Lattice Network Codes Based on Eisenstein Integers for Wireless Multiple-Access Relay Networks

Jinhong Yuan

原進宏

University of New South Wales (UNSW)

Chinese University of Hong Kong (CUHK)

22.02.2012
Outlines

• Physical-layer Network Coding (PNC)
• Compute-and-forward (CF)
• Lattice Network Coding (LNC)
• Design Examples
• Union Bound Estimation (UBE)
• Conclusion
PNC

- Physical Layer Network Coding (PNC): decode the modulo-two sum of the two transmitted signals.
- Can enhance the throughput of a binary-input two-way relay channel (TWRC) [1]
- Approach the capacity upper bound of a Gaussian TWRC within ½ bits [2]

Compute-and-Forward

- Nazer-Gastpar proposed a new strategy: Compute-and-forward (CF) for a Gaussian multiple access relay channel (MARC).
- CF is an extension of PNC: multiple-user/q-ary input/fading
- **Key idea:**
 - relay decodes a linear function of the transmitted messages
 - rather than decoding each user’s message individually

Compute-and-Forward

- Map the noisy linear **C-combined** signal from the channel
 \[y = \sum_{i=1}^{L} h_i x_i + z \]
 to a linear (integer) function (network coding)
 \[u = \sum_{i=1}^{L} a_i w_i \]

- **Underlying principle:** based on linear nested lattice codes
 - The integer combinations of the lattice points (codewords) is another lattice point (codeword).
 - It can be mapped back to the linear combinations of the messages \(u \) over the finite field.
Lattice

A lattice Λ is a discrete subset of n-space that has the group property.

An integer lattice: \mathbb{Z}^n

A lattice can be viewed as the linear transformation of the integer lattice \mathbb{Z}^n by a generator matrix B over $\mathbb{R}^{n \times n}$.

\[\Lambda = B\mathbb{Z}^n \]
Lattice

• By the group property, any translation $\Lambda + x$ by a lattice point x is just Λ, i.e. shift invariant.

• **Closed** under addition: $\lambda_1, \lambda_2 \in \Lambda \implies \lambda_1 + \lambda_2 \in \Lambda$.

• **Symmetric:** $\lambda \in \Lambda \implies -\lambda \in \Lambda$

• Implies: Lattice is **geometrically uniform** in Euclidean distance
 – Every point has the same number of neighbors at each distance.
 – All decision regions of a minimum-distance decoder are congruent.

\[Z^2 \quad BZ^2 \]
Lattice

- Nearest neighbor quantizer (decoder): send a vector x to a nearest lattice point in terms of the Euclidean distance.

$$\mathcal{D}_Λ(x) \triangleq \arg\min_{\lambda \in Λ} ||x - \lambda||$$

- The Voronoi region of a lattice point: the set of all points that quantize to the lattice point.

- Fundamental Voronoi region \mathcal{V}: the sets of points quantize to the origin.

$$\mathcal{V} = \{x : Q_Λ(x) = 0\}$$
Nested Lattice

• Consider a sublattice Λ' of lattice Λ. They are nested as $\Lambda' \subset \Lambda$.

 – **Fine lattice** Λ
 – **Coarse lattice** Λ'

• **Nested Lattice code**: The set of lattice points of the fine lattice Λ in the fundamental Voronoi region ν of the coarse lattice Λ'.

• The region ν is also called the **shaping region** of the code.

• The code rate

\[
R = \frac{1}{n} \log_2 \frac{V(\Lambda')}{V(\Lambda)}
\]
Nested Lattice Encoding

- Define a linear **code generator** G and **Lattice generator** B
- Generate codeword Gw for message w
- Map the scaled down version rGw into the fundamental Voronoi region $(hypercube)$ $\mathcal{V} = [-1/2, 1/2)^n$
- Generate **fine lattice** $t=BrGw$
- Generate **coarse lattice** $\Lambda' = BZ^n$
- Generate a random **dither vector** d uniformly over \mathcal{V}
- Transmit a **dithered codeword** $x = [t+d] \mod \Lambda'$
Nested Lattice Encoding/Decoding

- Encoders use the same nested lattice codes, transmit dithered codewords
 \[x_i = [t_i + d_i] \mod \Lambda' \]
 \[= [B_r G w_i + d_i] \mod \Lambda' \]

- Decoder scales by \(\alpha \)

Removes dithers

\[
\left[\alpha y - \sum_i q_i d_i \right] \mod \Lambda'
\]

\[
= \left[\alpha \left(\sum_i h_i x_i + z \right) - \sum_i q_i d_i \right] \mod \Lambda'
\]

\[
= \left[\sum_i q_i x_i + \sum_i (\alpha h_i - q_i) x_i + \alpha z - \sum_i q_i d_i \right] \mod \Lambda'
\]

\[
= \left[\sum_i q_i [t_i + d_i] \mod \Lambda' + \sum_i (\alpha h_i - q_i) x_i + \alpha z - \sum_i q_i d_i \right] \mod \Lambda'
\]

\[
= \left[\sum_i q_i t_i + \sum_i (\alpha h_i - q_i) x_i + \alpha z \right] \mod \Lambda'
\]

- Recovers linear equation (network code)

\[
\mathbf{u} = \left[\sum_i q_i t_i \right] \mod \Lambda'
\]

\[
= \sum_i a_i w_i
\]

Effective noise: \(n = \sum_i (\alpha h_i - q_i) x_i + \alpha z \)
Compute-and-Forward

Effective noise: $n = \sum_i (\alpha h_i - q_i)x_i + \alpha z$

Minimizing the effective noise by choosing α to be MMSE coefficient

$$\alpha = \frac{P h^* a}{1 + P \|h\|^2}$$

The computation rate

$$R(h, a) = \log_2^+ \left(\|a\|^2 - \frac{P |h^* a|^2}{1 + P \|h\|^2} \right)$$
Compute-and-Forward

Performance of Gaussian TWRC

From: Nazer/Gastpar
Compute-and-Forward

\[h = [2.1 \ 1.4] \]

\[a = [3 \ 2] \]

Effective Noise: \(N + P |h-a|^2 \)

From: Nazer/Gastpar
Compute-and-Forward

\[\alpha h = [\alpha 2.1 \quad \alpha 1.4] \]

\[a = [3 \quad 2] \]

Effective Noise: \(\alpha^2 N + P |\alpha h - a|^2 \)

From: Nazer/Gastpar
Map back to equation of message symbols over the field:

\[\alpha h = [\alpha 2.1 \quad \alpha 1.4] \]

\[a = [3 \quad 2] \]

Effective Noise: \(\alpha^2 N + P |\alpha h - a|^2 \)

From: Nazer/Gastpar
Compute-and-Forward

- A **theoretic guideline** as it assumes an infinite sequence of good lattice partition.

- **Map message** to a lattice point
 \[t_i = \phi(w_i) \]

- Transmit **dithered codeword**
 \[x_i = \left[t_i + d_i \right] \mod \Lambda' \]

- The decoder recovers
 \[\sum_i q_i t_i \mod \Lambda' \]

- Map it back to the linear combination of the messages
 \[\sum_i a_i w_i = \phi^{-1}\left(\sum_i q_i t_i \mod \Lambda' \right) \]

- **Question:**
 - How to design the mapping functions?
 - How to implement modulo operation in n-space?
Lattice Network Coding

• A general algebraic framework proposed by Feng/Silva/Kschischang to design and implement practical compute-and-forward scheme using finite dimension lattice partition.

• It makes direct connection between the CF strategy and module theory.

• Using the algebraic properties of principal ideal domain (PID), it links the C-linear combination operation performed by the channel

\[y = \sum_i h_i x_i + z \]

and the R-linear combination operation in the message space for the network coding

\[\sum_i a_i w_i \]

Lattice Network Coding

• Let R be a discrete subring of C forming a principal ideal domain PID (e.g., integer numbers, Gaussian integers Z[i])

• Define an R-lattice \(\Lambda = \left\{ rG_\Lambda : r \in R^n \right\} \) (R-module) and its sublattice of \(\Lambda' \).

• The set of all the cosets of \(\Lambda' \) in \(\Lambda \), denoted by \(\Lambda / \Lambda' \), forms an R-lattice partition of \(\Lambda \). The message space \(W=\Lambda / \Lambda' \). (Figure)

• Define a linear labelling
 \(\phi^{-1}: \Lambda \rightarrow \Lambda / \Lambda' \)
 taking a lattice point \(\lambda \) in \(\Lambda \), map to a coset \(\lambda + \Lambda' \) of \(\Lambda' \) in \(\Lambda \).

• Define an embedding map
 \(\phi: \ W \rightarrow \Lambda \)
 embedding each message to a lattice point in the same coset.
Lattice Network Coding

- The encoder maps a message $w=\lambda+\Lambda'$ to a coset leader, using the embedding map.

$$x_i = \varepsilon(w_i) = \phi(w_i) - D_{\Lambda'}\left(\phi(w_i)\right)$$

- The decoder estimates an R-linear combination

$$\sum_i q_i x_i$$

from the C-linear combination

$$y = \sum_i h_i x_i + z$$

and maps the R-linear combination to a coset Λ/Λ' by using linear labelling

$$\sum a_i w_i = \phi^{-1}\left(D_{\Lambda}(\alpha y)\right)$$

- R is a subring of C, the linear labelling induces a nature bridge between the C-linear combining and the R-linear combining in the message space.
Lattice Network Coding

How to **construct linear labelling** $\phi^{-1}: \Lambda \to \Lambda / \Lambda'$?

Theorem (Feng/Silva/Kschischang)

Let R be a PID and Λ / Λ' be a finite R-lattice partition. There exist generator matrices for Λ and Λ' satisfying

$$G_{\Lambda'} = \begin{bmatrix} \text{diag}(\pi_1, L, \pi_k) & 0 \\ 0 & I_{n-k} \end{bmatrix} G_{\Lambda}$$

where $\pi_1 | \pi_2 | \cdots | \pi_k$ are the invariant factors of Λ / Λ'.

And the linear labelling is represented by a direct sum of modules R/π

$$\phi^{-1}: \Lambda \to \Lambda / \Lambda' \cong R / (\pi_1) \oplus R / (\pi_2) \oplus L \oplus R / (\pi_k)$$

$$\phi^{-1}(rG_{\Lambda}) = (r_1 + \pi_1, r_2 + \pi_2, L, r_k + \pi_k)$$

Implies:

- Construct high-D lattice from low-D lattice.
- We only consider linear labelling for 1-D baseline lattice R/π.
LNC Based on Gaussian Integer

- **Gaussian integer** \(Z[i] = \{a + bi : a, b \in \mathbb{Z}\} \)
- Discrete subring of the complex numbers.

Example.

Consider a lattice \(Z[i] \) and its sublattice \(\beta Z[i] \), where \(\beta = 2 + 3i \) (Gaussian integer).

A finite field \(F_{13} \) is isomorphic to \(Z[i] / \beta Z[i] \).

The message space \(W = (Z[i] / \beta Z[i])^k \)

The shaping is a rotated hypercube in \(C^n \).

The encoder maps a message \(w = \lambda + (Z[i] / \beta Z[i])^k \) into its coset leader.

The decoder uses the linear labelling

\[
\phi^{-1}(r) = ((r_i - \lfloor r_i / \beta \rfloor \times \beta) + \beta, \text{ L }, (r_k - \lfloor r_k / \beta \rfloor \times \beta) + \beta)
\]
Union bound Estimation (UBE) of the error probability for hypercube shaping

\[P_e(h, a) \approx K(\Lambda/\Lambda') \exp \left(-\frac{d^2(\Lambda/\Lambda')}{4N_0Q(\alpha, a)} \right) \]

where

\[Q(\alpha, a) = |\alpha|^2 + SNR \|\alpha h - a\|^2 \]

The effective noise is \(N_0 Q(\alpha, a) \).

The minimum inter-coset distance of \(\Lambda/\Lambda' \): \(d(\Lambda/\Lambda') \).

It is also called the length of the shortest vectors in the set difference \(\Lambda \setminus \Lambda' \)

The number of shortest vectors: \(K(\Lambda/\Lambda') \)

The kissing number.
LNC Based on Gaussian Integer

Union bound Estimation (UBE) of the error probability

\[P_e(h, a) \approx K(\Lambda / \Lambda') \exp \left(-\frac{d^2(\Lambda / \Lambda')}{4N_0Q(\alpha, a)} \right) \]

\[= K(\Lambda / \Lambda') \exp \left(-\frac{\gamma_c(\Lambda / \Lambda')3\text{SENR}_{\text{norm}}}{2} \right) \]

The normalized signal-to-effective-noise ratio

\[\text{SENR}_{\text{norm}} = \frac{\text{SENR}}{2^R} = \frac{\text{SNR}}{2^R Q(\alpha, a)} \]

The nominal coding gain:

\[\gamma_c(\Lambda / \Lambda') = \frac{d^2(\Lambda / \Lambda')}{V(\Lambda)^{1/n}} \]

Measures the increase in density of \(\Lambda \) over the baseline uncoded hypercube lattice. The nominal coding gain for the baseline system is 0 dB.
LNC Based on Eisenstein Integer

- **Eisenstein integer** \(Z[w] = \{a + bw : a, b \in \mathbb{Z}\} \quad w = \left(-1 + \sqrt{-3} \right) / 2 \)
- \(Z[w] \) forms a PID.
- Lattice partitions over \(Z[w] \) enrich the candidates of finite fields.
- It has six Eisenstein units.
- The Voronoi region of \(Z[w] \) lattice is a regular hexagon (better shaping region).
- It has efficient division algorithms, essential for practical encoder/decoder.
- Optimum lattice/packing in 2-D.
Example.

Consider a lattice $\mathbb{Z}[w]$ and its sublattice $r\mathbb{Z}[w]$, where $r=4+3w$ (Eisenstein integer).

A finite field F_{13} is isomorphic to $\mathbb{Z}[w]/r\mathbb{Z}[w]$.

The message space $W=(\mathbb{Z}[w]/r\mathbb{Z}[w])^k$

The shaping is a rotated product of n regular hexagons in \mathbb{C}^n.

(a) $\mathbb{Z}[i]$
(b) $\mathbb{Z}[\omega]$
LNC Based on Eisenstein Integer

Quantizer of a complex value x to an Eisenstein Integer

$$D_\Lambda (x) = \arg \min \left\{ |x - \beta_i|^2 \right\}$$

$$\beta_1 = \left[\text{Re}\{x\} \right] + \sqrt{-3} \left[\text{Im}\{x\} / \sqrt{3} \right]$$

$$\beta_2 = \left[\text{Re}\{x - w\} \right] + \sqrt{-3} \left[\text{Im}\{x - w\} / \sqrt{3} \right] + w$$

For lattice partition $\mathbb{Z}[w]/r\mathbb{Z}[w]$, the encoder $\varepsilon: W \rightarrow \Lambda = \mathbb{Z}[w]$ uses a division algorithm.

Example.

Consider the lattice $\mathbb{Z}[w]$ and its sublattice $r\mathbb{Z}[w]$.

When $r=2$, F_4 is isomorphic to $\mathbb{Z}[w]/2\mathbb{Z}[w]$.

$W = \{0 + r\mathbb{Z}[w], \ 1 + r\mathbb{Z}[w], \ w + r\mathbb{Z}[w], \ 1 + w + r\mathbb{Z}[w]\}$.

One possible encoder:

$\varepsilon(W) = \{0, \ -1, \ -w, \ 1+w\}$
LNC Based on Eisenstein Integer

Theorem: Union bound Estimation (UBE) of the error probability

\[P_e(h, a) \approx K(\Lambda / \Lambda') \exp \left(- \frac{d^2(\Lambda / \Lambda')}{4N_0Q(\alpha, a)} \right) \]

where

\[Q(\alpha, a) = |\alpha|^2 + SNR \| \alpha h - a \|^2 \]

The minimum inter-coset distance of \(\Lambda / \Lambda' \): \(d(\Lambda / \Lambda') \).
It is also called the length of the shortest vectors in the set difference \(\Lambda \setminus \Lambda' \)

The number of shortest vectors: \(K(\Lambda / \Lambda') \)
The kissing number.
LNC Based on Eisenstein Integer

Corollary: Union bound Estimation (UBE) of the error probability

\[
P_e(h, a) \approx K(\Lambda / \Lambda') \exp \left(- \frac{d^2(\Lambda / \Lambda')}{4N_0Q(\alpha, a)} \right) \]

\[
= K(\Lambda / \Lambda') \exp \left(- \frac{\gamma_c(\Lambda / \Lambda')\gamma_s(\Lambda / \Lambda')3\text{SENR}_{\text{norm}}}{2} \right)
\]

The normalized signal-to-effective-noise ratio

\[
\text{SENR}_{\text{norm}} = \frac{\text{SENR}}{2^R} = \frac{\text{SNR}}{2^R Q(\alpha, a)}
\]

The nominal coding gain:

\[
\gamma_c(\Lambda / \Lambda') = \frac{d^2(\Lambda / \Lambda')}{V(\Lambda)^{1/n}}
\]

Measures the increase in density of \(\Lambda \) over the baseline uncoded hypercube lattice.
LNC Based on Eisenstein Integer

Corollary: Union bound Estimation (UBE) of the error probability

\[\begin{align*}
P_e(h, a) &\approx K(\Lambda / \Lambda') \exp \left(-\frac{d^2(\Lambda / \Lambda')}{4N_0 Q(\alpha, a)} \right) \\
&= K(\Lambda / \Lambda') \exp \left(-\frac{\gamma'_c(\Lambda / \Lambda')\gamma'_s(\Lambda / \Lambda')3\text{SENR}_{\text{norm}}}{2} \right)
\end{align*} \]

Second Moment (average energy per dimension of a uniform PDF):

\[P(\Lambda) = \int_{V} \frac{\|x\|^2}{n} p(x) dx = \int_{V} \frac{\|x\|^2}{n V(\Lambda)} dx \]

Normalized Second Moment
(dimensionless, invariant to scaling, orthogonal transformation and Cartesian products):

\[G(\Lambda) = \frac{P(\Lambda)}{V(\Lambda)^{1/n}} \]

The shaping gain:

\[\gamma'_s(\Lambda / \Lambda') = \frac{G(\text{hypercube})}{G(\Lambda)} = \frac{1/6}{G(\Lambda)} = \frac{V(\Lambda)^{1/n}}{6P(\Lambda)} \]

Measures how much less is the average energy of \(\Lambda \) relative to a hypercube.
LNC Based on Eisenstein Integer

Consider LNC based on Eisenstein integer β and lattice partition $\mathbb{Z}[w]/\beta\mathbb{Z}[w]$

The baseline system has a nominal coding gain

$$\gamma_c(\Lambda / \Lambda') = \frac{2\sqrt{3}}{3} = 0.625 \text{ dB}$$

The shaping gain

$$\gamma_s(\Lambda / \Lambda') = \frac{3\sqrt{3}}{5} = 0.167 \text{ dB}$$

Corollary:

For an LNC by complex construction A over $\mathbb{Z}[w]/\pi\mathbb{Z}[w]$, where π is an Eisenstein prime, the nominal coding gain based

$$\gamma_c(\Lambda / \Lambda') = \frac{2\sqrt{3}}{3} \frac{w_E^{\min}(C)}{|\pi|^{2(1-k/n)}}$$

Union bound Estimation (UBE) of the error probability

$$P_e(h, a) \approx K(\Lambda / \Lambda') \exp\left(-\frac{9}{5} \frac{w_E^{\min}(C)\text{SENR}_{\text{norm}}}{|\pi|^{2(1-k/n)}}\right)$$
LNC Based on Eisenstein Integer

Compare two LNC baseline systems’ performance
Two transmitter and a single relay.
Eisenstein prime r and lattice partition $\mathbb{Z}[w]/r\mathbb{Z}[w]$
Gaussian prime β and lattice partition $\mathbb{Z}[i]/\beta\mathbb{Z}[i]$
LNC Based on Eisenstein Integer

Design Examples (maximize the coding gain)

Convolutional codes with rate $\frac{1}{2}$ over lattice partition $\mathbb{Z}[i]/\beta \mathbb{Z}[i]$, $\beta=2+3i$

<table>
<thead>
<tr>
<th>ν</th>
<th>$g(D)$</th>
<th>γ_c</th>
<th>w_{min}</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[1+2D, 2+(1+i)D]$</td>
<td>2.22 (3.36 dB)</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>$[1+D+2iD^2, (-1-i)+(-1+i)D+(-1-i)D^2]$</td>
<td>3.33 (5.22 dB)</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

Convolutional codes with rate $\frac{1}{2}$ over lattice partition $\mathbb{Z}[w]/r\mathbb{Z}[w]$, $r=4+3w$

<table>
<thead>
<tr>
<th>ν</th>
<th>$g(D)$</th>
<th>γ_c</th>
<th>w_{min}</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[1+D, (-1+w)+(2+w)D]$</td>
<td>2.56 (4.09 dB)</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>$[1+D+(-1+w)D^2, (-1+w)+(1-w)D+(1+w)D^2]$</td>
<td>3.84 (5.85 dB)</td>
<td>12</td>
<td>24</td>
</tr>
</tbody>
</table>
Summary

• Reviewed physical-layer network coding and compute-and-forward

• Investigated the lattice network coding based on Eisenstein integer

• Quantizer/encoding algorithms

• Derived Union bound estimation in a unified way

• A few code examples

• LNC based on Eisenstein integer has a high nominal coding and shaping gain.

Open problems:

• Lattice-reduction algorithms to find optimal combination coefficients
• Design more power codes
• Other Lattice Constructions (Construction D algorithm)
Acknowledgement

Qifu Tyler Sun, CUHK

Kenneth W. Shum, CUHK

INC
Thank You!