right]}\left(\overline{\operatorname{con}\left(\Gamma_{\mathrm{N}}^{*} \cap \mathcal{L}_{123}\right)} \cap \mathcal{L}_{45}\right) \tag{7}
\end{equation*}
$$

where $\mathcal{L}_{123}:=\left\{\mathbf{h} \mid h_{Y_{\mathcal{S}}}=\Sigma_{s \in \mathcal{S}} h_{Y_{s}}, h_{X_{\mathrm{Out}(i)} \mid X_{\mathrm{In}(i)}}=0\right\}$ and
$\mathcal{L}_{45}:=\left\{\left(\mathbf{h}^{T}, \mathbf{R}^{T}\right)^{T} \in \mathbb{R}_{+}^{\mathbb{R}^{N}-1+|\mathcal{E}|}: R_{e} \geq h_{U_{e}}, e \in \mathcal{E}, h_{Y_{\beta(t)} \mid U_{\ln (t)}}=0\right\}$

What is a network coding capacity region?

Substitutes outer/inner bounds to Γ_{N}^{*} into Yan, Yeung, Zhang '12

$$
\begin{equation*}
\mathcal{R}_{*}=\operatorname{proj}_{R_{\mathcal{E}},\left[H\left(Y_{s}\right) \mid s \in \mathcal{S}\right]}\left(\overline{\operatorname{con}\left(\Gamma_{\mathrm{N}}^{*} \cap \mathcal{L}_{123}\right)} \cap \mathcal{L}_{45}\right) \tag{8}
\end{equation*}
$$

where $\mathcal{L}_{123}:=\left\{\mathbf{h} \mid h_{Y_{\mathcal{S}}}=\Sigma_{s \in \mathcal{S}} h_{Y_{s}}, h_{X_{\mathrm{Out}(i)} \mid X_{\mathrm{In}(i)}}=0\right\}$ and
$\mathcal{L}_{45}:=\left\{\left(\mathbf{h}^{T}, \mathbf{R}^{T}\right)^{T} \in \mathbb{R}_{+}^{\mathbb{R}^{N}-1+|\mathcal{E}|}: R_{e} \geq h_{U_{e}}, e \in \mathcal{E}, h_{Y_{\beta(t)} \mid U_{\ln (t)}}=0\right\}$

Come see me for more detailed slides about:

View these as listing discrete objects that

 are inequivalent under symmetry. Study that notion of symmetry.Con putationally Enabled Research Agenda:

1. Train a computer to calculate network coding capacity regions and their proofs.
2. Build a database of all network coding capacity regions up to a certain size.
3. Organize this database to learn from it, and then to use it to create solutions to networks too large for the computer calculate directly.

Notions of Symmetry - Formalize via Groups

1. Symmetries of $\Gamma_{N} \cap \mathcal{L}_{\mathrm{A}}$ where $\mathcal{L}_{\mathrm{A}}=\mathcal{L}_{123} \cap \mathcal{L}_{45}$
(a) Symmetries of polyhedral cones
(b) Symmetries of Γ_{N}
(c) Symmetries of $\Gamma_{N} \cap \mathcal{L}_{\mathrm{A}}$
(d) Application - reduces the complexity of proving the converse
2. Symmetries between different network coding problem instances
3. Symmetries among network codes
(a) Symmetries among linear codes
(b) Application to proving matched inner bound
(c) Symmetries among nonlinear codes

Our Related Journal Submissions \& Software

[1] Congduan Li, Steven Weber, and John Walsh, "On Multi-source Networks: Enumeration, Rate Region Computation, and Hierarchy," IEEE Trans. Inform. Theory, vol. 63, no. 11, pp. 7283-7303, Nov. 2017. [Online]. Available: https://doi.org/10.1109/TIT.2017.2745620
[2] Congduan Li, Steven Weber, and John MacLaren Walsh, "On Multilevel Diversity Coding Systems," IEEE Trans. Inform. Theory, vol. 63, no. 1, pp. 230-251, Jan. 2017. [Online]. Available:
https://doi.org/10.1109/TIT.2016.2628791
[3] Jayant Apte and John MacLaren Walsh, "Explicit Polyhedral Bounds on Network Coding Rate Regions via Entropy Function Region: Algorithms, Symmetry, and Computation," IEEE Trans. Inform. Theory, 2016, Submitted July 22, 2016, revised July 6, 2017. [Online]. Available: http://arxiv.org/abs/1607.06833
[4] ——, "Constrained Linear Representability of Polymatroids and Algorithms for Computing Achievability Proofs in Network Coding," IEEE Trans. Inform. Theory, Submitted May 15, 2016. [Online]. Available:
http://arxiv.org/abs/1605.04598
[5] Yunshu Liu and John MacLaren Walsh, "Mapping the Region of Entropic Vectors with Support Enumeration \& Information Geometry," IEEE Trans. Inform. Theory, Submitted December 08, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03324
[6] Congduan Li and John MacLaren Walsh, "Network Coding Rate Region Calculation." [Online]. Available: http://www.ece.drexel.edu/walsh/aspitrg/software.html
[7] ——, "Network Enumeration and Hierarchy." [Online]. Available:
http://www.ece.drexel.edu/walsh/aspitrg/software.html
[8] Jayant Apte and John MacLaren Walsh, "Information Theoretic Achievability Prover." [Online]. Available: https://github.com/jayant91089/itap
[9] ——, "Information Theoretic Converse Prover." [Online]. Available: https://github.com/jayant91089/itcp

