Coding for Online Adversaries

Bikash Dey Ishay Haviv Sidharth Jaggi Michael Langberg Anand Sarwate

OPEN UNIVERSITY OF ISRAEL
Coding theory

\[x = C(m) \in \sum^n \]

\[m \in \sum^k \]

Error correcting codes

\[C: \sum^k \rightarrow \sum^n \]

decode
Design of C depends on properties of channel.

- **This talk:**
 - We view channel as a *jammer* that (may) be *malicious*.
 - Refer to malicious jammer also as *adversary*.
 - In general, $y = x + e$ (this will change later ...).
 - All jammers considered will have a *power* constrain p: at most pn characters of x can be changed: $|e| \leq pn$.
• **Success criteria:**
 - Average error ($\Pr_{m,\text{channel}}[D(y)=m] \sim 1$).
 - Maximum error: stochastic codes (random encoding).

• **Stress:**
 - No shared information between X and Y.

• C,D is said to allow the communication of m over channel if $\Pr_e[D(C(m)+e)=m] \sim 1$.
 - Probability over channel.

• C,D is said to allow the communication of \sum_k over channel if $\Pr_{m,e}[D(C(m)+e)=m] \sim 1$.
 - Probability uniform over \sum_k and over channel.

• **Rate** of C is k/n; **Capacity** = maximal achievable rate.
Random jammer

- What is known when error is random (change uniformly with probability p)?
- Will consider different alphabet sizes: $q=|\Sigma|$.

- For binary case ($q=2$):
 - Capacity = $1-H(p)$

- For “large” alphabets:
 - Capacity = $1-p$
Adversarial jammer

- Malicious jammer controlling the error:
 - Knows code shared by X and Y.
 - Sees codeword x sent by X.
 - Plans an error e to disturb comm.
 - Error of weight at most pn.

- For binary case ($q=2$):
 - $1-H(p) > \text{Capacity} \geq 1-H(2p)$

- For large alphabets:
 - Capacity = $1-2p$
This talk: Online adversaries

• What happens if adversary behaves in an "online" or "causal" manner.
• Adversarial jammer is still malicious.
• Adversary still knows code shared by X and Y, but has partial information regarding the codeword x.
• Adversary sees codeword x "character by character", must base its decisions on what it has seen so far.
• Adv. is stronger than random jammer.
• Online adv. is weaker than "unlimited" adv.
• What rate can be achieved?
Theme: study natural channels that are somewhere between “unlimited adversarial jammer” and “random jammer”.

• Combine perspective/tools from IT and TCS.

• **Large alphabet setting:**
 • Online setting fits applications in which X sends codewords consisting of n packets (characters).
 • Each packet is sent independently over time.
 • Decoding is done only after all packets arrive.
 • Adversary has limited jamming power: can corrupt only pn packets.
 • Corresponds to wireless comm. (“Jam or listen”).

• **Binary setting:**
 • Understanding capacity of unlimited adversarial channel: major open question (codes of large min. dist.).
 • A better understanding of online adv. may advance our understanding.
• Proof combinatorial in nature:
 • Turans theorem.
 • Plotkin bound.
 • Probabilistic arguments

 • Is the online capacity equal to that of unlimited adversary?
 • Is the online capacity equal to that of random adversary?

 • Lets start with the binary alphabet:
 • One may search for upper and lower bounds.

 • Upper bound:
 • \(\min(1-4p,1-H(p)) \).
 • Recently improved.
 • When \(p \geq 0.25 \) rate \(R=0 \).
 • Just like “unlimited adversary”!

 • Online capacity differs from that of random adversary.
 • However, does it equal to that of unlimited adversary?

\[
C \leq \min_{\rho \in [0,p]} \left(1 - 4(p - \rho) \right) \left(1 - H\left(\frac{\rho}{1 - 4(p - \rho)} \right) \right).
\]

[GilbertVarshamov]

[Sha48]
Results for binary case:

Q: Is the online capacity equal to that of unlimited adversary?

- **GV** bound of $1 - H(2p)$ is best known lower bound for unlimited adversaries.

- **We show:** Online capacity is strictly greater than GV.

Theorem 1.2. For any p such that $H(2p) \in (0, \frac{1}{2})$ there exists a $\delta_p > 0$ such that

$$C_{\text{online}}(p) \geq 1 - H(2p) + \delta_p.$$
Summary for binary case

- Separation between the online channel and previously studied “strong” and “weak” channels.

Theorem 1.2. For any p such that $H(2p) \in (0, \frac{1}{2})$ there exists a $\delta_p > 0$ such that:

$$C_{\text{online}}(p) \geq 1 - H(2p) + \delta_p.$$

- What about large alphabets?
- We address same questions.
- Problem is significantly different as large alphabets allow “rich” encodings.
Our results: large $q = |\Sigma|$

- Is the online capacity equal to one of the extremes?
 - Unlimited adversary/Random adversary?
- Yes!
 - We get a full characterization of the capacity.

- Turns out that an online adversary is **just as strong** as one which is not online.
- Namely, capacity **equals** that of unlimited adversary: $1 - 2p$.

- Are we done?
What about delay?

- Up to now we considered restricting the adversary by forcing causality.
- Namely, after the jammer sees $x_1, x_2, ..., x_i$ it makes a decision on the value of e_i.
- What if due to computational or communication delays, the value of e_i must be decided on solely based on $x_1, x_2, ..., x_{i-dn}$ for some delay param $d>0$.
- New adv. is still **stronger** than random jammer.
- New adv. is still **weaker** than “unlimited” adv.
- What is the capacity in this case?
- Here also we have a **full characterization** for large q!
What about delay?

- What if due to computational or communicational delays, the value of e_i must be decided on solely based on $x_1, x_2, ..., x_{i-d}$ for some delay parameter $d > 0$.
- New adv. is still **stronger** than random noise.
- New adv. is still **weaker** than “unlimited” adv.
- What is the capacity in this case?
- Here also we have a **full characterization**!

Wait! Once we have delay it is interesting to consider the error model:

- **Additive**: $y = x + e$.
- **Overwrite**: If sends e_i then $y_i = e_i$.

- When x_i is known to jammer there is no difference between the two. But in our setting ($d > 0$) there is.
In both cases we prove upper and lower bounds:
- Achievability is efficient (encoding and decoding).

Additive error
- Turns out that for any delay \(d > 0 \) the adversary is very weak.
- Namely, capacity equals that of random channel: \(1 - p \).

Overwrite error
- Differs substantially from additive case.
- Capacity depends on \(d \).
- As expected, when \(d \) is larger the capacity is greater \(" = " 1 - 2p + d \).
- Cutoff at \(p = 0.5 \).
Summary: no delay

Binary:
- Capacity does not equal random channel (upper bound).
- Capacity seems to differ from adversarial channel (improved GV).

Large alphabets:
- Capacity equals to adversarial channel.
Summary: with delay

“Retrospect”:
• Intriguing model of study with “unexpected” behavior.
• Being online does not seem to be that much of restriction to the adversary.
• Delay plays a significant role in capacity.
• “The present is more important than future”.

Rest of talk:
• Will give a flavor of a few proof techniques.
• Present:
 • Upper bound for binary case (no delay).
 • Achievability for large alphabets with delay in additive model.
 • Achievability for large alphabets with delay in overwrite model.
Related work

• To the best of our knowledge, communication in the presence of an online adversary (with or without delay) has not been explicitly addressed in the literature.

• Nevertheless, the model of online channels, being a natural one, has been “on the table” for several decades.
 • Appears as open question in book of Csiszár and Korner. In chapter of AVC’s (arbitrarily varying channels).

• Variants of causal adversaries that have been defined/studied:
 • [BlackwellBreimanThomasian], [CsiszárKorner], [JaggiL.HoEffros], [SahaiMitter], [Sarwate], [NutmanL].

• Would be glad to hear of previous work.
Proof of binary upper bound

• Will show $R = 0$ for $p=0.25$.
• This matches the bound for “unlimited adversaries” and separates from random jammer.

Proof overview:
• Need to present adversarial strategy.
• Two step plan “wait and push”:
 • “Wait” and listen to gather information.
 • Make a decision and “push” codeword in certain direction.
“Wait and push”

- Would like to prove that $R = 0$ for $p = 0.25$.
- Will show that using any code (encoder and decoder) of rate $\epsilon > 0$ will imply a decoding error of at least $\approx \epsilon$.
- **Phase I:** “wait”
 - Adversary just listens for a short while: say $\epsilon n/4$ bits.
 - Constructs the set of codewords that are consistent with view.
 - * is the actual codeword transmitted.

Rate $\epsilon = k/n$:
codewords = $2^{\epsilon n}$
"Wait and push"

- Would like to prove that $R = 0$ for $p = 0.25$.
- Will show that using any code (encoder and decoder) of rate $\varepsilon > 0$ will imply a decoding error of at least $\approx \varepsilon$.
- **Phase I:** "wait"
 - Adversary just listens for a short while: say $\varepsilon n/4$ bits.
 - Constructs the set of codewords that are consistent with view.
 - \ast is the actual codeword transmitted.
 - **Claim 1:** w.h.p. set is of size $2^{\Omega(\varepsilon n)}$.
 - Now pick a random codeword \ast from set.

Averaging argument. Follows from rate = ε.

Rate $\varepsilon = k/n$:
- # codewords $= 2^{\varepsilon n}$
- Averaging argument. Follows from rate = ε.

[Sha48]
[GilbertVarshamov]
Online [upper bound]
“Wait and push”

- Would like to prove that $R = 0$ for $p = 0.25$.
- Will show that using any code (encoder and decoder) will imply a decoding error of at least $\approx \varepsilon$.
- **Phase I**: “wait”
 - Adversary just listens for a short while: say $\varepsilon n/4$ bits.
 - Constructs the set of codewords that are consistent with view.
 - $*$ is the actual codeword transmitted.
 - **Claim 1**: w.h.p. set is of size $2^{\Omega(\varepsilon n)}$.
 - Now pick a random codeword $*$ from set.
 - **Claim 2**: w.p. $\approx \varepsilon$: $\text{dist}(*,*) < 2p = \frac{1}{2}$.
 - Assume Claims 1, 2 hold.

$x = C(m)$
Theorem:
Any code (encoder and decoder) of rate $\varepsilon > 0$ will imply a decoding error of at least $\approx \varepsilon$.

- Would like to prove that $R = 0$ for $p=0.25$.
- Will show that using any code (encoder and decoder) of rate $\varepsilon > 0$ will imply a decoding error of at least $\approx \varepsilon$.
- Phase I: “wait” ($\ast = $ actual codeword, $\ast = $ random one picked by adv.)
 - Claim 1: w.h.p. set is of size $2^{O(\varepsilon n)}$.
 - Claim 2: w.p. $\approx \varepsilon$: dist($\ast, \ast) < 2p = 1/2$.
- Phase II: “push”
 - Each entry in \ast that differs from \ast: flip w.p. $\frac{1}{2}$.
 - This pushed \ast towards \ast.
 - Claim 3: when Y receives corrupted word, cannot decide whether \ast or \ast were sent.

\[\varepsilon n/4 \]

\[x = C(m) \]

- In both cases, distribution Y views is exactly the same.
- Formally need Bayes’ theorem (and few other ideas).

All in all, adv. forces error of $\approx \varepsilon$ (Claims 1,2 must hold).
Breather ...

Just seen:
- Upper bound for binary alphabets (no delay).
- Same technique gives upper bound for large alphabets.

Large alphabets with delay:
- **Additive**: single character of delay = random jammer.
- **Overwrite**: capacity somewhere between random and unlimited adv.
Main idea: use codes for an erasure channel:
- Let $m=m_1\ldots m_k$ be X’s message.
- Encode m using an erasure code (RS for example).
- To each symbol x_i of codeword add an authentication mechanism.
- Namely, to each symbol x_i will add a pair $(h,h(x_i))$.
- h is will be drawn independently by X from a family H of hashes.
- Design H in such a way that:
 - Easy for Y to authenticate.
 - “Cannot” add an error e_i that will pass authentication.
 - So after authentication, Y uses erasure decoding.

1-p for any $d > 0$.

As this is the capacity of random channel - we only need a lower bound (encoding + decoding).

Model: delay > 0, errors additive.
Why won’t previous scheme work?

- Adding authentication info. in each packet to get an erasure channel.
- **Overwrite adv.:** can put in fake packet that will **pass** authentication.
- Need new ideas …

Model:

- **Errors:** overwrite.
- **Delay:** decide on e_i based on x_j, $j \leq i - dn$.

Capacity:

- 0 if $p > \frac{1}{2}$.
- $1 - p$ if $p < d$.
- $1 - 2p + d$ if $p \geq d$.

Differs from capacity of $1 - p$ in additive case when $d > 0$.

$x = C(m)$

p 0.5 1

R

0 1

dn

x_j x_i
Lower Bound

Model: errors = overwrite, delay = e_i based on x_j, $j \leq i-dn$.

Lower bound: $1-p$ if $p < d$, $1-2p+d$ if $p \geq d$

Variant on reduction to erasure codes. More involved.

- Let $m=m_1...m_k$ be X’s message.
- Encode m using an erasure code (RS for example).
- To each symbol x_i of codeword add authentication mechanism.
- This time authentication information added to symbol x_i will include information from all other symbols x_j!
Lower Bound

Model: errors = overwrite, delay = e_i based on x_j, $j \leq i-dn$.

Lower bound: $1-p$ if $p < d$, $1-2p+d$ if $p \geq d$

Variant on previous idea that reduces to erasure codes.

- Let $m=m_1...m_k$ be X’s message.
- Encode X using an erasure code (RS for example).
- This time authentication information in symbol x_i will include information from all other symbols x_j!
- Enables pairwise authentication (x_i, x_j).
- Corrupted info will pass pairwise test only if:
 - Both x_i and x_j are corrupted.
 - x_i corrupted after adv. knows value of x_j.
- Need to use pairwise independent hash family.
- How to decode?
Lower Bound

Lower bound: \(1-p\) if \(p < d\), \(1-2p+d\) if \(p \geq d\)

Variant on previous idea that reduces to erasure codes.

- Corrupted info will pass pairwise test only if:
 - Both \(x_i\) and \(x_j\) are corrupted.
 - \(x_j\) corrupted after adv. knows value of \(x_i\).
- Use pairwise independent hash family.

- How to decode?
- Case 1: \(p < d\).
 - Main idea: construct “chains” of consistent “close” pairs.
 - Largest chain will be of length \((1-p)n\) and thus allow decoding.

\[\text{Close} = \text{distance at most } dn.\]
- Will not enable authentication of corrupted and uncorrupted pair.
Lower Bound

Lower bound: $1-p$ if $p < d$, $1-2p+d$ if $p \geq d$

Variant on previous idea that reduces to erasure codes.

• Corrupted info will pass pairwise test only if:
 • Both x_i and x_j are corrupted.
 • x_j corrupted after adv. knows value of x_i.
• Use pairwise independent hash family.

• How to decode?
• Case 2: $p \geq d$.
• As before: construct chain of mutually consistent “close” pairs.
• Chain may be disconnected!

Close = distance at most dn.
• Will not enable authentication of corrupted and uncorrupted pair.
Which connected components are good ones?

• Need to construct at least \((1-2p+d)n\) uncorrupted entries to decode.
• Check consistency among all possible chain combinations ⇒ expensive.

• Turns out that one can prove:
 • Not too many correct (green) chains ≤ \(p/d\).

• Put it all together ⇒ limited exhaustive search + erasure decoding!
 Corrupted info will pass pairwise test only if:
 • Both \(x_i\) and \(x_j\) are corrupted.
 • \(x_j\) corrupted after adv. knows value of \(x_i\).
 • Use pairwise independent hash family.

• How to decode?
• Case 2: \(p \geq d\).
• As before: construct chain of mutually consistent “close” pairs.
• Chain may be disconnected!

\[\text{Rate: } 1-2p+d \]
Summary/thoughts

• **Theme:** study channels that are somewhere between “unlimited adversarial jammer” and “random noise”.

• **This talk:** online (causal) adversaries.
 - Large alphabets (now) understood, small not fully …
 - Causal adversary still strong…… but delays can weaken him.
 - Types of error matter (add./overwrite/….?).
 - “Present is more important than future”.

• **May consider other channel models based on theme:**
 - Jammer has other limited views of codeword [L].
 - Jammer does not have full knowledge of codebook [Ahlswede][Lipton][MicaliPeikertSudanWilson][SarwateGastpar].
 - Gaussian additive channel.
 - Causality in network error correction (time vs. topology [Nutman L]).

Thanks!