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By drawing the right graph, this includes:

1. index coding

2. Distributed storage (exact & functional repair)

3. Coded Caching
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What is a Network Coding Problem?
A labelled directed acyclic hypergraph, including:

1. independent sources

2. messages: outgoing encoded from incoming

3. sinks: subsets of sources decoded from messages
and edges

,5

Also, core class of multiterminal information theory problems: embedded special cases

1. no noise. messages overheard perfectly

2. sources independent

3. sources reproduced perfectly
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What is a Network Coding Capacity Region?
Source rates H(Yk), k 2 {1, . . . , K} and edge rates

Re, e 2 {K + 1, . . . , N} are achievable if:

source k has nH(Yk) bits,

9 sequence of codes: edge encoders & sink decoders s.t.

message on edge e 2 {k + 1, . . . , N}, Ue = fe(X In(e)),

nRe bits encoding incoming messages & source bits,

limn�� P[decoding error] = 0.

Closure of set of all such achievable vectors

r = [H(Yk), Re|k 2 {1, . . . , K}, e 2 {K + 1, . . . , N}]

is capacity region, R⇤
, a convex cone.
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The Information Theoretic Converse Prover – ITCP (github)

https://github.com/jayant91089/itcp

Information Theoretic Converse Prover



The Information Theoretic Converse Prover – ITCP is a GAP package!

https://www.gap-system.org
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The Information Theoretic Achievability Prover (ITAP)



The Information Theoretic Achievability Prover (ITAP) – Rate Vector Verification
gap> LoadPackage("itap");;
gap> net:=[[ [[1,2,3],[1,2,3,4]],...],3,6];;
gap> myAns:=proverate(net,[0,1,1,1,1,1],GF(2),[]);;
gap> myAns[1];
true
gap>DisplayCode(myAns[2]);
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Verification user interface shown. Listing interface available as well.

Although enumeration oriented, when used as a verification algorithm (w/ specified

rate vector) it can still be faster than the Groebner basis (w/ Singular) based path-gain

verification of Subramanian & Thangaraj! (also included)



The Information Theoretic Achievability Prover (ITAP) – Rate Vector Verification

gap> LoadPackage("itap");;
gap> net:=HyperedgeNet1();;
gap> rlist:=proveregion(net,2,GF(2),[4]);; #k=2,4=max. code dim.
gap> lrs_path:="/home/johnny/install/lrslib-061/";;
gap> rrcompute(rlist[1],net[2],net[3],lrs_path);
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Computationally Enabled Research Agenda:
1. Train a computer to calculate network coding
                capacity regions and their proofs.

2. Build a database of all network coding capacity 
         regions up to a certain size.

3. Organize this database to learn from it, 
         and then to use it to create solutions to 
         networks too large for the computer 
         calculate directly.
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Background: Inspiration for Hierarchy – Well quasi-ordering of Graphs

Definition 1 (Graph Minor): A graph G1(V1, E1) is a minor of another graph

G2 = (V2, E2) if G1 can be obtained through a sequence of node deletions, edge

deletions, and contractions.

Theorem 1 (Kuratowski/ Wagner): A graph (V, E) is planar if and only if it has no

K3,3 or K5 minor.

Observe: the set of planar graphs is closed under the operation of taking minors.

+ series of 20 papers over 20 years =

Theorem 2 (Robertson-Seymour Theorem): Any family of graphs that is closed

under the operation of taking minors has at most a finite series of forbidden minors.

Equivalent to stating that there are no infinite anti-chains (any infinite sequence of

graphs must have a pair with a minor relationship) and no infinite descending chains

(WQO).
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Background: Inspiration for Hierarchy – Forbidden Minors Continued

• network coding problems are part graph based (already enough)

• Network coding rate regions are built not only from labelled graphs, but also from

entropy functions, which are polymatroids, ◆ matroids ◆ independence in graphs

• roughly, set sources = independent uniform RVs, call what is set on an edge e a

RV Ue. Collect all RV.s into X = (Ys, Ue|s 2 S, e 2 E).

h(A) = H(XA), A ✓ N = S [ E (1)

is a polymatroid.

Definition 2 (polymatroid): A set function ⇢ : 2

N ! R�0 is a polymatroid if 8A, B,

⇢(A) + ⇢(B) � ⇢(A [ B) + ⇢(A \ B) – submodular, and for any C ✓ D, ⇢(C)  ⇢(D) –

non-decreasing.

Definition 3 (matroid): A matroid is a polymatroid ⇢ taking values in Z�0 for whom

⇢(A)  |A|.



Background: Inspiration for Hierarchy – Forbidden Minors Continued

• network coding problems are part graph based (already enough)

• Network coding rate regions are built not only from labelled graphs, but also from

entropy functions, which are polymatroids, ◆ matroids ◆ independence in graphs

• roughly, set sources = independent uniform RVs, call what is set on an edge e a

RV Ue. Collect all RV.s into X = (Ys, Ue|s 2 S, e 2 E).

h(A) = H(XA), A ✓ N = S [ E (2)

is a polymatroid.

Definition 2 (polymatroid): A set function ⇢ : 2

N ! R�0 is a polymatroid if 8A, B,

⇢(A) + ⇢(B) � ⇢(A [ B) + ⇢(A \ B) – submodular, and for any C ✓ D, ⇢(C)  ⇢(D) –

non-decreasing.

Definition 3 (matroid): A matroid is a polymatroid ⇢ taking values in Z�0 for whom

⇢(A)  |A|.



Background: Inspiration for Hierarchy – Forbidden Minors Continued

• network coding problems are part graph based (already enough)

• Network coding rate regions are built not only from labelled graphs, but also from

entropy functions, which are polymatroids, ◆ matroids ◆ independence in graphs

• roughly, set sources = independent uniform RVs, call what is set on an edge e a

RV Ue. Collect all RV.s into X = (Ys, Ue|s 2 S, e 2 E).

h(A) = H(XA), A ✓ N = S [ E (3)

is a polymatroid.

Definition 2 (polymatroid): A set function ⇢ : 2

N ! R�0 is a polymatroid if 8A, B,

⇢(A) + ⇢(B) � ⇢(A [ B) + ⇢(A \ B) – submodular, and for any C ✓ D, ⇢(C)  ⇢(D) –

non-decreasing.

Definition 3 (matroid): A matroid is a polymatroid ⇢ taking values in Z�0 for whom

⇢(A)  |A|.



Background: Inspiration for Hierarchy – Forbidden Minors Continued

• network coding problems are part graph based (already enough)

• Network coding rate regions are built not only from labelled graphs, but also from

entropy functions, which are polymatroids, ◆ matroids ◆ independence in graphs

• roughly, set sources = independent uniform RVs, call what is set on an edge e a

RV Ue. Collect all RV.s into X = (Ys, Ue|s 2 S, e 2 E).

h(A) = H(XA), A ✓ N = S [ E (4)

is a polymatroid.

Definition 2 (polymatroid): A set function ⇢ : 2

N ! R�0 is a polymatroid if 8A, B,

⇢(A) + ⇢(B) � ⇢(A [ B) + ⇢(A \ B) – submodular, and for any C ✓ D, ⇢(C)  ⇢(D) –

non-decreasing.

Definition 3 (matroid): A matroid is a polymatroid ⇢ taking values in Z�0 for whom

⇢(A)  |A|.



Background: Inspiration for Hierarchy – Forbidden Minors Continued

• network coding problems are part graph based (already enough)

• Network coding rate regions are built not only from labelled graphs, but also from

entropy functions, which are polymatroids, ◆ matroids ◆ independence in graphs

• roughly, set sources = independent uniform RVs, call what is set on an edge e a

RV Ue. Collect all RV.s into X = (Ys, Ue|s 2 S, e 2 E).

h(A) = H(XA), A ✓ N = S [ E (5)

is a polymatroid.

Definition 2 (polymatroid): A set function ⇢ : 2

N ! R�0 is a polymatroid if 8A, B,

⇢(A) + ⇢(B) � ⇢(A [ B) + ⇢(A \ B) – submodular, and for any C ✓ D, ⇢(C)  ⇢(D) –

non-decreasing.

Definition 3 (matroid): A matroid is a polymatroid ⇢ taking values in Z�0 for whom

⇢(A)  |A|.



Background: Inspiration for Hierarchy – Forbidden Minors Continued

• network coding problems are part graph based (already enough)

• Network coding rate regions are built not only from labelled graphs, but also from

entropy functions, which are polymatroids, ◆ matroids ◆ independence in graphs

• roughly, set sources = independent uniform RVs, call what is set on an edge e a

RV Ue. Collect all RV.s into X = (Ys, Ue|s 2 S, e 2 E).

h(A) = H(XA), A ✓ N = S [ E (6)

is a polymatroid.

Definition 2 (polymatroid): A set function ⇢ : 2

N ! R�0 is a polymatroid if 8A, B,

⇢(A) + ⇢(B) � ⇢(A [ B) + ⇢(A \ B) – submodular, and for any C ✓ D, ⇢(C)  ⇢(D) –

non-decreasing.

Definition 3 (matroid): A matroid is a polymatroid ⇢ taking values in Z�0 for whom

⇢(A)  |A|.



Background: Inspiration for Hierarchy – Rota’s Conjecture

Definition 4 (Matroid Deletion): ⇢0
: 2

N 0 ! Z�0 is obtained by deleting e 2 N
from ⇢ if N = N \ {e} and ⇢0

(A) = ⇢(A), 8A ✓ N 0.

Definition 5 (Matroid contraction): ⇢0
: 2

N 0 ! Z�0 is obtained by contracting

e 2 N from ⇢ if N = N \ {e} and ⇢0
(A) = ⇢(A [ {e}) � ⇢({e}), 8A ✓ N 0. (condition

entropy on Xe).

Definition 6 (Matroid Minor): ⇢0 is a minor of ⇢ if it can be obtained by a series of

deletions and contractions.

Matroids do not exhibit WQO (9 infinite antichains). HOWEVER

Theorem 3 (Tutte (1958)): A matroid is binary if and only if it has no U2,4 minor

(⇢U2,4(A) = min{|A|, 2}, |N | = 4.

Similar lists for F3 & F4: Seymour in 1979 & Geelen Gerards Kapoor in 2000, resp.

Theorem 4 (Rota’s Conjecture (1970) Proved 2013 by Geelen, Gerards, Whittle):

The set of matroids representable over Fq (translation: set of h(A) arising from scalar

codes over Fq) has a most a finite number of forbidden minors.
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Computationally Enabled Research Agenda:
1. Train a computer to calculate network coding
                capacity regions and their proofs.

2. Build a database of all network coding capacity 
         regions up to a certain size.

3. Organize this database to learn from it, 
         and then to use it to create solutions to 
         networks too large for the computer 
         calculate directly.

)
embedding operations

combination operations

=) )+
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• Rate region (bound) of embedded network can be directly obtained from rate

region (bound) of parent network.

• Insu�ciency of class of codes of small =) insu�ciency of class of codes of big.

(forbidden network minor)
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5438 / 7360 insu�cient

1922 / 7360

su�cient

12 forbidden

embedded networks

• First database: 5438 canonical MDCS for which scalar binary codes are insu�cient

can be boiled down to 12 forbidden minor networks.
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• rate region of big directly expressible from rate regions of smalls
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Network
Cap: no
beyond

Combinations reach 
a portion of 

large networks

Embeddings 
enlarge the
reachable 

portionSmall size

Tiny size

Moderate size

Large size

Use operators together to get RR for big networks. Partial Network Closure.
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Start with the single (1, 1), single (2, 1), and the four (1, 2) networks; These 6 tiny

networks can generate new 11635 networks w/ small cap!
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With the increase of cap size, number of new networks increases!
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Embedding operations are important in the process!
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         regions up to a certain size.

3. Organize this database to learn from it, 
         and then to use it to create solutions to 
         networks too large for the computer 
         calculate directly.

Come see me for more detailed slides about:
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Computationally Enabled Research Agenda:
1. Train a computer to calculate network coding
                capacity regions and their proofs.

2. Build a database of all network coding capacity 
         regions up to a certain size.

3. Organize this database to learn from it, 
         and then to use it to create solutions to 
         networks too large for the computer 
         calculate directly.

View these as listing discrete objects that
are inequivalent under symmetry.

Study that notion of symmetry.

Propose a new rate region combination 
operator for connecting multiple sinks to 

multiple sources based on common information

Come see me for more detailed slides about:



What is a network coding capacity region?

rate region

network coding
problem Developed

Rate Region
Algorithms &
Software

R4 � H(U4)

Proof:

extreme ray description
1  0  0  0  0  1  0  0  0  1  0  0  0
0  1  0  0  1  2  1  0  0  0  0  0  0
0  0  0  1  1  0  0  2  1  0  0  0  1
0  1  1  1  1  2  1  1  1  1  0  0  0
1  1  0  1  1  1  0  1  0  0  0  1  1
0  0  0  0  1  1  1  1  1  0  1  0  1

H(Y1)

H(Y2)

H(Y3)

R4

R5

R6

0 0 1 1 0 1
0 1 0 1 1 0

Y1Y2Y3U4U5U6

constrained
code construction

inequality description
R4 � H(Y2)

R4 + R6 � H(Y2) + H(Y3)

R5 + R6 � H(Y2) + H(Y3)

R4 + R5 � H(Y1) + H(Y2) + H(Y3)

R4 + R5 + 2R6 � H(Y1) + 2H(Y2) + 2H(Y3)

automated
converse 

proofs

,,

) )
3

1
2

2,32,31,3

5
4

6

Substitutes outer/inner bounds to �

⇤
N into Yan, Yeung, Zhang ’12

R⇤ = projRE ,[H(Ys)|s2S](con(�

⇤
N \ L123) \ L45) (7)

where L123 :=

n

h

�

�

�

hYS = ⌃s2ShYs , hXOut(i)|XIn(i)
= 0

o

and

L45 := {(h

T ,RT
)

T 2 R2N �1+|E|
+ : Re � hUe , e 2 E , hY �(t)|UIn(t)

= 0}
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Notions of Symmetry – Formalize via Groups

1. Symmetries of �N \ LA where LA = L123 \ L45

(a) Symmetries of polyhedral cones

(b) Symmetries of �N

(c) Symmetries of �N \ LA

(d) Application – reduces the complexity of proving the converse

2. Symmetries between di↵erent network coding problem instances

3. Symmetries among network codes

(a) Symmetries among linear codes

(b) Application to proving matched inner bound

(c) Symmetries among nonlinear codes
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