Statistical Analysis and Modeling of Content Identification and Retrieval

Pierre Moulin

University of Illinois at Urbana-Champaign
Electrical and Computer Engineering

CUHK Information Engineering Dept
January 26, 2010
University of Illinois at Urbana-Champaign

- Beckman Institute and Coordinated Science Laboratory
Content Identification

- YouTube & other User Generated Content (UGC) sharing sites
- registration of copyrighted content → fingerprint database

- Related application: connected audio (Shazaam on I-phones)
Content Retrieval

- User seeks similar contents (audio, video) in large database
- Can search based on fingerprints/ hashes
Cryptographic vs. Robust Hashes

- A cryptographic hash function $\Phi_K : \mathcal{X} \rightarrow \{0, 1\}^k$ satisfies the following property:

$$Pr_K[\Phi_K(x) = \Phi_K(x')] = 2^{-k} \quad \forall x \neq x'$$

- In contrast, a robust hash function should return the same hash if x and x' are “perceptually similar”:

$$Pr_K[\Phi_K(x) = \Phi_K(x')] > 1 - \epsilon \quad \forall x \sim x'$$

$$Pr_K[\Phi_K(x) = \Phi_K(x')] < \epsilon \quad \forall x \not\sim x'$$
Formulation of Content ID Problem

- Content database = \{x(m), 1 \leq m \leq M\}

- Each \(x(m) = \{x_1(m), x_2(m), \cdots, x_N(m)\} \in \mathcal{X}^N\) is a collection of \(N\) frames. For audio ID,
 - frames are short audio snippets (370 msec) with 31/32 temporal overlap.
 - A 3-minute song is represented by \(N \approx 15,500\) frames
 - desired granularity \(\approx 3\) sec \((L = 258\) frames\)

- Probe \(y \in \mathcal{X}^L\) consisting of \(L \ll N\) frames

- Is the probe related to one of the database elements?

- Construct \(\psi(y) \in \{0, 1, 2, \cdots, M\}\)
Performance Metrics

- Probability of false positives
- Probability of false negatives
- Robustness
- Granularity
- Database size
- Storage requirements
- Execution time
Fingerprint-Based Content ID

- Hash function Φ returns fingerprint $f(m)$ for each input $x(m)$ and fingerprint g for input probe y
- Decisions are made based on fingerprints only
Research Challenges

• signal processing primitives for robust hashes
• efficient string matching algorithms
• information-theoretic challenge: what is the fundamental relation between database size, hash length, and robustness?
• general framework for hash function design
Database elements $x(m)$, $1 \leq m \leq M$ are drawn independently from stationary probability distribution P_X on \mathcal{X}^N.
Statistical Model for Probe

- $M + 1$ hypotheses H_0, \cdots, H_M
- under $H_m, 1 \leq m \leq M$:

\[
W^L(y|x(m), N_0) \triangleq \prod_{i=1}^{L} W(y_i | x_{i+N_0}(m))
\]

and N_0 is drawn uniformly from $\{0, 1, \cdots, N - L - 1\}$

- under H_0, probe y is drawn from same P_Y
Statistical Model for Hash Function

- Let $\mathbf{F} = \phi(\mathbf{X}) \in \mathcal{F}^N$ and $\mathbf{G} = \phi(\mathbf{Y})$ where $|\mathcal{F}| \ll |\mathcal{X}|$
- Fingerprint storage cost $\leq N \log |\mathcal{F}|$ bits
- Assume
 - the samples $F_i, 1 \leq i \leq N$ are iid with pmf p_F
 - the conditional pmf of \mathbf{g} given $\mathbf{f}(m)$ and N_0 is
 \[
 p_{G|F}^L(g|f(m), N_0) \triangleq \prod_{i=1}^{L} p_{G|F}(g_i|f_{i+N_0}(m))
 \]
 \Rightarrow the pairs $(F_i, G_i), 1 \leq i \leq L$ are iid with pmf p_{FG}
- If $\mathbf{F}(m)$ and \mathbf{G} are independent, then
 the pairs $(F_i, G_i), 1 \leq i \leq L$ are iid with product pmf $p_F p_G$
General Definition of Content ID Code

- A \((M, N, L)\) content ID code for a size-\(M\) database populated with \(\mathcal{X}^N\)-valued content items, and granularity \(L\), is a pair consisting of an encoding function \(\phi : \mathcal{X}^N \rightarrow \mathcal{F}^N\) returning a fingerprint \(f = \phi(x)\), and a constrained decoding function \(\psi : \mathcal{X}^L \rightarrow \{0, 1, \cdots, M\}\) returning \(\hat{m} = \psi(y)\), where the dependency on input \(y\) is via the fingerprint \(\phi(y)\).

- The rate of the code is

\[
R \triangleq \frac{1}{L} \log(MN)
\]

(fundamental scaling parameter)

- Neither \(M\) nor \(N\) necessarily dominates
List Decoder

- Define decoding metric $d(f, g)$ on $\mathcal{F} \times \mathcal{F}$
-Extend additively to sequences:

$$d(f, g|N_0) = \sum_{i=1}^{L} d(f_{i+N_0}, g_i)$$

- Choose decision threshold τ
-Decoder outputs list \mathcal{L} of all m such that

$$\min_{0 \leq N_0 < N-L} d(f(m), g|N_0) < L\tau$$
Error Analysis for List Decoder

• Wlog assume $m = 1$

• Error event #1: **Miss**: The correct m does not appear on the decoder’s list:

\[
\forall N_0 \in \{0, \cdots, N-L-1\} : \quad d(f(1), g|N_0) > L\tau.
\]

• Error event #2: **Incorrect Decoding**:

\[
\exists m > 1, \ N_0 \in \{0, \cdots, N-L-1\} : \quad d(f(m), g|N_0) < L\tau
\]

Let $N_i = \text{number of incorrect messages on the list}$

• Consider performance metrics P_{miss} and $\mathbb{E}[N_i]$
Error Analysis for List Decoder (Cont’d)

• Wlog, assume $M = 1$. Then

\[
E[N_i] = M \Pr \left[\min_{0 \leq N_0 < N - L} d(F(2), G|N_0) < L\tau \right]
\]
\[
\leq M(N - L) \max_{0 \leq N_0 < N - L} \Pr [d(F(2), G|N_0) < L\tau]
\]
\[
= M(N - L) \Pr [d(F(2), G|N_0 = 0) < L\tau]
\]
\[
= M(N - L) \left. P_F^L P_G^L \left[\sum_{i=1}^{L} d(F_i, G_i) < L\tau \right] \right| = ?
\]
Large-Deviations Bounds on Error Probabilities

- Give iid random variables v_i, $1 \leq i \leq L$ with distribution P_V, a function h, and a threshold τ, evaluate
 \[
 p \triangleq P_V^L \left[\sum_{i=1}^{L} h(v_i) < L\tau \right]
 \]

- Large-deviations bound:
 \[
 p \leq 2^{-LE(\tau)}
 \]

 where
 \[
 E(\tau) = \min_{Q \in \Gamma(\tau)} D(P_V \| Q)
 \]
 and
 \[
 \Gamma(\tau) \triangleq \{ Q : \sum_v Q(v)h(v) < \tau \} \]
Geometric view of $E(\tau) = \min_{Q \in \Gamma(\tau)} D(P_V \| Q)$:
For any sequence of \((M,N,L)\) content ID codes such that \(\lim \frac{1}{L} \log(MN) = R\), define the miss exponent

\[
E_{\text{miss}}(P_F, P_G|F, \tau) = \liminf_{L \to \infty} -\frac{1}{L} \ln P_{\text{miss}}
\]

and the incorrect-item exponent

\[
E_i(P_F, P_G|F, R, \tau) = \liminf_{L \to \infty} -\frac{1}{L} \ln \mathbb{E}[N_i]
\]
• Define convex set of pmf’s over \mathcal{F}^2:

$$\Gamma(\tau) \triangleq \{Q : \sum_{f,g \in \mathcal{F}} Q(f,g)d(f,g) < \tau\}$$

• We have

$$E_{\text{miss}}(P_F, P_G|_F, \tau) = \min_{P'_{FG}} \left[D(P'_{FG} \| P_F P_G|_F) + \min_{Q \in \Gamma^c(\tau)} D(P'_{FG} \| Q) \right]$$

$$E_i(P_F, P_G|_F, R, \tau) = \min_{P'_{FG}} \left[D(P'_{FG} \| P_F P_G) + \min_{Q \in \overcirc{\Gamma}(\tau)} D(P'_{FG} \| Q) - R \right]$$
Achievable Rates

• Define the set of conditional distributions

\[\mathcal{P}_{G|F}' \triangleq \left\{ P_{G|F}' : P_{G}' = P_G, \right. \]
\[\left. \mathbb{E}_{P_F P_{G|F}'} d(F,G) = \mathbb{E}_{P_F G} d(F,G) \right\} \]

and the generalized mutual information

\[I_{\text{GMI}}(P_F, P_{G|F}, d) \triangleq \min_{P_{G|F}' \in \mathcal{P}_{G|F}'} D(P_F P_{G|F}' \| P_F P_G) \]

which also appears in information-theoretic analyses of channel capacity with mismatched decoders

• Proposition: The supremum of the values of \(R \) for which the error exponents are positive is \(R = I_{\text{GMI}}(P_F, P_{G|F}, d) \) and is achieved when \(\tau = \mathbb{E}_{P_F G} d(F,G) \).
Matched Decoding

- If $p_{G|F}$ is known, choose

 $$d(f, g) = - \log p_{G|F}(g|f) \implies I_{GMI} = I(F; G)$$

- Then the list decoder achieves positive error exponents for all
 $$R < I(F; G)$$

- Converse?
Converse

- Recall $N_0 \in \{0, 1, \cdots, N-L-1\} = \text{unknown nuisance parameter}$
- Is GLRT optimal?
- **Proposition:** For any sequence of of (M, N, L) content ID codes such that
 \[
 \lim_{L \to \infty} \frac{1}{L} \log M > I(F; G),
 \]
 the average error probability \overline{P}_e does not vanish.

 (Proof by Fano’s inequality)
- This bound is unsatisfactory because
 - can achieve all $\frac{1}{L} \log M < I(F; G) - \frac{1}{L} \log N \Rightarrow \text{gap!}$
 - \overline{P}_e criterion gives vanishing weight to H_0
Strong Converse

- Max error criterion:
 \[
 P_{e,\text{max}} \triangleq \max_{0 \leq m \leq M} Pr[\psi(Y) \neq m \mid H_m]
 \]

- **Proposition:** For any sequence of content ID codes such that
 \[
 \lim \frac{1}{L} \log(MN) > I(F; G),
 \]
 \]
 \[P_{e,\text{max}} \text{ tends to } 1\]

- Lower and upper bounds now coincide