On the Capacity of Non-coherent Network Coding

Mahdi Jafari Siavoshani
Soheil Mohajer, Christina Fragouli, Suhas Diggavi

École Polytechnique Fédérale de Lausanne
Outline

• Introduction
• Single Source
 ▶ Problem Setup and Model
 ▶ Results
 ▶ Sketch of the Proof
• Multiple Sources
 ▶ Sketch of the Proof
• Compressed Coding Vectors
• Conclusions
Introduction
Randomized Network Coding

- Nodes linearly and uniformly combine the incoming packets.
- Sources and destinations are oblivious to the network operation (a non-coherent transmission).
- The standard approach is to append coding vectors to each packet to keep track of the linear operations performed by the network.
- There is a loss of information rate due to coding vector overhead.
Operator Channel - Subspace Coding
Kotter and Kschischang (2008)

- **Observation:** The linear network coding is vector space preserving.

- => Information transmission is modeled by the injection of a basis for a vector space Π_S into the network and the collection of a basis for a vector space Π_D by the receiver.

- Network is modeled by the **operator channel**:

$$\Pi_D = \mathcal{H}_k(\Pi_S) \oplus \Pi_E$$

- KK’08 focused on code construction in $\mathcal{P}(\mathbb{F}_q^T)$ which is a combinatorial problem.

- They only focused on subspace codes with block length one.
Non-coherent Network Coding

• We may study this problem from information theory point of view by proposing a probabilistic model for the channel.

• Q 1: What is the maximum achievable rate in such a network with non-coherent assumption when we can use the network many time?

• Q 2: What is the optimal coding scheme to achieve the capacity?

• Q 3: How much is the rate loss of using coding vectors compared to the optimal scheme?
Related Work

Problem Setup and Model
Assumptions

• We assume time is slotted (or we have rounds).
• In each time-slot, the source sends \(m \) packets denoted by rows of \(X \), (\(X \) is an \(m \times T \) matrix over \(\mathbb{F}_q \)).
• Receiver observes \(n \) packets denoted by rows of \(Y \), (an \(n \times T \) matrix over \(\mathbb{F}_q \)).
• Transfer function is unknown to both Tx and Rx, (similar to non-coherent MIMO channel).
• Nodes perform uniform at random randomized network coding over \(\mathbb{F}_q \).

\[
X = \begin{bmatrix}
- & X_1 & - \\
& \vdots & \\
- & X_m & -
\end{bmatrix}_{m \times T} \quad Y = \begin{bmatrix}
- & Y_1 & - \\
& \vdots & \\
- & Y_n & -
\end{bmatrix}_{n \times T}
\]
The channel model is a block time-varying channel.

For each time-slot we have:

\[Y_{n \times T}[t] = H_{n \times m}[t] X_{m \times T}[t] \]

Matrix \(H[t] \) is assumed to be uniformly distributed over all possible matrices and independent over different blocks.

The packet length \(T \) can be interpreted as the coherence time of the channel, during which the transfer matrix remains constant.
Notion of Capacity

• Considering a coding scheme over multiple blocks, the problem becomes an information theoretical problem with channel capacity:

$$C = \max_{P_X} I(X; Y)$$

$$X \in \mathbb{F}_q^{m \times T}, \quad Y \in \mathbb{F}_q^{n \times T}$$

A codeword is a sequence of matrices
Results
Coding over Subspaces is Optimal!

• For the channel transition probability we can show:

\[
P[Y = y | X = x] = \begin{cases}
q^{-n \dim(\langle x \rangle)} & \langle y \rangle \subseteq \langle x \rangle \\
0 & \text{otherwise}
\end{cases}
\]

• Conclusions:

• Coding over subspaces is optimal.

• Because of the symmetry, the optimal input distribution is uniform over all subspaces having the same dimension.

• Question: What is the optimal input distribution over subspaces with different dimensions?
Illustration of Main Result

• The channel is: \(Y_{n \times T} = H_{n \times m} X_{m \times T} \)

• There are different regimes, based on relative values of \(m, n, \) and \(T \).

• **Example**: Active subspace dimensions for \(m = 4, n = 3 \):

\[
\begin{align*}
T \leq n & : & \begin{array}{c}
1 \quad 2 \quad 3 \quad 4
\end{array} \\
n < T < n + \min[m, n] & : & \begin{array}{c}
1 \quad 2 \quad 3 \quad 4
\end{array} \\
n + \min[m, n] \leq T & : & \begin{array}{c}
1 \quad 2 \quad 3 \quad 4
\end{array}
\end{align*}
\]
Main Result

• Theorem:

 • There exists finite q_0 such that for $q > q_0$ the optimal input distribution is non-zero only for the matrices whose rank belongs to the active set:

 $$A = \{ \min[(T - n)^+, m, n, T], \ldots, \min[m, n, T]\}$$

 • The total probability allocated to transmitting matrices of rank i equals:

 $$\alpha^*_i \triangleq \mathbb{P}[\text{rank}(X) = i] = 2^{-C} q^i(T-i)[1 + o(1)], \quad \forall i \in A$$
Main Result

- **Theorem:**
 - The capacity is given by: \(C = i^*(T - i^*) \log_2 q + o(1) \)
 - where \(i^* = \min \{ m, n, \lfloor T/2 \rfloor \} \)

- Numerical calculations show fast convergence of capacity to above result even for small \(q \), (example: \(m = 11, \ n = 7 \)):

![Graph showing convergence of capacity to above result](image-url)
Subspace Coding vs. Coding Vectors

- Information rate loss from using coding vectors when $m = n$:

<table>
<thead>
<tr>
<th>$C - R_{cv}$</th>
<th>$T \leq 2m$</th>
<th>$T > 2m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$o(1)$</td>
<td>$o(1) = (i^* - 1)(T - i^*) \frac{\log q}{q} + O(q^{-1})$</td>
<td></td>
</tr>
</tbody>
</table>

- So in terms of transmission rate, “coding vector” scheme performs well enough if q is not small.

- KK’08 also made a similar observation by proposing an algebraic code construction for fixed dimensional subspace code. However, KK’08 only consider the subspace codes of block length one.
Sketch of the Proof
Proof Sketch

• The matrix channel \(\text{ch}_m \) with capacity \(C_m \) is given by:

\[
P_{Y|X}(y|x) = \begin{cases}
q^{-n \dim(\langle x \rangle)} & \langle y \rangle \subseteq \langle x \rangle \\
0 & \text{otherwise}
\end{cases}
\]

• The subspace channel \(\text{ch}_s \) with capacity \(C_s \) is defined as:

\[
P_{\Pi_Y|\Pi_X}(\pi_y|\pi_x) \triangleq \begin{cases}
\psi(T, n, \pi_y)q^{-n \dim(\pi_x)} & \pi_y \subseteq \pi_x \\
0 & \text{otherwise}
\end{cases}
\]

• **Lemma**: The channels \(\text{ch}_m \) and \(\text{ch}_s \) are equivalent in terms of evaluating the mutual information between the input and output. As a result, \(C_m = C_s \).
Proof Sketch

• **Lemma**: The input distribution that maximizes for $I(\Pi_X; \Pi_Y)$ is the one which is uniform over all subspaces having the same dimension. So

\[
\mathbb{P}[\langle X \rangle = \pi_x] = \mathbb{P}[\Pi_X = \pi_x] = \alpha_r \times \left[\frac{T}{r} \right]^{-1}_q
\]

where $r = \text{dim}(\pi_x)$ and $\alpha_r = \mathbb{P}[\text{dim}(\Pi_X) = r]$

• Now, we have to maximize the mutual information $I(\Pi_X; \Pi_Y)$ over different choices of α_i, $i = 0, \ldots, \min(m, T)$.
Proof Sketch

• \(I(\Pi_X; \Pi_Y) \) is a concave function of \(\alpha_i \), so we can apply Kuhn-Tucker theorem.

• The optimal values \(\alpha_i^* \) should satisfy:

\[
\begin{align*}
\left. \frac{\partial I(\Pi_X; \Pi_Y)}{\partial \alpha_k} \right|_{\alpha_i^*} &= \lambda \quad \forall k : \alpha_k^* > 0 \\
\left. \frac{\partial I(\Pi_X; \Pi_Y)}{\partial \alpha_k} \right|_{\alpha_i^*} &\leq \lambda \quad \forall k : \alpha_k^* = 0
\end{align*}
\]

\[
\text{for } \lambda = C_s - \log_2 e \quad \text{where } \sum_{i=0}^{\min(m,T)} \alpha_i^* = 1.
\]

• After some manipulations and approximations we can write the Kuhn-Tucker conditions as a linear system:

\[
A \alpha^* \succeq 2^{-C_s + o(1)} b
\]
Proof Sketch

• First case: $\delta \triangleq \min(m, T) \leq n$

\[
A = \begin{bmatrix}
1 & q^{-n} & \cdots & q^{-(\delta-1)n} & q^{-\delta n} \\
0 & q^{-(n-1)} & \cdots & q^{-(\delta-1)(n-1)} & q^{-\delta(n-1)} \\
0 & 0 & \cdots & q^{-(\delta-1)(n-2)} & q^{-\delta(n-2)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & q^{-(\delta-1)(n-\delta+1)} & q^{-\delta(n-\delta+1)} \\
0 & 0 & \cdots & 0 & q^{-\delta(n-\delta)} \\
\end{bmatrix}
\]

\[
b = \begin{bmatrix} 1 & q^{(T-n)} & \cdots & q^{\delta(T-n)} \end{bmatrix}^T
\]

\[
\alpha_i^* = \begin{cases}
q^{i(T-i)} 2^{-C_s+o(1)} & : \kappa \leq i \leq \delta \\
0 & : 0 \leq i < \kappa
\end{cases}
\]
Extension for Multiple Sources
Motivation

- Consider sensor network applications where multiple nodes want to report their data to one or multiple access points.

\[
Y[t] = \sum_{i=1}^{s} H_i[t] X_i[t] = \begin{bmatrix} H_1[t] & \cdots & H_s[t] \end{bmatrix} \begin{bmatrix} X_1[t] \\ \vdots \\ X_s[t] \end{bmatrix} = H_{\text{MAC}[t]} X_{\text{MAC}[t]}
\]

\[
X_i \in \mathbb{F}_{q}^{m_i \times T}, \quad H_i \in \mathbb{F}_{q}^{n \times m_i}, \quad Y \in \mathbb{F}_{q}^{n \times T}
\]
• We only consider the two sources problem. However, the same technique can be extended to more than two sources.

• We only characterize the asymptotic behavior of the rate region when \(q \) is large and \(T \geq 2(m_1 + m_2) \)

• The channel transition probability is given by:

\[
P_{Y|X_1X_2}(y|x_1, x_2) = \begin{cases}
q^{-n \dim(\langle x_1 \rangle + \langle x_2 \rangle)} & \langle y \rangle \subseteq \langle x_1 \rangle + \langle x_2 \rangle \\
0 & \text{otherwise}
\end{cases}
\]

• Again coding over subspaces is an optimal scheme.
Main Result

• **Theorem:**

For $T \geq 2(m_1 + m_2)$, the asymptotic (in the field size q) rate region of the MAC ch_{m-MAC} is given by:

$$
\mathcal{R}^* \triangleq \text{convex hull} \bigcup_{(d_1, d_2) \in \mathcal{D}^*} \mathcal{R}(d_1, d_2)
$$

$$
\mathcal{R}(d_1, d_2) \triangleq \{(R_1, R_2) : R_i \leq d_i(T - d_1 - d_2) \log_2 q, \ i = 1, 2\}
$$

$$
\mathcal{D}^* \triangleq \{(d_1, d_2) : 0 \leq d_i \leq \min[n, m_i], \ i = 1, 2,
0 \leq d_1 + d_2 \leq \min[n, m_1 + m_2]\}
$$
Illustration of the Result

- Example:

\[\mathcal{D}^* = \{(0, 3), (1, 3), (2, 3), (3, 3), (4, 2), (4, 1), (4, 0)\} \]

- \((4, 3) \notin \mathcal{D}^*\) because of the cooperative upper bound.
Sketch of the Proof
Achievability Scheme

• For given \((d_1, d_2) \in D^*\), define the following subspace codebooks:

\[
\tilde{C}_1 \triangleq \left\{ \langle X_1 \rangle : X_1 = \begin{bmatrix}
I_{d_1 \times d_1} & 0_{d_1 \times d_2} & U_1 \\
0_{(m_1-d_1) \times d_1} & 0_{(m_1-d_1) \times d_2} & 0_{(m_1-d_1) \times (T-d_1-d_2)}
\end{bmatrix}, \ U_1 \in \mathbb{F}_q^{d_1 \times (T-d_1-d_2)} \right\}
\]

\[
\tilde{C}_2 \triangleq \left\{ \langle X_2 \rangle : X_2 = \begin{bmatrix}
0_{d_2 \times d_1} & I_{d_2 \times d_2} & U_2 \\
0_{(m_2-d_2) \times d_1} & 0_{(m_2-d_2) \times d_2} & 0_{(m_2-d_2) \times (T-d_1-d_2)}
\end{bmatrix}, \ U_2 \in \mathbb{F}_q^{d_2 \times (T-d_1-d_2)} \right\}
\]

• The receiver receives:

\[
Y = H_1 X_1 + H_2 X_2 = \begin{bmatrix}
\hat{H}_1 & \hat{H}_2 \\
\hat{H}_1 U_1 + \hat{H}_2 U_2
\end{bmatrix}
\]

• Since \(d_1 + d_2 \leq n\), the matrix \([\hat{H}_1 \ \hat{H}_2]\) is full-rank with high probability, and therefore the decoder is able to decode \(U_1\) and \(U_2\).

• The remaining non-integer points in the rate region can be achieved using time-sharing.
Upper Bound

• Finding the upper bound goes along the following steps:

 • We use two different upper bounds:
 • A cooperative upper bound R_{coop}
 • A combinatorial coloring upper bound R_{col}

 • Find $R_{col} \cap R_{coop}$ and show that $R_{col} \cap R_{coop} \subseteq R^{*}$

\[
\begin{align*}
R_{1} + R_{2} & \leq k(T - k) \log_{2} q \\
k &= \min[m_{1} + m_{2}, n]
\end{align*}
\]
Coloring Bound

• For channel transition probability we have:

\[P_{Y|X_1 X_2} = P_{Y|X_1 + X_2} \]

• So, the receiver cannot distinguish between:

\[\pi_1 + \pi_2 \text{ and } \pi_1' + \pi_2' \]

• What is the maximum number of distinguishable subspace sequences which can be conveyed through the channel?
Coloring Bound

- From the proof of the outer bound for MAC we have:

\[
R_1 \leq \frac{1}{N} I(\Pi_{X_1}^N; \Pi_Y^N | \Pi_{X_2}^N) \leq \frac{1}{N} \sum_{t=1}^{N} I(\Pi_{X_1 t}; \Pi_{Y t} | \Pi_{X_2 t})
\]

\[
R_2 \leq \frac{1}{N} I(\Pi_{X_2}^N; \Pi_Y^N | \Pi_{X_1}^N) \leq \frac{1}{N} \sum_{t=1}^{N} I(\Pi_{X_2 t}; \Pi_{Y t} | \Pi_{X_1 t})
\]

\[
R_1 + R_2 \leq \frac{1}{N} I(\Pi_{X_1}^N, \Pi_{X_2}^N; \Pi_Y^N) \leq \frac{1}{N} \sum_{t=1}^{N} I(\Pi_{X_1 t}, \Pi_{X_2 t}; \Pi_{Y t})
\]
Coloring Bound

- $C_{i,t}$ denotes the projection of the codebook of user i to its t'th element.

- At time t we have:

 - **Theorem:** There exists integer numbers $0 \leq \delta_i(t) \leq m_i$ such that

 $$c_{i,t} = |C_{i,t}| \leq q^{\delta_i(t)[T-\delta_1(t)-\delta_2(t)]}$$

![Coloring Bound Diagram](image-url)
Compressed Network Coding Vectors
Motivation

- **Motivation**: Combining network coding with data collecting protocols in sensor networks where N sources send information to an access point.
Motivation

• In the previous approaches: an underlying assumption is that, all sources packets may get combined in the network.

• Compressed coding vectors: assume that each coded packets contains a linear combination of at most M out the N source packets.

 • => This allows us to use coding vectors whose length grows sub-linearly with N.

 • => more efficient network communication.
Compressed Coding Vectors

• The sources packets are of the form: \([e_i \mid x_i]\)

• A packet in the network is represented as: \(p \triangleq [p^C \mid p^I]\)

• Consider a linear code \(C = [N, N - r, d]_q\) with parity check matrix \(H_C\) where \(d = \min(2M + 1, N + 1)\)

• As coding vector, assign to source packet \(x_i\) the \(i\)th column of the matrix \(H_C\) : \(h_i = e_i \cdot H_C^T\)

• \(\Rightarrow\) compressed coding vectors:

\[
\hat{p}^C = p^C \cdot H_C^T
\]

• Because \(\operatorname{wt}(p^C) \leq M\) so if \(p^C_1 \neq p^C_2\) then \(\hat{p}^C_1 \neq \hat{p}^C_2\)

• For each packet, recovering \(p^C\) from \(\hat{p}^C\) reduces to a decoding problem.
Bounds on the Length of CCV

• From the **Gilbert-Varshamov bound** we have an upper bound for the length of compressed coding vectors:

\[r \leq NH_q \left(\frac{2M}{N} \right) \]

• From the **Sphere packing bound** we have a lower bound on the length of compressed coding vectors:

\[r \geq NH_q \left(\frac{M}{N} \right) - \frac{1}{2} \log_q \left(8M \left(1 - \frac{M}{N} \right) \right) \]

• For fixed \(M \) and growing \(N \) we have:

\[M \log_q N + O(1) \leq r \leq 2M \log_q N + O(1) \]
Bounds on the Length of CCV

![Graph showing bounds on the length of CCV](image)

- Usual coding vectors
- Compressed coding vectors: Lower bound
- Compressed coding vectors: Upper bound

- Total number of packets in a generation, n.
- Length of coding vectors.

M = 3, M = 12
Conclusions

• We proposed a matrix channel model for non-coherent randomized network coding and characterized its capacity.

• Using coding vectors is not far from optimal scheme if the field size is large.

• Motivated by sensor network application, we also looked at the multi-source non-coherent network coding problem and characterize the asymptotic (in filed size) rate region.

• In terms of rate improvement, subspace coding does not offer a significant difference.
Thank you!