Algebraic-Geometric Code and Modernised Algebraic Decoding

- Dr. Li Chen
 - Lecturer, School of Information Science and Technology, Sun Yat-sen University
 - BSc, MSc, PhD, MIEEE
 - Website: http://sist.sysu.edu.cn/~chenli
Personal Background

Education and employment
- 2003, BSc in Applied Physics, Jinan University, China
- 2004, MSc in Communications and Signal Processing, Newcastle University, UK
- 2008, PhD in Mobile Communications, Newcastle University, Supervisor: Prof. R. A. Carrasco (IET Fellow)
- 2007 – 2010, Research Associate, Newcastle University, engaged with an EPSRC project.
- 2010 -- .., Lecturer, Sun Yat-sen University

Research Interests
- Information theory and channel coding
- Cooperative system
Outline

- Part I - Algebraic-geometric codes
 - Construction of Hermitian Codes
 - Algebraic soft decoding of Hermitian codes
 - Performance evaluation (Hermitian vs. RS)
 - (Made in UK)

- Part II - Modernised algebraic decoding
 - Challenges → Inspiration
 - Modernisation: Progressive algebraic soft decoding (PASD)
 - Complexity reduction and performance evaluation
 - (Made in China)

- Conclusions and future work
1. Construction of Hermitian Codes

- Hermitian Curve: $H_w(x, y, z) = x^{w+1} + y^w z + yz^w$
 - Affine component: $H_w(x, y, 1) = x^{w+1} + y^w + y$ – used for code construction!

- Size of GF(q) decides the degree of the curve: $w = \sqrt{q}$

- Genus of the curve: $g = w(w-1)/2$

- Designed distance of a (n, k) Hermitian code: $d^* = n - k - g + 1$

- Size of the code: number of affine points $p_i = (x_i, y_i)$, $|p_i| = w^3 (> q)$

<table>
<thead>
<tr>
<th>Codes on fields</th>
<th>GF(4)</th>
<th>GF(16)</th>
<th>GF(64)</th>
<th>GF(256)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paras</td>
<td>deg</td>
<td>g</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>28</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>120</td>
<td>4096</td>
<td></td>
</tr>
</tbody>
</table>
I. Construction of Hermitian Codes

- Point of infinity p_∞: for points that we can find in $H_w(1, y, z)$, $H_w(x, 1, z)$ and $H_w(x, y, 1)$, the one with the form of $(x_i, y_i, 0)$.
 - Variables x, y, z have a pole order (or weights) at p_∞, $x - w$, $y - w+1$, $z - ?$ (depends on k).

- Affine points p_i: points on an affine component. E.g. for $H_w(x, y, 1)$, p_i satisfies $H_w(x_i, y_i, 1) = 0$.

- Pole basis L_w: a set of rational functions Φ_α with increasing pole orders
 - Curve H_2 has $L_2 = \{1, x, y, x^2, xy, y^2, x^2y, xy^2, y^3, x^2y^2, xy^3, y^4, \ldots\}$
 - Curve H_4 has $L_4 = \{1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3, x^4, x^3y, x^2y^2, xy^3, y^4, x^4y, x^3y^2, x^2y^3, xy^4, y^5, \ldots\}$

- Zero basis Z_{w,p_i}: a set of rational functions ψ_{w,p_i} with increasing zero orders at p_i.
1. Construction of Hermitian Codes

- For a Hermitian code defined on the curve H_w:
 - Find out n affine points on the curve – decide the length of the code
 - Select the first k monomials in L_w – decide the dimension of the code
 - With information symbols $(u_0, u_1, \ldots, u_{k-1}) \in \text{GF}(q)$, the message polynomial can be written as:
 $$u(x, y) = u_0 \Phi_0 + u_1 \Phi_1 + \ldots + u_{k-1} \Phi_{k-1}$$
 - And the codeword is generated by:
 $$(c_0, c_1, \ldots, c_{n-1}) = (u(p_0), u(p_1), \ldots, u(p_{n-1}))$$

- Example: Construct a (8, 4) Hermitian code defined over GF(2^2)
 - Curve: $H_2 = x^3 + y^2 + y$
 - Affine points $p_0 = (0, 0)$, $p_1 = (0, 1)$, $p_2 = (1, \sigma)$, $p_3 = (1, \sigma^2)$, $p_4 = (\sigma, \sigma)$, $p_5 = (\sigma, \sigma^2)$, $p_6 = (\sigma^2, \sigma)$, $p_7 = (\sigma^2, \sigma^2)$.
 - Information symbols 1, σ, 1, σ^2, and message polynomial $u(x, y) = 1 + \sigma x + y + \sigma^2 x^2$.
 - Codeword $(c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_7) = (1, 0, \sigma, \sigma^2, \sigma, \sigma^2, \sigma^2, \sigma)$.
1. A Comparison with RS Codes

<table>
<thead>
<tr>
<th>Properties</th>
<th>Codes</th>
<th>(n, k) RS code</th>
<th>(n, k) Hermitian code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraic affine curves</td>
<td>$y = 0$</td>
<td></td>
<td>$x^{w+1} + y^w + y = 0$</td>
</tr>
<tr>
<td>Pole basis</td>
<td>$1, x, x^2, x^3, \ldots$</td>
<td>$1, x, y, x^2, xy, y^2, \ldots, x^w y, x^{w-1} y^2, \ldots, xy^w, y^{w+1}, \ldots$</td>
<td></td>
</tr>
<tr>
<td>Affine points (p)</td>
<td>$x_0, x_1, x_2, \ldots, x_{n-1}$</td>
<td>$(x_0, y_0), (x_1, y_1), (x_2, y_2), \ldots, (x_{n-1}, y_{n-1})$</td>
<td></td>
</tr>
<tr>
<td>Transmitted message polynomial (u)</td>
<td>$u(x) = u_0 + u_1 x + u_2 x^2 + \ldots + u_{k-1} x^{k-1}$</td>
<td>$u(x, y) = u_0 + u_1 \phi_1 + u_2 \phi_2 + \ldots + u_{k-1} \phi_{k-1}$</td>
<td></td>
</tr>
<tr>
<td>Codeword (c)</td>
<td>$(c_0, c_1, \ldots, c_{n-1}) = (u(x_0), u(x_1), \ldots, u(x_{n-1}))$</td>
<td>$(c_0, c_1, \ldots, c_{n-1}) = (u(p_0), u(p_1), \ldots, u(p_{n-1}))$</td>
<td></td>
</tr>
</tbody>
</table>
1. A Comparison with RS codes

- Advantage of AG codes: larger codes can be constructed from the same finite field as RS codes, resulting better error-correction capability;

- Example, over GF(64)

<table>
<thead>
<tr>
<th></th>
<th>Rate 0.3</th>
<th>Rate 0.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herm (512, 153)</td>
<td>RS (63, 19)</td>
<td>Herm (512, 289)</td>
</tr>
<tr>
<td>d(^*) = 332</td>
<td>d = 45</td>
<td>d(^*) = 196</td>
</tr>
<tr>
<td>τ = 165</td>
<td>τ = 22</td>
<td>τ = 97</td>
</tr>
<tr>
<td>990 bits</td>
<td>132 bits</td>
<td>582 bits</td>
</tr>
</tbody>
</table>

- Disadvantage of AG codes: It is not a Maximum Distance Separable (MDS) code. Very high rate AG codes will be left with marginal error-correction capability.
1. A Comparison with RS codes

- AG vs. concatenated RS (512 ≈ 8 × 63)

8 RS
1 AG

- Complexity: $O(n^h)$

- Distribution of errors

- Diversity on codes
I. Overview of the algebraic decoding

- Decoding philosophy evolution

Unique decoding → List decoding

The Berlekamp-Massey algorithm
The Welch-Berlekamp algorithm
The Sakata algorithm with majority voting

The Guruswami-Sudan algorithm (Hard-decision)
The Koetter-Vardy algorithm (Soft-decision)

[Guruswami99], [Koetter03]
I. Overview of the algebraic decoding

- Key processes: Interpolation (construct $Q(x, y, z)$) + Factorisation (find out $u(x, y)$)

- From hard-decision decoding to soft-decision decoding ($GS \rightarrow KV$)

 Hard-decision received word: $\mathbf{R} = (r_0, r_1, \ldots, r_{n-1})$

 Interpolated points: $(p_0, r_0), (p_1, r_1), \ldots, (p_{n-1}, r_{n-1})$

 With certain multiplicity value m, perform:

 Interpolation $Q(x, y, z)$ → **Factorisation $u(x, y)$**

 Soft-decision reliability matrix Π ($\rightarrow M$)

<table>
<thead>
<tr>
<th>Encoding Channel</th>
<th>p_0</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
<th>p_5</th>
<th>p_6</th>
<th>p_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_0</td>
<td>0.96</td>
<td>0.21</td>
<td>0.01</td>
<td>0.46</td>
<td>0.00</td>
<td>0.00</td>
<td>0.69</td>
<td>0.00</td>
</tr>
<tr>
<td>r_1</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.53</td>
<td>0.90</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>r_2</td>
<td>0.03</td>
<td>0.74</td>
<td>0.03</td>
<td>0.01</td>
<td>0.10</td>
<td>0.02</td>
<td>0.28</td>
<td>0.99</td>
</tr>
<tr>
<td>r_3</td>
<td>0.01</td>
<td>0.03</td>
<td>0.94</td>
<td>0.00</td>
<td>0.00</td>
<td>0.95</td>
<td>0.03</td>
<td>0.00</td>
</tr>
</tbody>
</table>

 Where a multiplicity value m_{ij} was assigned to the unit

 $(p_0, 0)$, $(p_1, 0)$, (p_2, σ^2), $(p_3, 0)$, $(p_4, 1)$, (p_5, σ^2), $(p_6, 0)$, (p_7, σ), (p_1, σ), $(p_3, 1)$, (p_4, σ), (p_6, σ)
Algebraic soft decoding of Hermitian codes

- From RS to Hermitian: [Chen09], [Lee10]
 - Bivariate monomials (polynomials) \rightarrow trivariate monomials (polynomials)
 - Define the interpolated zero conditions
 - Calculate the corresponding coefficients of a Hermitian curve
 - Validity of the algorithm
 - Optimal performance bound
 - Complexity reduction methods
1. Trivariate monomials (Polynomials)

- For a code defined on the curve \(H_w = x^{w+1} + y^w + y \),
 - monomial \(x^i y^j z^k \), \(0 \leq i \leq w, j \geq 0 \) and \(k \geq 0 \)
 - Decoding a \((n, k)\) Hermitian codes, \(\deg_w(z) = \deg_w(\Phi_{k-1}) \)
 - \(\deg_w(x^i y^j z^k) = iw + j(w+1) + k\deg_w(z) \)
 - For to monomials \(x^i_1 y^j_1 z^k_1 \) and \(x^i_2 y^j_2 z^k_2 \)
 \[x_1^i y_1^j z_1^k < x_2^i y_2^j z_2^k \]
 - if \(\deg_w(x_1^i y_1^j z_1^k) < \deg_w(x_2^i y_2^j z_2^k) \), or \(\deg_w(x_1^i y_1^j z_1^k) = \deg_w(x_2^i y_2^j z_2^k) \) and \(k_1 < k_2 \).
 - A lexicographic order can be assigned to monomials.

- Polynomials \(Q(x, y, z) = \sum_{a, b \in N} Q_{ab} \phi_a(x, y) z^b \), \(Q_{ab} \in \text{GF}(q) \)
 - Identify the maximal monomial in \(Q(x, y, z) \) as \(\phi_a z^b \), then \(\deg_w(Q) = \deg_w(\phi_a z^b) \)
 - Leading order, \(\text{lod}(Q) = \text{ord}(\phi_a z^b) \)

- \(N_w(\delta) = |\{ \phi_a z^b : \deg_w(\phi_a z^b) \leq \delta, (a, b, \delta) \in N \}| \) Define the number of monomials

- \(\Delta_w(v) = \min\{ \delta : N_w(\delta) > v, v \in N \} \) Define the weighted degree of monomials
1. Define the Interpolated Zero Conditions

- To interpolate unit \((p_i, r_i)\) (or \((x_i, y_i, r_i)\))
- Recall the zero basis \(Z_{w,pi}\) with rational functions \(\psi_{pi,\alpha}\) as:
 \[
 \psi_{p_i,\alpha} = \psi_{p_i,\lambda+(w+1)\delta} = (x - x_i)^\lambda [(y - y_i) - x_i^w (x - x_i)]^\delta, \quad (0 \leq \lambda \leq w, \delta \geq 0)
 \]
- Zero condition with multiplicity \(m\) for polynomial \(Q(x, y, z) = \sum_{a,b \in N} Q_{ab} \phi_a (x, y) z^b\)
 - It can be written as: \(Q(x, y, z) = \sum_{\alpha, \beta \in N} Q_{\alpha\beta}^{(p_i, r_i)} \psi_{p_i,\alpha} (z - r_i)^\beta\)
 - \(Q_{\alpha\beta}^{(p_i, r_i)} = 0\) for \(\alpha + \beta < m\).
- Since \(\phi_a = \sum_{\alpha \in N} \gamma_{a,p_i,\alpha} \psi_{p_i,\alpha}\) and \(z^b = \sum_{\beta \leq b} \binom{b}{\beta} r_i^{b-\beta} (z - r_i)^\beta\)

 \[
 Q_{\alpha\beta}^{(p_i, r_i)} = \sum_{a,b \geq \beta} Q_{ab} \binom{b}{\beta} \gamma_{a,p_i,\alpha} r_i^{b-\beta} \quad [Nielsen01]
 \]

A key parameter for determining the polynomial’s zero condition!
1. Calculate the Corresponding Coefficients

- Lemma: \(\phi_a = \sum_{\alpha \in N} \gamma_{a,p_t,\alpha} \psi_{p_t,\alpha} \leftrightarrow \psi_{p_t,\alpha} = \sum_{\alpha \in N} \zeta \phi_a \), \(\psi_{p_t,\alpha} = \sum_{\alpha \in N, a < L} \zeta \phi_a + \phi_L \).

- Recursive corresponding coefficient search algorithm [Chen08]

Algorithm A: Determining the corresponding coefficients \(\gamma_{a,p_t,\alpha} \) between a pole basis monomial \(\phi_a \) and zero basis functions \(\psi_{p_t,\alpha} \).

Step 1: Initialise all corresponding coefficients \(\gamma_{a,p_t,\alpha} = 0 \);

Step 2: Find the zero basis function \(\psi_{p_t,\alpha} \) with \(LM(\psi_{p_t,\alpha}) = \phi_a \), and let \(\gamma_{a,p_t,\alpha} = 1 \);

Step 3: Initialise function \(\hat{\psi} = \psi_{p_t,\alpha} \);

Step 4: While \(\hat{\psi} \neq \phi_a \) {

Step 5: Find the second largest pole basis monomial \(\psi_{L-1} \) with coefficient \(\zeta_{L-1} \) in \(\hat{\psi} \);

Step 6: In \(Z_{w,p_t} \), find a zero basis function \(\psi_{p_t,\alpha} \) whose leading monomial \(LM(\psi_{p_t,\alpha}) = \phi_{L-1} \), and let the corresponding coefficient \(\gamma_{a,p_t,\alpha} = \zeta_{L-1} \);

Step 7: Update \(\hat{\psi} = \hat{\psi} + \gamma_{a,p_t,\alpha} \psi_{p_t,\alpha} \);

}
1. Validity of the Algorithm

- **Condition 1:** From the perspective of solving a linear equation group
 \[N_w(\delta) > C_M \]
 \[\text{Freedom (Nr of coefficients)} \quad \text{Constraints} \]

- **Condition 2:** From the perspective of solving equation \(Q(x, y, u) = 0 \)
 \[S_M(C) > \deg_w(Q(x, y, z)) \]
 \[\text{Total zero order of } Q \quad \text{Pole order of } Q \]

- **Theorem 2:** Given the multiplicity matrix \(M \) and the resulting interpolated polynomial \(Q(x, y, z) \), if the codeword score \(S_M(C) \) is large enough such that:
 \[S_M(C) > \deg_w(Q(x, y, z)) \]
 message polynomial \(u \) can be found out by factorising \(Q \) as:
 \[z - u \mid Q(x, y, z) \]
 or \(Q(x, y, u) = 0. \) → This gives a tight condition of successful list decoding!!!

[Chen09]
1. Prove the Validity of the Algorithm

- A corollary that can embrace both of the successful decoding conditions.

Corollary 3: Message polynomial f can be found out by $z - u \mid Q(x, y, z)$ if
$$S_M(C) > \Delta_w(C_M)$$

Since $\Delta_w(C_M)$ guarantees $N_w(\delta) > C_M$ (Condition 1 is met!)

Since $\deg_w(Q(x, y, z)) \leq \Delta_w(C_M)$, if $S_M(C) > \Delta_w(C_M)$, $S_M(C) > \deg_w(Q)$
(Condition 2 is met!)

Remark: Solving the linear polynomial group does not give a tight bound on successful list decoding, but solving the polynomial $Q(x, y, u) = 0$ does!

This can be seen later.
1. Optimal Performance Bound

- **Corollary 4**: Let \(w_z = \deg_w(\Phi_{k-1}) \), \(N_w(\delta) > \delta(\delta - g)/2w_z \) given \(\delta > 2g - 1 \). And \(N_w(\delta) = \delta^2/2w_z \) with \(\delta \to \infty \).

- With \(l \to \infty \), algebraic soft decoding algorithm’s asymptotic optimal performance can be achieved.

\[
l \to \infty, \ C_M \to \infty \text{ and } \Delta_w(C_M) \to \infty, \text{ it results } \Delta_w(C_M) \approx \sqrt{2w_zC_M}
\]

- Corollary 3 \((S_M(C) > \Delta_w(CM)) \) can be interpreted as:

\[
\sum_{j=0}^{n-1} \bar{m}_{i,j} > \sqrt{w_z \sum_{i=0}^{q-1} \sum_{j=0}^{n-1} m_{i,j}(m_{i,j} + 1)}.
\]

[Chen09]
1. Optimal Performance Bound

- Asymptotic condition (when $C_M \to \infty$): \[
\frac{\pi_{i,j}}{n} = \frac{m_{i,j}}{s}
\]

- We could further have

- Since with $s \to \infty$, $n/s \to 0$ and

\[
\sum_{j=0}^{n-1} \frac{s}{n} \pi_{i,j} > \frac{s}{n} w_z \sum_{i=0}^{q-1} \sum_{j=0}^{n-1} \pi_{i,j} \left(\pi_{i,j} + \frac{n}{s} \right).
\]

- In KV decoding of RS codes, w_z is replaced by $k - 1$.

- The performance of the KV algorithm is bounded by the quality of the received information Π.

- Had the quality of Π been improved, optimal performance bound can be enhanced. [El-Khamy06]
Complexity Reduction Methods

- Modified reliability transform algorithm (introducing a stopping criterion) [Chen09]
 - In KV, reliability transform is stopped once a predefined $s = \sum_{i,j} m_{i,j}$ is met.
 - Reliability transform is stopped once a predefined output list size l is met.

- Pre-calculation of the corresponding coefficients [Chen08]
 - Determine $\gamma_{a,p_i,\alpha}$

- Elimination of the unnecessary polynomials in the group [Chen07]
 - Eliminate polynomials with $\text{lod}(Q) > C_M$
1. Complexity reducing interpolation

- Pre-calculation of the corresponding coefficients and elimination of the unnecessary polynomials

\[G = \{ Q \mid D(Q) = 0 \} \]

After \(C \) iterations, output \(Q^* \)

For \(Q \) with \(D(Q) \neq 0 \)

Eliminate polynomials with \(lod \) over \(C \)

Bilinear modifications

In the end, the minimal polynomial \(Q \) in group \(G \) is chosen!
1. Complexity reducing interpolation

The (64, 19) Hermitian code

The graph shows the computation complexity for both original interpolation and complexity reducing interpolation for different values of E_b / N_0 in dB. The percentage of complexity is compared for $l = 2$ and $l = 3$. The graph indicates a significant reduction in complexity for the complexity reducing interpolation method.
Arising Awareness

- Why Condition 1 \((N_w(\delta) > C_M)\) is NOT a tight bound?

- Since \(\text{lod}(Q^*) \leq C_M\), if \(\text{deg}_w(Q^*) = \delta^*\), then

\[
N_w(\delta^*) \leq C_M \quad \text{and} \quad N_w(\delta) > C_M
\]

- \(N_w(\delta) > C_M\) is the successful decoding criterion w.r.t. the polynomial group \(G\). However, the minimal polynomial in \(G\) does not meet this condition.

- To access the decoding performance, only Condition 2 gives a tight bound:

\[
S_M(\ M(\) \ > \ deg_w(Q(x, y, z))
\]

- Since \(\text{deg}_w(Q(x, y, z)) \leq \Delta_w(C_M)\), without performing the interpolation process, the theoretical assessment (e.g. \(S_M(\ M(\) \ > \Delta_w(C_M))\)) produces a relatively negative results.
Performance Evaluation

Hermitian code (512, 289) over AWGN channel

I is the output list size of the list decoder

.... approaching the optimal bound!

.... performance advantage of the list decoding algorithms!
1. Hermitian code ~ RS code

Both codes are defined in GF(64), over AWGN channel

- Hermitian (512, 289), soft-decision ($l = 1$)
- Hermitian (512, 289), soft-decision ($l = 2$)
- Hermitian (512, 289), soft-decision ($l = 5$)
- RS (63, 35), soft-decision ($l = 1$)
- RS (63, 35), soft-decision ($l = 2$)
- RS (63, 35), soft-decision ($l = 5$)

Table: Performance Comparison

<table>
<thead>
<tr>
<th>Output size</th>
<th>Codes</th>
<th>Hermitian (512, 289)</th>
<th>RS (63, 35)</th>
<th>RS (255, 144)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 1$</td>
<td>$C = 892$</td>
<td>$C = 103$</td>
<td>$C = 430$</td>
<td></td>
</tr>
<tr>
<td>$l = 2$</td>
<td>$C = 1813$</td>
<td>$C = 204$</td>
<td>$C = 859$</td>
<td></td>
</tr>
<tr>
<td>$l = 5$</td>
<td>$C = 4602$</td>
<td>$C = 715$</td>
<td>$C = 3004$</td>
<td></td>
</tr>
</tbody>
</table>
1. Hermitian code ~ RS code

Hermitian code is defined in GF(64) and RS code is defined in GF(256)

<table>
<thead>
<tr>
<th>Output size</th>
<th>Codes</th>
<th>$C_{(512, 289)}$</th>
<th>$C_{(63, 35)}$</th>
<th>$C_{(255, 144)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l = 1$</td>
<td>$C = 892$</td>
<td>$C = 103$</td>
<td>$C = 430$</td>
<td></td>
</tr>
<tr>
<td>$l = 2$</td>
<td>$C = 1813$</td>
<td>$C = 204$</td>
<td>$C = 859$</td>
<td></td>
</tr>
<tr>
<td>$l = 5$</td>
<td>$C = 4602$</td>
<td>$C = 715$</td>
<td>$C = 3004$</td>
<td></td>
</tr>
</tbody>
</table>

E_b / N_0 [dB] vs. BER plot showing performance comparison for different codes and soft-decision levels.
II. Modernised algebraic decoding

- Challenges → Inspirations
- Modernisation: Progressive algebraic soft decoding (PASD)
- Complexity reduction and performance evaluation
II. Challenges → Inspirations

- The algebraic soft decoding is of high complexity, mainly due to the iterative interpolation process.
- A rebound thinking – a common phenomenon for most of the modern decodings.

Inspiration: Can we design an algebraic decoder which can also adjust its complexity according to the quality of the received word?

We can ‘borrow’ the idea from iterative decoding!
II. Challenges → Inspirations

- A review towards the modern codes (LDPC or Turbo codes)
 - The Belief Propagation (BP) algorithm with a parity check matrix H

\[\text{Yes, } \hat{C} \]
\[\hat{C}H^T = 0? \]
\[\text{No} \]

- An iterative process
- Incremental computations between iterations
- A continue test of the decoding output
- Decoding capability and complexity can be adjusted according to the quality of \mathcal{R}
II. Modernised algebraic decoding

- The existing complexity reduction approaches
 - Facilitated reliability transform: $M = [\lambda \cdot \Pi]$ [Gross06]
 - Coordinate transform: \{$(\alpha_0, y_0), (\alpha_1, y_1), \ldots, (\alpha_{k-1}, y_{k-1}), (\alpha_k, y_k), \ldots, (\alpha_{n-1}, y_{n-1})$\}
 - Elimination of unnecessary polynomials: $G = \{Q \mid \text{lod}(Q) \leq C_M\}$ [Chen07]
 - Hybrid decoding:

\[
\text{BM} \quad \begin{array}{c}
\text{yes} \\
\text{no}
\end{array} \quad \text{ASD (KV)} \quad \hat{C} \quad \hat{C} \quad \text{BM} \quad \begin{array}{c}
\text{yes} \\
\text{no}
\end{array} \quad \text{ASD (KV)} \quad \hat{C}
\]

\text{BM} \quad \begin{array}{c}
\text{yes} \\
\text{no}
\end{array} \quad \text{ASD (KV)} \quad \hat{C} \quad \hat{C} \quad \text{BM} \quad \begin{array}{c}
\text{yes} \\
\text{no}
\end{array} \quad \text{ASD (KV)} \quad \hat{C}
\]
Construction of a \((n, k)\) RS Code

The message polynomial evaluation

- Let \(u = (u_0, u_1, \ldots, u_{k-1}) \in \text{GF}(q)\) be a message vector, forming a message polynomial:

\[
u(x) = u_0 + u_1 x + \cdots + u_{k-1} x^{k-1}\]

- Choosing \(n\ (n \leq q)\) distinct elements \(\alpha_0, \alpha_1, \ldots, \alpha_{n-1} \in \text{GF}(q)\\{0\},\) the output codeword \(c\) can be generated as

\[
c = (c_0, c_1, \ldots, c_{n-1}) = (u(\alpha_0), u(\alpha_1), \ldots, u(\alpha_{n-1}))\]
II. A graphical thinking

If c_6 is the transmitted codeword, PASD completes the decoding with $l = 1$ rather than $l = 5$ as the KV algorithm – optimizing the assignment of decoding parameters & complexity.
\[\Pi \xrightarrow{\begin{array}{c} l_1 \\ l_v \\ \text{No, } v = v + 1 \end{array}} \text{M}_v \xrightarrow{\text{Inpolation } Q(x,y)} \text{Factorization } p(x), L \]

\[u(x) \in L? \xrightarrow{\begin{array}{c} \text{Yes} \\ \text{No} \end{array}} \text{Output } u(x) \]

\[l_v \text{- designed output list size at each iteration;} \]
\[l_{\max} \text{- the designed maximal output list size;} \]
\[l' \text{- step size for updating the output list size;} \]
\[L \text{- the output list of all polynomials } p(x) \text{ such that } y-p(x)|Q(x, y). \]

Two key steps: Progressive Reliability Transform (PRT) \(\Rightarrow \) \(M_1, M_2, \ldots, M_v, \ldots \)
Progressive Interpolation (PIP) \(\Rightarrow \) \(Q_1(x, y), Q_2(x, y), \ldots, Q_v(x, y), \ldots \)

[Tang11]
II. Defining the zero condition constraints

- Multiplicity m_{ij} ~ interpolated point (x_j, α_i)
- Given a polynomial $Q(x, y)$, m_{ij} implies $D_{r,s}(Q(x, y))|_{x=x_j, y=\alpha_i} = 0$ for $r + s < m_{ij}$

Definition 1: Let $\Lambda(m)$ denotes a set of zero condition constraints (r, s) indicated by m, then $\Lambda(M)$ denotes a collection of all the sets $\Lambda(m_{ij})$ defined by the entry m_{ij} of M

$$\Lambda(M) = \{\Lambda(m_{ij}), m_{ij} \in M\}$$

- **Example**:

 $$M = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $$\Lambda(M) = \{\{(0, 0), (1, 0), (0, 1)\}_{00}, \emptyset_{01}, \emptyset_{02}, \emptyset_{10}, \{(0, 0)\}_{11}, \{(0, 0)\}_{12}, \{(0, 0)\}_{20}, \{(0, 0), (1, 0), (0, 1)\}_{21}, \emptyset_{22}, \emptyset_{30}, \emptyset_{31}, \{(0, 0)\}_{32}\}$$
II. Defining the zero condition constraints

- **Definition 2:** Let \(m_{ij}^v \) and \(m_{ij}^{v+1} \) denote the entries of matrix \(M_v \) and \(M_{v+1} \), the incremental zero condition constraints introduced between the matrices are defined as a collection of all the residual sets between \(\Lambda(m_{ij}^{v+1}) \) and \(\Lambda(m_{ij}^v) \) as:

\[
\Lambda(\Delta M_{v+1}) = \Lambda(M_{v+1}) - \Lambda(M_v) = \{\Lambda(m_{ij}^{v+1}) - \Lambda(m_{ij}^v)\}
\]

- **Example:**

\[
M_2 = \begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 1 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad \quad
M_1 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\Lambda(M_2) = \{(0, 0), (1, 0), (0, 1)\}_{00}, \emptyset_{01}, \emptyset_{02}, \emptyset_{10}, \{(0, 0)\}_{11}, \{(0, 0)\}_{12}, \{(0, 0)\}_{20}, \{(0, 0), (1, 0), (0, 1)\}_{21}, \emptyset_{22}, \emptyset_{30}, \emptyset_{31}, \{(0, 0)\}_{32}\}
\]

\[
\Lambda(M_1) = \{(0, 0)\}_{00}, \emptyset_{01}, \emptyset_{02}, \emptyset_{10}, \emptyset_{11}, \{(0, 0)\}_{12}, \{(0, 0)\}_{20}, \{(0, 0)\}_{21}, \emptyset_{22}, \emptyset_{30}, \emptyset_{31}, \{(0, 0)\}_{32}\}
\]

\[
\Lambda(\Delta M_2) = \{(1, 0), (0, 1)\}_{00}, \emptyset_{01}, \emptyset_{02}, \emptyset_{10}, \{(0, 0)\}_{11}, \emptyset_{12}, \emptyset_{20}, \{(1, 0), (0, 1)\}_{21}, \emptyset_{22}, \emptyset_{30}, \emptyset_{31}, \emptyset_{32}\}
\]

10 constraints

5 constraints

5 constraints
II. Progressive Interpolation

- PIP (Λ(M), G) – the Interpolation process that involves a group of polynomials G with respect to constraints of Λ(M).

- \(M_1, M_2, M_3, \ldots, M_{v-1}, M_v, \ldots, M_{max-1}, M_{max} \)

\[
\begin{align*}
\Lambda(M_1), & \quad \Lambda(M_2), & \quad \Lambda(M_3), & \quad \ldots, & \quad \Lambda(M_{v-1}), & \quad \Lambda(M_v), & \quad \ldots, & \quad \Lambda(M_{max-1}), & \quad \Lambda(M_{max}) \\
\Lambda(\Delta M_2), & \quad \Lambda(\Delta M_3), & \quad \ldots, & \quad \Lambda(\Delta M_v), & \quad \ldots, & \quad \Lambda(\Delta M_{max-1}), & \quad \Lambda(\Delta M_{max}) \\
G_1, & \quad G_2, & \quad G_3, & \quad \ldots, & \quad G_{v-1}, & \quad G_v, & \quad \ldots, & \quad G_{max-1}, & \quad G_{max} \\
\Delta G_1, & \quad \Delta G_2, & \quad \ldots, & \quad \Delta G_{v-1}, & \quad \ldots, & \quad \Delta G_{max-1}, & \quad \Lambda Q_M(x, y)
\end{align*}
\]
II. Progressive interpolation

- PIP ($\Lambda(M), G$) – the Interpolation process that involves a group of polynomials G with respect to constraints of $\Lambda(M)$.

$$
\text{PIP}(\Lambda(M_1), G_1) + \\
\text{PIP}(\Lambda(M_1), \Delta G_1) + \text{PIP}(\Lambda(\Delta M_2), G_2) + \\
\text{IP}(\Lambda(M_{max}), G_{max}) \Rightarrow \\
\text{PIP}(\Lambda(M_2), \Delta G_2) + \text{PIP}(\Lambda(\Delta M_3), G_3) + \\
\vdots \\
\text{PIP}(\Lambda(M_{v-1}), \Delta G_{v-1}) + \text{PIP}(\Lambda(\Delta M_v), G_v) + \\
\vdots \\
\text{PIP}(\Lambda(M_{max-1}), \Delta G_{max-1}) + \text{PIP}(\Lambda(\Delta M_{max}), G_{max})
$$

- The number of ‘factorisations’ has been increased. However, its complexity is rather marginal compared to interpolation.
II. Implementation algorithms

- Progressive Reliability Transform (PRT), producing $M_1, M_2, M_3, \ldots , M_v, \ldots , M_{\text{max}}$

- The output list size l_v is determined by
 $$l_v = \left\lfloor \frac{\Delta_{1,k-1}(C(M_v))}{k-1} \right\rfloor$$

- $\Delta_{1,k-1}C(M_v) = \deg_{1,k-1}(x^a y^b \mid \text{ord}(x^a y^b) = C(M_v))$

Algorithm Reliability transform with stopping criterion l_v

Input: Reliability matrix Π, Π^*_{v-1}, and the maximal output list size l_v and multiplicity matrix M_{v-1}.

Output: Multiplicity matrix M_v.

step 1: Initiate $\Pi_v^* = \Pi^*_{v-1}$, $M_v = M_{v-1}$;

step 2: Find the largest entry π^*_{ij} in Π^*_v with the position (i, j);

step 3: Update $\pi^*_{ij} = \frac{\pi_{ij}}{m_{ij}+2}$;

step 4: Update $m_{ij} = m_{ij} + 1$;

step 5: Compute $C(M_v) = \frac{1}{2} \sum_{i=0}^{q} \sum_{j=0}^{n} m_{ij}(m_{ij} + 1)$;

step 6: Compute $l_v^* = \left\lfloor \frac{\Delta_{1,k-1}(C(M_v))}{k-1} \right\rfloor$

step 7: If $l_v^* > l_v$, return M_v; otherwise go to step 2.
II. Implementation algorithms

- Progressive Interpolation (PIP)

From iteration $v \to v + 1$:
1) Generate an incremental polynomial group
 $$\Delta G_v = \{y^{l_v+1}, y^{l_v+2}, \ldots, y^{l_{v+1}}\}$$
 Perform $PIP(\Lambda(M_v), \Delta G_v) \to \Delta G_v'$, then update the new polynomial group as
 $$G_{v+1} = G_v \cup \Delta G_v'$$
2) For the updated polynomial group G_{v+1}, perform $PIP(\Lambda(\Delta M_{v+1}), G_{v+1}) \to G_{v+1}'$.

- From iteration $v \to v + 1$:
 1) Generate an incremental polynomial group
 $$\Delta G_v = \{y^{l_v+1}, y^{l_v+2}, \ldots, y^{l_{v+1}}\}$$
 Perform $PIP(\Lambda(M_v), \Delta G_v) \to \Delta G_v'$, then update the new polynomial group as
 $$G_{v+1} = G_v \cup \Delta G_v'$$
 2) For the updated polynomial group G_{v+1}, perform $PIP(\Lambda(\Delta M_{v+1}), G_{v+1}) \to G_{v+1}'$.

II. Complexity reduction

- Computational complexity (O): the averaged number of finite field arithmetic operations for decoding one codeword frame;
- Complexity reduction (Θ):

$$\Theta = \frac{O_{ASD} - O_{PASD}}{O_{ASD}} \times 100\%$$

- The (15, 5) RS code
II. Complexity reduction

- Measurement of the decoding parameter l

Measure the assignment of l with respect to the channel quality for (15,5) RS code

<table>
<thead>
<tr>
<th>SNR</th>
<th>l</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2dB</td>
<td></td>
<td>21.2130</td>
<td>15.8959</td>
<td>10.2188</td>
<td>7.0340</td>
<td>5.2340</td>
<td>4.0986</td>
<td>2.6862</td>
<td>2.6031</td>
<td>1.7170</td>
<td>29.2994</td>
</tr>
<tr>
<td>5dB</td>
<td></td>
<td>81.0490</td>
<td>12.7920</td>
<td>3.2638</td>
<td>1.0861</td>
<td>0.5532</td>
<td>0.3028</td>
<td>0.1745</td>
<td>0.1230</td>
<td>0.1048</td>
<td>5.5078</td>
</tr>
<tr>
<td>8dB</td>
<td></td>
<td>99.9339</td>
<td>0.0638</td>
<td>0.0014</td>
<td>0.0004</td>
<td>0.0003</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
II. Performance evaluation

- The (15, 5) RS code with BPSK, over AWGN channel
II. Performance evaluation

- Successful decoding criterion: \(S_M(\vec{C}) > \text{deg}_{1,k-1}(Q(x, y)) \)

- Conventional ASD algorithm might ‘overkill’ the decoding problem

- Example: performing ASD and PASD with \(l = 10 \)

<table>
<thead>
<tr>
<th>(l)</th>
<th>(S_M(C))</th>
<th>(\text{deg}_{1,k-1}(Q(x, y)))</th>
<th>(S_M(C))</th>
<th>(\text{deg}_{1,k-1}(Q(x, y)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>< 8</td>
<td>4</td>
<td>< 8</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>< 12</td>
<td>10</td>
<td>< 12</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>< 16</td>
<td>13</td>
<td>< 16</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>< 20</td>
<td>19</td>
<td>< 20</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>< 24</td>
<td>21</td>
<td>< 24</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>< 28</td>
<td>27</td>
<td>< 28</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>< 32</td>
<td>30</td>
<td>< 32</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>< 36</td>
<td>34</td>
<td>< 36</td>
</tr>
<tr>
<td>9</td>
<td>41</td>
<td>> 40</td>
<td>41</td>
<td>> 40</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
<td>= 44</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

An example based on (15,5) RS code for understanding why the PASD algorithm can outperform the ASD algorithm.
Conclusions

- Construction of a Hermitian code and some of its properties;
- Hermitian code can be a promising candidate to replace RS code in future applications;
- Algebraic soft-decoding of Hermitian codes, including the interpolated zero condition, validity of the decoding, optimal performance bound and complexity reduction approaches;
- Modernised algebraic soft decoding algorithm: a progressive approach;
- Two key steps of PASD: progressive reliability transform & progressive interpolation;
- Optimises both decoding complexity and performance;
- A general approach for all sorts of algebraic decoding problems.
Future work

- A continue thinking:
 PASD algorithm → performance ~ Π dependent;
 → complexity ~ Π dependent;

- An priori process to the PASD algorithm can be introduced to enhance the reliability of Π, enabling both a performance improvement and a faster convergence of decoding complexity.

The UK government Overseas Research Scholarship (ORS) scheme, supporting my PhD engagement (Part I of the presentation).

The National Natural Science Foundation of China (NSFC), supporting the proposed work of Part II. Project: Advanced coding technology for future storage devices, ID: 61001094. Role: principle investigator (PI).

Siyun Tang for implementing the PASD algorithm and Prof. Xiao Ma for his thoughtful discussion.
Thank you!