Router Caching
-aided VoD Systems

Xin Wang
School of Computer Science
Fudan University
October 3, 2012
Streaming System for Video on Demand Applications

Features
- Large data
- Long duration
- Delay
- Jitter
- Packet loss
- Bandwidth

Requirements
- Large capability
- Reliability
- Security
- Economy

Background and Motivation

Content-Centric Networks

Our work

Performance evaluation

Conclusions
VoD Streaming Systems with CDN

- Push hot content to edge cache nodes near to the user
- Key idea: avoid potential jams or delays

✓ For user
 - Fast response

✓ For service provider
 - Less pressure on sever
 - Less bandwidth on the backbone
P2P VoD Streaming Systems

- P2P v.s. C/S
- Each peer is the same to each other
- More user involved in the content distribution

✓ For service Provider
 - Reduce server load sharply

✓ For ISP
 - Less bandwidth on backbone

Background and Motivation → Content-Centric Networks → Our work → Performance evaluation → Conclusions
Challenges on CDN and P2P

For CDN
1) Limitation on the CDN architecture
2) High cost to scale up and maintain
3) No insurance on user experience

For P2P
1) Reliability: peers can leave any time
2) Security: peers may overhear and defraud
3) Manageability: cannot control peers
Content Centric Network

Name of Content: **P:L**

Content: **triplet**<data, public key, signature>

Publish and Search: **REGISTER (P:L)** **FIND (P:L)**

- Be compatible to existing networks and interfaces
- Content centric
- Content can be cached around the network, accessible any time and anywhere
- Content can be encrypted, searched by name or description

Background and Motivation

Content-Centric Networks

Our work

Performance evaluation

Conclusions
Our Contribution

CDN from the server aspects

P2P from the client aspects

Router Ignored

CCN uses the whole network

Router Aided VoD Streaming Systems

Background and Motivation → Content-Centric Networks → Our work → Performance evaluation → Conclusions
Background and Motivation

Content-Centric Networks

Our work

Performance evaluation

Conclusions
Topography Structure of the Overlay Network

- Group base on AS
- Less test operation
- Less delays between routers

Background and Motivation

Content-Centric Networks

Our work

Performance evaluation

Conclusions
Efficiency of Router Aided Cache

- Requests distribution according to content’s popularity
- Router can store m unit
- s: state of router

Hitting probability on one router

$$ h = \sum_s (P_s \sum_{i=1}^{m} p_i) $$

Total hitting probability on n routers:

$$ H = h_1 + (1 - \alpha_2) h_2 + \ldots + (1 - \alpha_i) h_i + \ldots + (1 - \alpha_n) h_n $$

$$ H = \sum_{i=1}^{n} h_i - \sum_{i=2}^{n} (\alpha_i h_i) $$

α_i for the ith router’s overlapping ratio with $1 \sim i-1$ routers, $0 \leq \alpha_i \leq 1$
Random Linear Network Coding

• Data are divided into \(k \) blocks \([b_1, b_2, ..., b_k]\).

• Randomly choose a coefficient \([c_1, c_2, ..., c_k]\) from field \(GF(t)\), coded as one block.

\[
x = \sum_{i=1}^{k} c_i \cdot b_i
\]

Decoding:
\[
[b_1, b_2, ..., b_k] = A^{-1} X^T
\]

where \(X^T = [x_1, x_2, ..., x_k]^T \), \(x_1, x_2, ..., x_k \) for any \(k \) coded blocks, \(A^{-1} \) is the matrix composed of the coefficients of the \(k \) coded blocks.
Scheduling Policy

Conventional Scheduling
- Different routers for different intervals
- Needs coordination or centered control

Scheduling based on NC
- Routers have the same amount of information
- Concurrent transmission
- Simple schedule policy

Background and Motivation

Content-Centric Networks

Our work

Performance evaluation

Conclusions
Replacement Policy

Session length percentage

<table>
<thead>
<tr>
<th>Session length</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>37.44%</td>
</tr>
<tr>
<td>10 min</td>
<td>52.55%</td>
</tr>
<tr>
<td>25 min</td>
<td>75.25%</td>
</tr>
<tr>
<td>50 min</td>
<td>94.23%</td>
</tr>
</tbody>
</table>

Conventional Caching policy
- Based on popularity
- Cache the whole video with high popularity
- Simple

Hot Queue
- Hot Queue to cache the whole video
- Reduce response time

Cold Queue
- Cold Queue to cache the beginning parts of the video

Background and Motivation → Content-Centric Networks → Our work → Performance evaluation → Conclusions
Router Aided Caching Policy: Implementation

Method: DST+SRC port tests
Target: Kernel Mode -> User Mode
Router Aided Caching Policy: Implementation

In overlay network: router forwards the requests to its neighbors
Router→Server: Change source address, forward requests, cache
Performance Evaluation

Prototype system based on routers from Shanghai-bell

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. Neighbor</td>
<td>3</td>
</tr>
<tr>
<td>Cache Size</td>
<td>$R: 0\sim 0.5$</td>
</tr>
<tr>
<td># videos</td>
<td>20</td>
</tr>
<tr>
<td>Rate</td>
<td>500kbps</td>
</tr>
<tr>
<td>Distribution</td>
<td>Zipf</td>
</tr>
<tr>
<td># users</td>
<td>$N: 100\sim 500$</td>
</tr>
<tr>
<td>User arrival</td>
<td>Poisson</td>
</tr>
</tbody>
</table>

Background and Motivation

Content-Centric Networks

Our work

Performance evaluation

Conclusions
Performance Evaluation

- Reduce bandwidth consumption
- Cache 30% data is enough
Performance Evaluation (2)

- Reduce initial delay, better user experience
- Two-level cache

Background and Motivation
Content-Centric Networks
Our work
Performance evaluation
Conclusions
Performance Evaluation (3)

- Reduce transmission delay
- Better Scalability

Background and Motivation ➔ Content-Centric Networks ➔ Our work ➔ Performance evaluation ➔ Conclusions
Performance Evaluation

- Acceptable computation overhead
Conclusion

- A framework of router caching for streaming medias
- Service recognition and caching at routers
- Cooperation among routers
Thanks! 😊
Data Regeneration Processes with Network Coding in Distributed Storage Systems

Xin Wang
School of Computer Science, Fudan University
October 3, 2012
Wide applications

- distributed processing systems: Google FS
- archival file systems
- P2P storage systems: Wuala

Features

- a substantial amount of data
- a large number of storage devices
- storage nodes are subject to failures
Data Integrity

Protect data to tolerate device failures by redundancy
- Replications
- Erasure Codes: Reed-Solomon codes, LDPC codes, and etc.
 - MDS property: any k among n encoded blocks can recover the original file
 - provide higher data integrity

Maintenance of redundancy
- maintain a consistent amount of redundancy
- regenerate lost redundancy after failures
- different redundancy schemes lead to different regeneration process
Replicated redundancy

- A newcomer gets a copy from a remote storage device
 - Simple operations
 - Low computational cost
 - Low delay
 - High storage cost

Coded redundancy

- A newcomer obtains data from other k storage devices (providers)
 - Maintain a high data integrity
 - High computational cost on a single node
Regeneration Time

Previous idea: design codes to minimize the traffic

- regenerating codes
- contact more than k providers
- stores more data than conventional erasure codes
- bandwidth consumption approximately as well as replication

Our idea: design regeneration processes to save time

- exploit the bandwidth heterogeneity
- pipeline the regeneration process
Exploit the bandwidth heterogeneity
The bandwidth of a link inside a subnet is usually more available than that between two subnets.

The farther away two nodes are, the less available the bandwidth between them are likely to be.

Bypass "bottleneck" links in a Peer-to-Peer fashion (INFOCOM 2010)
newcomer as the root, all nodes transmit data upward on-leaf nodes performs network coding

Maximum Bandwidth Spanning Tree
one tree is not enough to fully exploit the path diversity

network bottleneck can be inside the network in the Internet

multiple paths in modern data center topologies

build parallel regeneration trees

exploit the bandwidth diversity implicitly

greedy and optimal algorithms & performance analysis
Pipeline the regeneration process
a newcomer becomes partially regenerated after regeneration

partially regenerated nodes are referred to as apprentices

apprentices receive more and more data in each round of regeneration and finally “graduate” to become a storage node

one apprentice will be fully regenerated after each round of regeneration
root: the apprentice with the highest rank

all providers send data to the root

the root becomes fully regenerated

the root sends coded data to other apprentices and the newcomer

Performances

participating nodes: the order of the square root of the number used in the conventional regeneration process

reduce bandwidth consumption to maintain the same level of data availability

Extensions

support both random linear codes and regenerating codes
Exploit the bandwidth heterogeneity

- 3 full papers: (IWQoS 2009), INFOCOM 2010, CollaborateCom 2010
- 1 poster: USENIX FAST 2010
- 1 China patent

Pipeline the regeneration process

- 1 paper: NetCod 2011
- 2 papers under review: TPDS, INFOCOM 2013

Future plan

- Combine them together
- functional repair -> exact repair
- more support for regenerating codes (both MSP and MRP codes)
Thank you!

For more information:
http://sonic.fudan.edu.cn/~xinw/
Data Regeneration Processes with Network Coding in Distributed Storage Systems

Xin Wang
School of Computer Science, Fudan University
October 3, 2012
Wide applications
- distributed processing systems: Google FS
- archival file systems
- P2P storage systems: Wuala

Features
- a substantial amount of data
- a large number of storage devices
- storage nodes are subject to failures
Data Integrity

Protect data to tolerate device failures by redundancy

- Replications
- Erasure Codes: Reed-Solomon codes, LDPC codes, and etc.
 - MDS property: any k among n encoded blocks can recover the original file
 - provide higher data integrity

Maintenance of redundancy

- maintain a consistent amount of redundancy
- regenerate lost redundancy after failures
- different redundancy schemes lead to different regeneration process
Replicated redundancy
- A newcomer gets a copy from a remote storage device
 - Simple operations
 - Low computational cost
 - Low delay
 - High storage cost

Coded redundancy
- A newcomer obtains data from other k storage devices (providers)
 - Maintain a high data integrity
 - High computational cost on a single node
Previous idea: design codes to minimize the traffic

- regenerating codes
- contact more than k providers
- stores more data than conventional erasure codes
- bandwidth consumption approximately as well as replication

Our idea: design regeneration processes to save time

- exploit the bandwidth heterogeneity
- pipeline the regeneration process
Exploit the bandwidth heterogeneity
bandwidth of a link inside a subnet is usually more available than that between two subnets.

the farther away two nodes are, the less available the bandwidth between them are likely to be.

Bypass “bottleneck” links in a Peer-to-Peer fashion (INFOCOM 2010)
newcomer as the root, all nodes transmit data upward. Non-leaf nodes perform network coding.

Maximum Bandwidth Spanning Tree

<table>
<thead>
<tr>
<th>Regeneration time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree-structured regeneration scheme</td>
</tr>
<tr>
<td>Star-structured regeneration scheme</td>
</tr>
</tbody>
</table>
one tree is not enough to fully exploit the path diversity
network bottleneck can be inside the network in the Internet
multiple paths in modern data center topologies
build parallel regeneration tree
exploit the bandwidth diversity implicitly
greedy and optimal algorithms & performance analysis
Pipeline the regeneration process
a newcomer becomes partially regenerated after regeneration

partially regenerated nodes are referred to as apprentices

apprentices receive more and more data in each round of regeneration and finally "graduate" to become a storage node

one apprentice will be fully regenerated after each round of regeneration
root: the apprentice with the highest rank
all providers send data to the root
the root becomes fully regenerated
the root sends coded data to other apprentices and the newcomer

Performances
participating nodes: the order of the square root of the number used in the conventional regeneration process
reduce bandwidth consumption to maintain the same level of data availability

Extensions
support both random linear codes and regenerating codes
Exploit the bandwidth heterogeneity

- 3 full papers: (IWQoS 2009), INFOCOM 2010, CollaborateCom 2010
- 1 poster: USENIX FAST 2010
- 1 China patent

Pipeline the regeneration process

- 1 paper: NetCod 2011
- 2 papers under review: TPDS, INFOCOM 2013

Future plan

- Combine them together
- functional repair -> exact repair
- more support for regenerating codes (both MSR and MBR codes)
Thank you!

For more information:
http://sonic.fudan.edu.cn/~xinw/