Secret Sharing and Information Inequalities

Tarik Kaced

Post-doctoral fellow at the Institute of Network Coding
The Chinese University of Hong Kong

February 27, 2013
What is this talk about?
... why, information inequalities and secret sharing, of course!

1. Secret Sharing
2. Quasi-perfect Secret Sharing
3. Information Inequalities
4. Essentially Conditional Inequalities
5. Information Inequalities and Secret Sharing
6. Prospects & Open Questions
Secret Sharing
The Queen shall secure the British Strike Force code
What might she do?
The Queen shall secure the British Strike Force code
What might she do?
The Queen shall secure the British Strike Force code
What might she do?
The Queen shall secure the British Strike Force code
What might she do?
The Queen shall secure the British Strike Force code
What might she do?
The Queen shall secure the British Strike Force code
What might she do?
The Queen shall secure the British Strike Force code
What might she do?
Threshold secret sharing: Shamir’s scheme

Problem. For n participants:

- assign one share to each participant
- require at least m to uncover the secret
- less than m have no information
Threshold secret sharing: Shamir’s scheme

Problem. For \(n \) participants:
- assign one share to each participant
- require at least \(m \) to uncover the secret
- less than \(m \) have no information

Shamir’s scheme (1979)

1. Encode the secret as \(s \in \mathbb{F}_q \) where \(q > n \)
2. Generate \(p(X) = c_{m-1}X^{m-1} + \ldots + c_1X + s \) with random \(c_i \in \mathbb{F}_q \)
3. Give the share \(p(i) \) to participant \(i \)
Threshold secret sharing: Shamir’s scheme

Problem. For \(n \) participants:

- assign one share to each participant
- require at least \(m \) to uncover the secret
- less than \(m \) have no information

Shamir’s scheme (1979)

1. Encode the secret as \(s \in \mathbb{F}_q \) where \(q > n \)
2. Generate \(p(X) = c_{m-1}X^{m-1} + \ldots + c_1X + s \) with random \(c_i \in \mathbb{F}_q \)
3. Give the share \(p(i) \) to participant \(i \)

A polynomial of degree \(m - 1 \) is uniquely defined by \(m \) of its values at distinct points.
What is an Access structure?

Definition (Access structure)

An access structure Γ on \mathcal{P} is a **monotone** family of subset of \mathcal{P}:

$$\Gamma \subseteq \mathcal{P}(\mathcal{P}) \text{ such that } \forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$$
What is an Access structure?

Definition (Access structure)

An access structure Γ on \mathcal{P} is a monotone family of subset of \mathcal{P}:

$$
\Gamma \subseteq \mathcal{P}(\mathcal{P}) \text{ such that } \forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma
$$

Examples:

(m, n)-threshold access structure

For n participants, a subset is authorized if it contains at least m people:

$$
\Gamma_{(m,n)} = \{ A \subseteq \mathcal{P} : |A| \geq m \}$$
What is an Access structure?

Definition (Access structure)

An access structure Γ on \mathcal{P} is a monotone family of subset of \mathcal{P}:

$$\Gamma \subseteq \mathcal{P}(\mathcal{P}) \text{ such that } \forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$$

Examples:

Hypergraph structures

- Vertices are participants
- Hyperedges are minimal authorized groups
Definition (Access structure)

An access structure Γ on \mathcal{P} is a monotone family of subset of \mathcal{P}:

$$\Gamma \subseteq \mathcal{P}(\mathcal{P}) \text{ such that } \forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$$

Examples:

1 2 3 4 5 6 7
What is an Access structure?

Definition (Access structure)

An access structure \(\Gamma \) on \(\mathcal{P} \) is a **monotone** family of subset of \(\mathcal{P} \):

\[
\Gamma \subseteq \mathcal{P}(\mathcal{P}) \text{ such that } \forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma
\]

Examples:

![Diagram](image)
Definition (Access structure)

An access structure Γ on \mathcal{P} is a **monotone** family of subset of \mathcal{P}:

$$\Gamma \subseteq \mathcal{P}(\mathcal{P}) \text{ such that } \forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$$

Examples:

![Diagram of access structure](attachment:diagram.png)
The Secret Sharing Setting

Problem?

Input:
- a finite discrete random variable s (secret)
- a set of n participants
- an access structure Γ that contains authorized groups.
The Secret Sharing Setting

Problem?

Input:
- a finite discrete random variable s (secret)
- a set of n participants
- an access structure Γ that contains authorized groups.

Goal: Find random variables (called shares) to be given to participants for implement the structure
Definition (**perfect secret-sharing schemes**)

A perfect secret sharing scheme for $Γ$ is a tuple of discrete random variables (s, p_1, \ldots, p_n) such that:

- if the group A is **authorized** then the secret is uniquely determined by the shares of A

- if B is not authorized then the secret is **independent** of the shares of B
Definition (perfect secret-sharing schemes)

A perfect secret sharing scheme for \(\Gamma \) is a tuple of discrete random variables \((s, p_1, \ldots, p_n)\) such that:

- if the group \(A \) is authorized then the secret is uniquely determined by the shares of \(A \), i.e.,
 \[
 A \in \Gamma \Rightarrow H(s|A) = 0
 \]
- if \(B \) is not authorized then the secret is independent of the shares of \(B \), i.e.,
 \[
 B \notin \Gamma \Rightarrow I(s:B) = 0
 \]
Definition (perfect secret-sharing schemes)

A perfect secret sharing scheme for Γ is a tuple of discrete random variables (s, p_1, \ldots, p_n) such that:

- if the group A is authorized then the secret is uniquely determined by the shares of A, i.e.,
 \[A \in \Gamma \Rightarrow H(s|A) = 0 \]

- if B is not authorized then the secret is independent of the shares of B, i.e.,
 \[B \notin \Gamma \Rightarrow I(s:B) = 0 \]

Definition (Efficiency)

The information ratio of a scheme is defined by:

\[\rho = \max_{p \in \mathcal{P}} \frac{H(p)}{H(s)} \]
Basic properties of perfect schemes

Propositions (Folklore)

- Every access structure can be implemented
- If a participant p appears in a minimal set of Γ then $H(p) \geq H(s)$
Basic properties of perfect schemes

Propositions (Folklore)

- Every access structure can be implemented
- If a participant p appears in a minimal set of Γ then $H(p) \geq H(s)$

Definition (Ideal)

A scheme is said *ideal* if $\rho = 1$.

An access structure Γ is *ideal* if there exists an ideal scheme for Γ.

Propositions (Folklore)

- Every access structure can be implemented
- If a participant \(p \) appears in a minimal set of \(\Gamma \) then \(H(p) \geq H(s) \)

Definition (Ideal)

A scheme is said ideal if \(\rho = 1 \).

An access structure \(\Gamma \) is ideal if there exists an ideal scheme for \(\Gamma \).

Remark: Shamir’s threshold scheme is ideal
Ideal schemes are matroidal

Proposition

Any linear matroid defines an ideal secret sharing scheme.

Theorem (Brickell-Davenport 1996)

For any ideal perfect secret sharing scheme \(r(A) = \frac{H(A)}{H(s)} \) defines the rank function of a matroid over \(\mathcal{P} \cup \{s\} \).

Theorem (Martí-Farré, Padró 2007)

If \(\Gamma \) does not induce a matroid then \(\rho(\Gamma) \geq \frac{3}{2} \).

only ideal access structures?
There exists non-ideal access structures.

The access structure P_4:

The access structure P_4:

\[\begin{align*}
 &a &b &c &d \\
\end{align*} \]

is not ideal.
There exists non-ideal access structures.

The access structure P_4:

\[
\begin{array}{cccc}
a & b & c & d \\
\end{array}
\]

is not ideal.

Proposition (Folklore) proven later

For any scheme, it holds that $\rho \geq \frac{3}{2}$.

Proposition (Folklore) proven hereafter

There exists a scheme with information ratio $\rho = \frac{3}{2}$.
A scheme for P_4
A scheme for P_4

- a - b - c - d

$$r_1 \quad r_1 + s$$
A scheme for P_4

\[r_1 \quad r_1 + s \quad r_1 \]
A scheme for P_4

\[
\begin{align*}
 & r_1 & r_1 + s & r_1 \\
 & r_2 + s & r_2 \\
\end{align*}
\]

\[\rho = 2\]
A scheme for P_4

\[
\begin{array}{cccc}
 a & b & c & d \\
 r_1 & r_1 + s_1 & r_1 \\
 r_2 + s_1 & r_2 \\
\end{array}
\]

$\rho = 2$
A scheme for P_4

\[r_1 \quad r_1 + s_1 \quad r_1 \]
\[r_2 + s_1 \quad r_2 \]
\[r_3 \quad r_3 + s_2 \quad r_3 \]

\[\rho = 2 \]
A scheme for P_4

\[r_1 \quad r_1 + s_1 \quad r_1 \]
\[r_2 + s_1 \quad r_2 \]
\[r_3 \quad r_3 + s_2 \quad r_3 \]
\[r_4 \quad r_4 + s_2 \]

$\rho = 2$
A scheme for P_4

\[
\begin{align*}
 r_1 & \quad r_1 + s_1 & \quad r_1 \\
 r_2 + s_1 & \quad r_2 \\
 r_3 + s_2 & \quad r_3 \\
 r_4 & \quad r_4 + s_2 \\
\end{align*}
\]

\[\rho = \frac{3}{2}\]
Theorem (Csirmaz, 1994)

There exist a family of access structures Γ_n such that:

$$\rho(\Gamma_n) \geq \frac{n}{4 \log n}$$
Theorem (Csirmaz, 1994)

There exist a family of access structures Γ_n such that:

$$\rho(\Gamma_n) \geq \frac{n}{4 \log n}$$

Upper vs. Lower bounds:

$$\frac{n}{4 \log n} \leq \rho(\Gamma) \leq 2^{O(n)}$$

Open Problem:
fill the gap

General technique: Information Inequalities.
Quasi-perfect Secret Sharing
Perfect schemes are restrictive
What if we relax perfectness and allow leaks?

Contributions:

- introduce general definitions for quasi-perfect secret sharing
- formulate basic questions & properties
- study asymptotic properties of the efficiency parameters
- relate to a Kolmogorov complexity version
New parameters: the leakages.

Definition

A perfect secret-sharing scheme for Γ is a tuple of discrete random variables (s, p_1, \ldots, p_n) such that:

- if $A \in \Gamma$ then $H(s|A) = 0$
- if $B \notin \Gamma$ then $I(s:B) = 0$
Definition

A **secret-sharing scheme** for Γ is a tuple of discrete random variables (s, p_1, \ldots, p_n) such that:

- if $A \in \Gamma$ then $H(s|A) \leq \varepsilon H(s)$
 - **missing information**
- if $B \notin \Gamma$ then $I(s:B) \leq \delta H(s)$
 - **information leak**

Parameters of a scheme:
- ε: missing information ratio.
- δ: information leak ratio.
- ρ: information ratio (efficiency).
A secret-sharing scheme for Γ is a tuple of discrete random variables (s, p_1, \ldots, p_n) such that:

- if $A \in \Gamma$ then $H(s|A) \leq \varepsilon H(s)$, missing information
- if $B \notin \Gamma$ then $I(s:B) \leq \delta H(s)$, information leak

Parameters of a scheme:

- ε: missing information ratio.
- δ: information leak ratio.
- ρ: information ratio (efficiency).
Definition

An access structure Γ can be **quasi-perfectly implemented with information ratio** ρ if there exists a sequence of secret-sharing schemes such that:

1. the \limsup of the information ratio does not exceed ρ;
2. the missing information ratio tends to zero;
3. the information leak ratio tends to zero.
Algorithmic Scheme

Definition

An access structure \(\Gamma \) can be **algorithmically implemented with information ratio** \(\rho \) if there exists a sequence of algorithmic secret-sharing schemes with secrets \(s_n \) such that

1. **the complexity of** \(s_n \) **tends to infinity**;
2. **the** \(\lim \sup \) **of the information ratio does not exceed** \(\rho \);
3. **the missing information ratio tends to zero**;
4. **the information leak ratio tends to zero**.

Algorithmic secret sharing:

- Replace Entropy \((H) \) by Complexity \((C) \) in the definition
- Replace random variables by binary strings
Getting rid of missing information

• Assume we have a scheme with missing information
• Can it be made into a scheme without missing information?
Getting rid of missing information

- Assume we have a scheme with missing information
- Can it be made into a scheme without missing information?

Theorem (K. 2011)

Any scheme can be converted into a scheme without missing information but with (possibly) bigger leak and share size
Getting rid of missing information

- Assume we have a scheme with missing information
- Can it be made into a scheme without missing information?

Theorem (K. 2011)

Any scheme can be converted into a scheme without missing information but with (possibly) bigger leak and share size

Idea:

- materialize the missing information for each group
- add it to participants’ shares
Corollary (K. 2011, Missing information is unimportant)

If an access structure Γ can be quasi-perfectly implemented, then it has a quasi-perfect implementation without missing information for the same information ratio.
Corollary (K. 2011, Missing information is unimportant)

If an access structure Γ can be quasi-perfectly implemented, then it has a quasi-perfect implementation without missing information for the same information ratio.

Theorem (K. 2012, Uniform distribution on secrets)

If some access structure Γ can be quasi-perfectly implemented with information ratio ρ, it can be quasi-perfectly implemented with the same ratio by schemes with uniformly distributed secrets.
Theorem [K, 2011]: Given access structure Γ and information ratio ρ:

Remark: still true when ε, δ tend to fixed constants.
Reducing the size of the secret

Changing the secret size

Suppose we have a scheme for sharing N-bits secrets.

- Question: Can we modify it to share $\ell < N$ bits?
- scaling up is natural (independent copies)
- scaling down quasi-perfect schemes is nontrivial
- Notice: We also want to reduce the leak δN
Theorem (K. 2011)

Any scheme for N-bit secrets w/ info leak δN (N large enough) can be converted into a scheme for 1 bit secret w/ info leak $O(\delta^{2/3})$ and the same size for shares.
Theorem (K. 2011)

Any scheme for N-bit secrets w/ info leak δN (N large enough) can be converted into a scheme for 1 bit secret w/ info leak $O(\delta^{2/3})$ and the same size for shares.

Proof sketch: (probabilistic method)

- randomly cut the secret set into two equal parts
- define new secret accordingly
- show that a random cut achieves the given leak
- uses Höffding inequality to prove existence
Proposition (K. 2011)

There is an access structure which can be implemented quasi-perfectly such that:

- the information ratio of each scheme is exactly 1,
- without information leak,
- with vanishing missing information.

but has no perfect scheme with information ratio exactly 1.

The proof is mainly based on an argument of F. Matúš (1995).
A weak separation result

Proposition (K. 2011)

There is an access structure which can be implemented quasi-perfectly such that:

- the information ratio of each scheme is exactly 1,
- without information leak,
- with vanishing missing information.

but has no perfect scheme with information ratio exactly 1.

The proof is mainly based on an argument of F. Matúš (1995).

Open question: Can we achieve a more substantial separation? Not with the current technique using unconditional inequalities.
Information Inequalities
Shannon’s entropy

Let A be a **discrete** random variable on the alphabet Q, equipped with the **probability distribution** law $p : Q \rightarrow [0, 1]$. The **support** S_A consists of letters with positive probability.

$$H(A) = - \sum_{a \in S_A} p(a) \log p(a) = \mathbb{E}_{S_A} \log p$$
Shannon’s entropy

Let A be a **discrete** random variable on the alphabet Q, equipped with the **probability distribution** law $p : Q \to [0, 1]$. The **support** S_A consists of letters with positive probability.

$$H(A) = -\sum_{a \in S_A} p(a) \log p(a) = \mathbb{E}_{S_A} \log p$$

- **Amount of information contained in a random variable**
- In general $0 \leq H(A) \leq \log |S_A|$
- $H(A) = 0 \iff A$ is deterministic
- $H(A) = \log |S_A| \iff A$ is uniformly distributed over S_A
Shannon’s Information Measures

Conditional Entropy:

\[H(X|Y) = H(XY) - H(Y) \]

Mutual Information:

\[I(X:Y) = H(X) + H(Y) - H(XY) \]

Conditional Mutual Information:

\[I(X:Y|Z) = H(XZ) + H(YZ) - H(XYZ) - H(Z) \]
Shannon’s Information Measures

Conditional Entropy:

\[H(X|Y) = H(XY) - H(Y) \geq 0 \]

Mutual Information:

\[I(X:Y) = H(X) + H(Y) - H(XY) \geq 0 \]

Conditional Mutual Information:

\[I(X:Y|Z) = H(XZ) + H(YZ) - H(XYZ) - H(Z) \geq 0 \]

Basic Inequality
A \setminus B \quad B \setminus A

H(A|B) \quad I(A:B) \quad H(B|A)
Linear information inequalities

Pippenger (1986): \textit{What are the laws of Information Theory?}
Pippenger (1986): What are the laws of Information Theory?

Basic inequality:

\[
H(ab) \leq H(a) + H(b) \quad \quad [I(a:b) \geq 0]
\]

\[
H(abc) + H(c) \leq H(ac) + H(bc) \quad \quad [I(a:b|c) \geq 0]
\]
Linear information inequalities

Pippenger (1986): What are the laws of Information Theory?

Basic inequality:

\[H(ab) \leq H(a) + H(b) \quad [I(a:b) \geq 0] \]
\[H(abc) + H(c) \leq H(ac) + H(bc) \quad [I(a:b|c) \geq 0] \]

Shannon-type inequalities: any positive combination of basic ineq., e.g.,

\[H(a) \leq H(a|b) + H(a|c) + I(b:c) \]
Pippenger (1986): What are the laws of Information Theory?

Basic inequality:

\[
H(ab) \leq H(a) + H(b) \quad [I(a:b) \geq 0]
\]

\[
H(abc) + H(c) \leq H(ac) + H(bc) \quad [I(a:b|c) \geq 0]
\]

Shannon-type inequalities: any positive combination of basic ineq., e.g.,

\[
H(a) \leq H(a|b) + H(a|c) + I(b:c)
\]

Non-Shannon-type inequalities, e.g., [Z. Zhang, R. W. Yeung, 1998]:

\[
I(c:d) \leq I(c:d|a) + I(c:d|b) + I(a:b) + I(c:d|a) + I(a:c|d) + I(a:d|c)
\]
Counterpart to Kolmogorov Complexity

For any binary strings x, y:

\[C(x) = \text{length of a shortest program printing } x, \]
\[C(x|y) = \text{length of a shortest program printing } x \text{ given input } y. \]

And up to $O(\log |xy|)$,

\[C(x) \geq 0, \]
\[C(x|y) \geq 0, \]
\[C(x) + C(y) \geq C(x, y). \]
Algorithmic Information Theory

Counterpart to Kolmogorov Complexity

For any binary strings \(x, y \):

\[
C(x) = \text{length of a shortest program printing } x,
\]

\[
C(x|y) = \text{length of a shortest program printing } x \text{ given input } y.
\]

And up to \(O(\log |xy|) \),

\[
C(x) \geq 0,
\]

\[
C(x|y) \geq 0,
\]

\[
C(x) + C(y) \geq C(x, y).
\]

Theorem (Inequalities are the same, Hammer et al)

An inequality is valid for Shannon iff it is valid for Kolmogorov up to a logarithmic term.
Essentially Conditional Inequalities
Conditional information inequalities

If [some linear constraints for entropies] then [a linear inequality for entropies].
Conditional information inequalities

If [some linear constraints for entropies]
then [a linear inequality for entropies].

• Example 1 (trivial): If $I(b;c) = 0$, then $H(a) \leq H(a|b) + H(a|c)$.

 Explanation:

 $H(a) \leq H(a|b) + H(a|c) + I(b;c)$.

• Example 2 (trivial): If $I(c;d|e) = I(c:e|d) = I(d:e|c) = 0$, then $I(c;d) \leq I(c;d|a) + I(c;d|b) + I(a;b)$.

 Explanation:

 $I(c;d) \leq I(c;d|a) + I(c;d|b) + I(a;b) + I(c;d|e) + I(c:e|d) + I(d:e|c)$.

• Example 3 (nontrivial) [Zhang–Yeung 1997]: If $I(a;b) = I(a;b|c) = 0$, then $I(c;d) \leq I(c;d|a) + I(c;d|b)$.

 Any explanation???
Conditional information inequalities

If [some linear constraints for entropies] then [a linear inequality for entropies].

- **Example 1 (trivial):** If $I(b:c) = 0$, then $H(a) \leq H(a|b) + H(a|c)$.

 Explanation:

 $H(a) \leq H(a|b) + H(a|c) + I(b:c)$.

- **Example 2 (trivial):** If $I(c:d|e) = I(c:e|d) = I(d:e|c) = 0$, then $I(c:d) \leq I(c:d|a) + I(c:d|b) + I(a:b)$.

 Explanation:

 $I(c:d) \leq I(c:d|a) + I(c:d|b) + I(a:b) + I(c:d|e) + I(c:e|d) + I(d:e|c)$.

Any explanation???
Conditional information inequalities

If [some linear constraints for entropies] then [a linear inequality for entropies].

- **Example 1 (trivial):** If $I(b:c) = 0$, then $H(a) \leq H(a|b) + H(a|c)$.

 Explanation:

 $H(a) \leq H(a|b) + H(a|c) + I(b:c)$.

- **Example 2 (trivial):** If $I(c:d|e) = I(c:e|d) = I(d:e|c) = 0$, then $I(c:d) \leq I(c:d|a) + I(c:d|b) + I(a:b)$.

 Explanation:

 $I(c:d) \leq I(c:d|a) + I(c:d|b) + I(a:b) + I(c:d|e) + I(c:e|d) + I(d:e|c)$.

- **Example 3 (nontrivial) [Zhang–Yeung 1997]:** If $I(a:b) = I(a:b|c) = 0$, then $I(c:d) \leq I(c:d|a) + I(c:d|b)$.

 *Any explanation???
For \((x, y)\) in the gray set: if \(y = 0\) then \(x \leq 1\)

\[-x + y + 1 \geq 0\]

It follows from \(-x + y + 1 \geq 0\).

WARNING: This picture is symbolic.
Nontrivial Conditional Inequalities

\[
\begin{align*}
I(a:b) &= I(a:b|c) = 0 \\
\text{[Zhang–Yeung 97]} \\
I(a:b|c) &= I(b:d|c) = 0, \text{ or} \\
I(a:b|c) &= I(b:d|c) = 0, \text{ or} \\
I(a:c|d) &= I(a:d|c) = 0, \text{ or} \\
\text{[Matúš 99/2007]} \\
H(c|a,b) &= I(a:b|c) = 0 \\
\text{[Romashchenko, K. 2011]} \\
I(c:d) &\leq I(c:d|a) + I(c:d|b) + I(a:b)
\end{align*}
\]
Nontrivial Conditional Inequalities

\[I(a:b) = I(a:b|c) = 0 \]
\[I(a:c|d) = I(a:d|c) = 0, \text{ or} \]
\[H(c|a,b) = I(a:b|c) = 0 \]

\[I(a:b|c) = I(b:d|c) = 0, \text{ or} \]
\[I(a:c|d) = I(c:d|a) = 0 \]
\[\text{[Zhang–Yeung 97]} \]
\[\text{[Matúš 99/2007]} \]
\[\text{[Romashchenko, K. 2011]} \]

\[I(c:d) \leq I(c:d|a) + I(c:d|b) + I(a:b) \]

Theorem (Romashchenko, K. 2011/2012)

All of these statements are essentially conditional inequalities.
• Z. Zhang, R. W. Yeung 97:

if \(I(a:b) = I(a:b|c) = 0 \), then \(I(c:d) \leq I(c:d|a) + I(c:d|b) \).
Essentially Conditional Inequalities

• Z. Zhang, R. W. Yeung 97:
 if \(I(a:b) = I(a:b|c) = 0 \), then \(I(c:d) \leq I(c:d|a) + I(c:d|b) \).

• Theorem [Romashchenko, K. 2011] This inequality is essentially conditional, i.e.,
 for all \(\kappa_1, \kappa_2 \) the inequality:

 \[
 I(c:d) \leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)
 \]

 is not valid.
Proof by ad-hoc example

Claim: For any κ_1, κ_2 there exist (a, b, c, d) such that:

$$I(c:d) \not\leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$$
Claim: For any κ_1, κ_2 there exist (a, b, c, d) such that:

$$I(c:d) \not\leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$$

Proof:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Prob[a, b, c, d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ε</td>
</tr>
</tbody>
</table>
Proof by ad-hoc example

Claim: For any κ_1, κ_2 there exist (a, b, c, d) such that:

$$I(c:d) \not\leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$$

Proof:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Prob[a, b, c, d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>ε</td>
</tr>
</tbody>
</table>

$$I(c:d) \not\leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$$
Proof by ad-hoc example

Claim: For any κ_1, κ_2 there exist (a, b, c, d) such that:

$$l(c:d) \not\leq l(c:d|a) + l(c:d|b) + \kappa_1 l(a:b) + \kappa_2 l(a:b|c)$$

Proof:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Prob[a, b, c, d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$(1 - \varepsilon)/4$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>ε</td>
</tr>
</tbody>
</table>

$$l(c:d) \not\leq l(c:d|a) + l(c:d|b) + \kappa_1 l(a:b) + \kappa_2 l(a:b|c)$$

$$\Theta(\varepsilon) \not\leq 0 + 0 + O(\kappa_1 \varepsilon^2) + 0$$
Proof by geometric example

Construction of \((a, b, c, d)\)

On the affine plane over \(\mathbb{F}_q\):

1. Pick a random a non-vertical line \(c\).
2. Pick two random points \(a\) and \(b\) on \(c\).
3. Pick a random non-degenerate parabola \(d\) intersecting \(c\) exactly at \(a\) and \(b\).
Proof by geometric example

Construction of \((a, b, c, d)\)

On the affine plane over \(\mathbb{F}_q\):

1. Pick a random a non-vertical line \(c\).
2. Pick two random points \(a\) and \(b\) on \(c\).
3. Pick a random non-degenerate parabola \(d\) intersecting \(c\) exactly at \(a\) and \(b\).
Construction of \((a, b, c, d)\)

On the affine plane over \(\mathbb{F}_q\):

1. Pick a random a non-vertical line \(c\).
2. Pick two random points \(a\) and \(b\) on \(c\).
3. Pick a random non-degenerate parabola \(d\) intersecting \(c\) exactly at \(a\) and \(b\).
Proof by geometric example

Construction of \((a, b, c, d)\)

On the affine plane over \(\mathbb{F}_q\):

1. Pick a random a non-vertical line \(c\).
2. Pick two random points \(a\) and \(b\) on \(c\).
3. Pick a random non-degenerate parabola \(d\) intersecting \(c\) exactly at \(a\) and \(b\).

\[
I(c:d) \leq \kappa[I(c:d|a) + I(c:d|b) + I(a:b) + I(a:b|c) + H(c|ab)]
\]
Proof by geometric example

Construction of \((a, b, c, d)\)

On the affine plane over \(\mathbb{F}_q\):

1. Pick a random a non-vertical line \(c\).
2. Pick two random points \(a\) and \(b\) on \(c\).
3. Pick a random non-degenerate parabola \(d\) intersecting \(c\) exactly at \(a\) and \(b\).

\[
l(c:d) \leq \kappa [l(c:d|a) + l(c:d|b) + l(a:b) + l(a:b|c) + H(c|ab)]
\]

\[
1 + \frac{1}{q} \lesssim O \left(\kappa \frac{\log q}{q} \right)
\]
\[I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \leq I(c:d|a) + I(c:d|b) \] (ZY97)

In fact we have a stronger result. Let \(\varepsilon > 0 \), assume

- \(I(a:b) \leq \varepsilon \).
- \(I(a:b|c) \leq \varepsilon \).
- \(H(a,b,c,d) = \text{const} \).
Non-robustness of some conditional inequalities

\[I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \leq I(c:d|a) + I(c:d|b) \] (ZY97)

In fact we have a stronger result. Let \(\epsilon > 0 \), assume

- \(I(a:b) \leq \epsilon \).
- \(I(a:b|c) \leq \epsilon \).
- \(H(a,b,c,d) = \text{const} \).

Then the ratio

\[
\frac{I(c:d)}{I(c:d|a) + I(c:d|b)}
\]

can be made arbitrarily large.
Non-robustness of some conditional inequalities

\[I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \leq I(c:d|a) + I(c:d|b) \quad \text{(ZY97)} \]

In fact we have a stronger result. Let \(\epsilon > 0 \), assume

- \(I(a:b) \leq \epsilon \).
- \(I(a:b|c) \leq \epsilon \).
- \(H(a, b, c, d) = \text{const} \).

Then the ratio

\[
\frac{I(c:d)}{I(c:d|a) + I(c:d|b)}
\]

can be made arbitrarily large.
\[I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \leq I(c:d|a) + I(c:d|b) \] (ZY97)

In fact we have a stronger result. Let \(\epsilon > 0 \), assume

- \(I(a:b) \leq \epsilon \).
- \(I(a:b|c) \leq \epsilon \).
- \(H(a,b,c,d) = \text{const} \).

Then the ratio

\[
\frac{I(c:d)}{I(c:d|a) + I(c:d|b)}
\]

can be made arbitrarily large.
Non-robustness of some conditional inequalities

\[I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \leq I(c:d|a) + I(c:d|b) \]

(ZY97)

In fact we have a stronger result. Let \(\epsilon > 0 \), assume

- \(I(a:b) \leq \epsilon \).
- \(I(a:b|c) \leq \epsilon \).
- \(H(a,b,c,d) = \text{const} \).

Then the ratio

\[
\frac{I(c:d)}{I(c:d|a) + I(c:d|b)}
\]

can be made arbitrarily large.
For almost entropic points

For \(n \) random variables, there \(2^n - 1 \) possible entropies. When \(n = 3 \), there are 7 possible joint entropies:

\[
(H(A), H(B), H(C), H(AB), H(AC), H(BC), H(ABC)) \in \mathbb{R}^7
\]

Such a vector of entropies is called an entropic point. An almost entropic point is the limit of a sequence of entropic points.
For almost entropic points

For \(n \) random variables, there \(2^n - 1 \) possible entropies.

When \(n = 3 \), there are 7 possible joint entropies:

\[
(H(A), H(B), H(C), H(AB), H(AC), H(BC), H(ABC)) \in \mathbb{R}^7
\]

Such a vector of entropies is called an entropic point.
An almost entropic point is the limit of a sequence of entropic points.

Theorem (Matúš 2007)

Two essentially conditional inequalities **are valid** for all almost entropic points

Theorem (Romashchenko, K. 2012)

Two essentially conditional inequalities **are not valid** for all almost entropic points
For \((x, y)\) in the gray set: if \(y = 0\) then \(x \leq 1\)

A trivial conditional inequality can be extended to an unconditional one.
For \((x, y)\) in the gray set: if \(y = 0\) then \(x \leq 1\)

This conditional inequality is implied by an infinite family of tangent half-planes.
For (x, y) in the gray set: if $y = 0$ then $x \leq 1$

For the closure of this set, with the same constraint $y = 0$ we only have $x \leq 2$.
A Corollary

Theorem: There exist *essentially conditional* inequalities that hold for almost entropic points.

\[\downarrow\]

Theorem [Matúš 07] The cone of linear information inequalities with 4 random variables is **not polyhedral**, i.e., there exist infinitely many independent linear information inequalities.
Conditional Algorithmic Inequalities

even more subtleties

Need to add a precision for conditions: $f(N)$
(where N is the complexity of the tuple of strings)

- Some inequalities are valid up to $O(f(N))$
- Some inequalities are valid up to (at least) $O\left(\sqrt{Nf(N)}\right)$
- Some inequalities are not valid ($O(N)$ counterexample)
Information Inequalities and Secret Sharing
Previously, on Secret Sharing.

There exist non-ideal access structures.

The access structure P_4:

\[a - b - c - d \]

is not ideal.

Proposition (Folklore) proven hereafter

For any scheme, it holds that $\rho \geq \frac{3}{2}$.

Proposition (Folklore) proven earlier

There exists a scheme with information ratio $\rho = \frac{3}{2}$.
Proof by (Venn) Information Diagram
Proof by (Venn) Information Diagram

\[a \rightarrow b \rightarrow c \rightarrow d \]

\[\begin{array}{c}
B \\
A \\
C
\end{array} \]
Proof by (Venn) Information Diagram
Proof by (Venn) Information Diagram

\[\begin{array}{c c c c}
\text{a} & \text{b} & \text{c} & \text{d} \\
B & A \\
C & D
\end{array} \]
Proof by (Venn) Information Diagram

Cells contained in B or C represent:

$H(BC)$
Proof by (Venn) Information Diagram

Cells contained in both A and B represent:

$I(A:B)$
Proof by (Venn) Information Diagram

Cells contained in both C and D but not A represent:

$$I(C:D|A)$$
Proof by (Venn) Information Diagram

Cells contained in B or C but not A nor D represent:

$$H(BC|AD)$$
Cells contained in both B and D but not A nor C represent:

$$I(B:D|AC)$$
Cells contained in both A and C but not B represent:

$$I(A:C|B)$$
Proof by (Venn) Information Diagram

Actually, we just proved an identity without words...

\[H(BC) = I(A:C|B) + I(B:D|AC) + H(BC|AD) + I(A:B) + I(C:D|A). \]
..or an inequality, since all quantities are non-negative.

\[H(BC) \geq I(A:C|B) + I(B:D|AC) + H(BC|AD). \]
Using the perfect secret sharing requirements, we obtain:

\[H(BC) \geq 3H(S). \]
Proof by (Venn) Information Diagram

\[H(B) \geq 1.5H(S) \text{ or } H(C) \geq 1.5H(S) \]
Proof by (Venn) Information Diagram

\[\rho(P_4) \geq \frac{3}{2} \]

\[H(B) \geq 1.5H(S) \] or \[H(C) \geq 1.5H(S) \]
The proof is valid for the following access structures

- $a \rightarrow b, c, d$
- $a \rightarrow b$
- $a, c \rightarrow d$
- $a, c, d \rightarrow b$
The Vámos matroid is far from ideal

Theorem (Current bounds)

For the two non-isomorphic access structures V_1 and V_6 related to the Vámos matroid:

\[
\frac{9}{8} \leq \rho(V_1) \leq \frac{5}{4} \quad \frac{19}{17} \leq \rho(V_6) \leq \frac{5}{4}
\]

The proof is more involved and uses non-Shannon-type inequalities from Zhang-Yeung and Dougherty et al.
Open question: Do perfect secret sharing schemes require shares of exponential size?

1. Best known Shannon-type lower bound: $\theta\left(\frac{n}{\log n}\right)$.
2. Best possible Shannon-type lower bound: $\theta(n)$
3. Best possible lower bound using (non-Shannon-type) ineq. up to 5 variables: $\theta(n)$

Recent results:
- Using k-variables inequalities: $\theta(\text{poly}(n))$ (Padró preprint)
- Equivalence of the 2 known techniques for non-Shannon-type inequalities (K. submitted)
Prospects & Open Questions
Open questions and future research

1. Can quasi-perfect schemes be substantially more efficient than (plain) perfect schemes?

2. (Related) Can we use essentially conditional inequalities in secret sharing.

3. What are the (asymptotic) properties of optimal secret sharing schemes?

4. General picture: study almost entropic points at the boundary of the entropy region.

5. Also, what is the type of one of Matúš’ essentially conditional inequality?
Merci de votre attention.

Des questions?