Secure Compute-and-Forward Using Nested Lattice Codes

Navin Kashyap

Department of Electrical Communication Engineering
Indian Institute of Science

February 17, 2014

Joint work with Shashank V. and Andrew Thangaraj
Motivation: Physical-Layer Network Coding

Network Coding:
- Multiple sources and destinations connected via intermediate relay nodes
- Source messages belong to \mathbb{F}^k for some finite field \mathbb{F}
- Relay nodes compute and forward some function (e.g., a linear combination over \mathbb{F}) of their incoming messages

Wireless Networks:
- All links between nodes are wireless with additive white Gaussian noise (AWGN)
- \mathbb{R}- or \mathbb{C}-valued signals broadcast to all neighbouring nodes
- Superposition of signals received simultaneously at receiver:

$$y = \sum_{i=1}^{t} h_i x_i + \text{noise},$$

h_i being the fading coefficient of the link from ith transmitter to receiver; h_is are known to receiver
Bidirectional Relay

A useful primitive in physical-layer network coding:

- Nodes A and B have messages X and Y, respectively, which they want to exchange.
- There is no direct link between the two nodes; they can only communicate through an intermediate relay node.
- The messages belong to some finite set \mathcal{G}; to facilitate message exchange, \mathcal{G} is equipped with a suitable addition operation \oplus that makes it a finite Abelian group.
Compute-and-Forward

(a) MAC phase:

\[w = u + v + z \]

- \(u, v \) are vectors (codewords) in \(\mathbb{R}^d \)
- \(z \sim \mathcal{N}(0, \sigma^2 I) \)
- Equal channel gains:
 \[w = u + v + z \]
 (+ denotes addition over \(\mathbb{R} \))

(b) Broadcast phase:

The broadcast phase is not relevant to our work.
Compute-and-Forward

(a) MAC phase:

- u, v are vectors (codewords) in \mathbb{R}^d
- $z \sim \mathcal{N}(0, \sigma^2 I)$
- Equal channel gains:
 \[w = u + v + z \]
 (+ denotes addition over \mathbb{R})

(b) Broadcast phase:

The broadcast phase is not relevant to our work.
Reliable Computation of $X \oplus Y$ at the Relay

Rate: $R = \frac{1}{d} \log_2 |\mathcal{G}|$

Power Constraint: $\frac{1}{d} \|u\|^2 \leq \mathcal{P}$ and $\frac{1}{d} \|v\|^2 \leq \mathcal{P}$
Reliable computation of $X \oplus Y$ at the relay is possible (for suitably defined \oplus) at any rate R up to

$$\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{P}{\sigma^2} \right)$$

[Narayanan et al. (2007), Nazer & Gastpar (2007)]

- Rate: $R = \frac{1}{d} \log_2 |G|$
- Power Constraint: $\frac{1}{d} \|u\|^2 \leq P$ and $\frac{1}{d} \|v\|^2 \leq P$
Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d$ be linearly independent vectors in \mathbb{R}^d. The set $\Lambda = \{ \sum_{i=1}^d a_i \mathbf{v}_i : a_i \in \mathbb{Z} \}$ is called a (full-rank) lattice.

A lattice in \mathbb{R}^2.
Lattices

Define $Q_{\Lambda}(x) := \arg \min_{\lambda \in \Lambda} \| x - \lambda \|$.

The **fundamental Voronoi region** of Λ is defined as

$$V(\Lambda) := \{ y \in \mathbb{R}^d : Q_{\Lambda}(y) = 0 \}$$

*Figure: Fundamental Voronoi region of Λ.***
Nested Lattices

If \(\Lambda \) and \(\Lambda_0 \) are lattices in \(\mathbb{R}^d \) with \(\Lambda_0 \subset \Lambda \), then \(\Lambda_0 \) is said to be nested within \(\Lambda \), or \(\Lambda_0 \) is a sublattice of \(\Lambda \).

\(\Lambda \) is called the fine lattice and \(\Lambda_0 \) is called the coarse lattice.

Figure: The blue dots indicate the coarse lattice \(\Lambda_0 \).
The cosets of Λ_0 in Λ form a finite Abelian group $G = \Lambda/\Lambda_0$.

Figure: λ_i is the coset representative of Λ_i within $\mathcal{V}(\Lambda_0)$.

- \bullet: Λ_0
- \Diamond: Λ_1
- \Box: Λ_2
- Δ: Λ_3
- \cdot: Λ_4
Choose a pair of nested lattices $\Lambda_0 \subset \Lambda$ in \mathbb{R}^d.

- **Messages**: The message set \mathcal{G} is identified with Λ/Λ_0. Let $\Lambda_0, \Lambda_1, \ldots, \Lambda_{N-1}$ be the elements of Λ/Λ_0.

- **Codebook**: $\mathcal{C} = \Lambda \cap \mathcal{V}(\Lambda_0) = \{\lambda_0, \lambda_1, \ldots, \lambda_{N-1}\}$.
Choose a pair of nested lattices $\Lambda_0 \subset \Lambda$ in \mathbb{R}^d.

- **Messages**: The message set \mathcal{G} is identified with Λ/Λ_0. Let $\Lambda_0, \Lambda_1, \ldots, \Lambda_{N-1}$ be the elements of Λ/Λ_0.

- **Codebook**: $\mathcal{C} = \Lambda \cap \mathcal{V}(\Lambda_0) = \{\lambda_0, \lambda_1, \ldots, \lambda_{N-1}\}$.

- **Encoding**: Given message Λ_j, encoder transmits the coset representative λ_j.

 Thus, the coset reps must satisfy the power constraint:

 $$\frac{1}{d} \|\lambda_j\|^2 \leq P \quad \text{for all } j$$
Choose a pair of nested lattices $\Lambda_0 \subset \Lambda$ in \mathbb{R}^d.

Messages: The message set \mathcal{G} is identified with Λ / Λ_0. Let $\Lambda_0, \Lambda_1, \ldots, \Lambda_{N-1}$ be the elements of Λ / Λ_0.

Codebook: $\mathcal{C} = \Lambda \cap V(\Lambda_0) = \{\lambda_0, \lambda_1, \ldots, \lambda_{N-1}\}$.

Encoding: Given message Λ_j, encoder transmits the coset representative λ_j.

Thus, the coset reps must satisfy the power constraint:

$$\frac{1}{d} \| \lambda_j \|^2 \leq P \quad \text{for all } j$$

Decoding: The relay receives $\mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{z}$.

1. Let $\tilde{\mathbf{w}} = Q_\Lambda(\mathbf{w})$ be the closest point in Λ to \mathbf{w}.
2. The estimate of $X \oplus Y$ is the coset to which $\tilde{\mathbf{w}}$ belongs. This is called nearest lattice point decoding.
The rate of the nested lattice code is \(R = \frac{1}{d} \log_2 |\Lambda/\Lambda_0| \).

By choosing a “good” sequence of nested lattice pairs \((\Lambda_0^{(d)}, \Lambda^{(d)})\), with \(d \to \infty \), reliable computation of \(X \oplus Y \) at the relay is possible at any rate \(R \) up to

\[
\frac{1}{2} \log_2 \left(\frac{P}{\sigma^2} \right).
\]

The techniques of “uniform dithering” and “MMSE equalization” at the decoder are used to achieve rates up to

\[
\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{P}{\sigma^2} \right).
\]

[Narayanan et al. (2007), Nazer & Gastpar (2007)]
Reliable and Secure Computation of $X \oplus Y$

- X, Y uniformly distributed over some finite Abelian group \mathbb{G}
- u, v are vectors (codewords) in \mathbb{R}^d
- $z \in \mathcal{N}(0, \sigma^2 I)$
- Relay receives $w = u + v + z$ and must compute $X \oplus Y$.

Diagram:
- Node A: X
- Node B: Y
- Noise z
- Relay:
 - $X \oplus Y$
 - $w = u + v + z$
Reliable and Secure Computation of $X \oplus Y$

- X, Y uniformly distributed over some finite Abelian group \mathbb{G}
- u, v are vectors (codewords) in \mathbb{R}^d
- $z \in \mathcal{N}(0, \sigma^2 I)$
- Relay receives $w = u + v + z$ and must compute $X \oplus Y$.

Security Constraint:
- Perfect Secrecy: $w \perp X$ and $w \perp Y$
- Strong Secrecy: $\mathcal{I}(w; X) \to 0$ and $\mathcal{I}(w; Y) \to 0$ as $d \to \infty$.
- Weak Secrecy: $\frac{1}{d} \mathcal{I}(w; X) \to 0$ and $\frac{1}{d} \mathcal{I}(w; Y) \to 0$ as $d \to \infty$.
Use as Primitive in Secure Communication Schemes

Multi-hop line network using cooperative jamming: [He and Yener (2008)]

Phase 1

Phase 2

Phase 3

Phase 4
Use as Primitive in Secure Communication Schemes

Butterfly network:

Phase 1

Phase 2

Phase 3
Nested Lattice Coding for Secure Computation

- Weak secrecy using random binning:
 He and Yener, Allerton, 2008.
- Strong secrecy using universal hash functions:

Reliable and (strongly) secure computation of $X \oplus Y$ at the relay is possible, using nested lattice codes, at any rate R up to

$$\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{P}{\sigma^2} \right) - 1$$

[He and Yener (2013)]
He-Yener Coding Scheme

Nested lattice codebook $\mathcal{C} \subset \mathbb{R}^d$

Randomized Encoding: Given message $a \in \mathcal{G}$, a codeword is picked uniformly at random from $g^{-1}(a)$ and transmitted.

- Each $g^{-1}(a)$ contains $\sim 2^d$ codewords
• Messages X, Y i.i.d. $\sim \text{Unif}(\mathcal{G})$

• Codebook $\mathcal{C} \subset \mathbb{R}^d$ is, in general, much larger than \mathcal{G}

• At Node A, given $X = a$, the transmitted codeword $u \in \mathcal{C}$ is picked according to some prob. distribution $\Pr[\cdot | X = a]$; similarly at Node B
Randomized Encoders

- Messages X, Y i.i.d. $\sim \text{Unif}(G)$
- Codebook $C \subset \mathbb{R}^d$ is, in general, much larger than G
- At Node A, given $X = a$, the transmitted codeword $u \in C$ is picked according to some prob. distribution $\Pr[\cdot | X = a]$; similarly at Node B
- Rate: $R = \frac{1}{d} \log_2 |G|$
- Power Constraint: $\frac{1}{d} \|u\|^2 \leq \mathcal{P}$ and $\frac{1}{d} \|v\|^2 \leq \mathcal{P}$
Randomized Encoders

- Messages X, Y i.i.d. $\sim \text{Unif}(G)$
- Codebook $\mathcal{C} \subset \mathbb{R}^d$ is, in general, much larger than G
- At Node A, given $X = a$, the transmitted codeword $u \in \mathcal{C}$ is picked according to some prob. distribution $\Pr[\cdot | X = a]$; similarly at Node B
- Rate: $R = \frac{1}{d} \log_2 |G|$
- Average Power Constraint: $\frac{1}{d} \mathbb{E}||u||^2 \leq \mathcal{P}$ and $\frac{1}{d} \mathbb{E}||v||^2 \leq \mathcal{P}$
Our Main Result

Theorem (Shashank, K. and Thangaraj (2013))

(a) **Reliable and perfectly secure computation of** \(X \oplus Y \) **at the relay is possible at any rate** \(R \) **up to**

\[
\frac{1}{2} \log_2 \left(\frac{P}{\sigma^2} \right) - 1 - \log_2 e
\]

under an average power constraint.

(b) **If perfect secrecy above is relaxed to strong secrecy, then any rate** \(R \) **up to**

\[
\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{P}{\sigma^2} \right) - \frac{1}{2} \log_2 (2e)
\]

is achievable under an average power constraint.
A Comparison of Achievable Rates

Nazer and Gastpar: \(\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{P}{\sigma^2} \right) \)

He and Yener: \(\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{P}{\sigma^2} \right) - 1 \)

Shashank-K.-Thangaraj:

Perfect: \(\frac{1}{2} \log_2 \left(\frac{P}{\sigma^2} \right) - 1 - \log_2 e \)

Strong: \(\frac{1}{2} \log_2 \left(\frac{1}{2} + \frac{P}{\sigma^2} \right) - \frac{1}{2} \log_2 (2e) \)
Our Coding Scheme

Choose a “good” pair of nested lattices $\Lambda_0 \subset \Lambda$ in \mathbb{R}^d.
Choose a “good” probability density $f(x)$ defined on \mathbb{R}^d.

- **Messages:** The message set G is identified with Λ/Λ_0.
 Let $\Lambda_0, \Lambda_1, \ldots, \Lambda_{N-1}$ be the elements of Λ/Λ_0.

- **Codebook:** $C = \Lambda$

- **Randomized Encoding:** Given message Λ_j, encoder picks a codeword $u \in \Lambda_j$ to be transmitted, according to a prob. distrib. p_j defined as follows:

 $$p_j(u) = \begin{cases}
 \frac{1}{Z(\Lambda_j)} f(u) & \text{if } u \in \Lambda_j \\
 0 & \text{otherwise}
 \end{cases}$$

 where $Z(\Lambda_j) = \sum_{u \in \Lambda_j} f(u)$.

- **Decoding:** Nearest lattice point decoding
• Codebook \mathcal{C} is countably infinite
• Prob. distributions used for randomization are obtained by sampling a pdf f at lattice points:
 e.g., $(\Lambda, \Lambda_0) = (\mathbb{Z}, 2\mathbb{Z})$ and a Gaussian density f

\[\text{pdf } f \text{ chosen so that } \frac{1}{d} \mathbb{E} \| \mathbf{u} \|^2 \leq \mathcal{P} \text{ and } \frac{1}{d} \mathbb{E} \| \mathbf{v} \|^2 \leq \mathcal{P} \]
Secrecy via Choice of f

The choice of pdf f determines the secrecy properties of our coding scheme!

Strong secrecy obtained by choosing f to be an $\mathcal{N}(\mathbf{0}, P I_d)$ density:

$$f(x) = \frac{1}{(2\pi P)^{d/2}} e^{-\frac{\|x\|^2}{2P}}$$
Secrecy via Choice of f

The choice of pdf f determines the secrecy properties of our coding scheme!

Strong secrecy obtained by choosing f to be an $\mathcal{N}(\mathbf{0}, \mathcal{P} l_d)$ density:

$$f(\mathbf{x}) = \frac{1}{(2\pi \mathcal{P})^{d/2}} e^{-\frac{\|\mathbf{x}\|^2}{2\mathcal{P}}}$$

Nested lattice codes with discrete Gaussian distributions were previously proposed for the Gaussian wiretap channel by Ling, Luzzi, Belfiore and Stehlé [ArXiv:1210.6673]
Secrecy via Choice of f

The choice of pdf f determines the secrecy properties of our coding scheme!

Strong secrecy obtained by choosing f to be an $\mathcal{N}(\mathbf{0}, \mathcal{P} I_d)$ density:

$$f(x) = \frac{1}{(2\pi\mathcal{P})^{d/2}} e^{-\frac{\|x\|^2}{2\mathcal{P}}}$$

Nested lattice codes with discrete Gaussian distributions were previously proposed for the Gaussian wiretap channel by Ling, Luzzi, Belfiore and Stehlé [ArXiv:1210.6673]

Finding an f that yields perfect secrecy is a more interesting story
Noiseless Setting

\[w = u + v \]

\[X \oplus Y \]

\[w = u + v \]

\[\text{Node A} \]

\[\text{Node B} \]

\[X \]

\[Y \]

\[X, Y \text{ i.i.d. Bernoulli}(1/2) \text{ rvs, } X \oplus Y \text{ is their modulo-2 sum} \]

Want real-valued rvs \(U \) and \(V \) such that

1. \((X, U) \perp \perp (Y, V) \)
2. \(U + V \) determines \(X \oplus Y \)
3. \(U + V \perp \perp X \) and \(U + V \perp \perp Y \)

Use the nested lattice pair \((\Lambda, \Lambda_0) = (\mathbb{Z}, 2\mathbb{Z})\): \(\mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}_2 \).
Randomized Encoding

At Node A:

- If $X = 0$, transmit an even integer U picked according to
 \[\Pr[U = k \mid X = 0] = p_0(k) \]
 for a pmf p_0 supported within the even integers.
- If $X = 1$, transmit an odd integer U picked according to
 \[\Pr[U = k \mid X = 1] = p_1(k) \]
 for a pmf p_1 supported within the odd integers.

At Node B:

- If $Y = b$, for $b \in \{0, 1\}$, transmit V picked according to p_b.

Additional Information

Given that:

\[p_0 + p_1 = 1 \]

The transmission probabilities at Node B can be related to those at Node A as follows:

\[p_U \mid X = 0 = p_0 \]
\[p_U \mid X = 1 = p_1 \]

Therefore, the transmission probabilities at Node B are the weighted averages of the probabilities at Node A, as given by:

\[p_U = \frac{p_0 + p_1}{2} \]
Randomized Encoding

At Node A:

- If $X = 0$, transmit an even integer U picked according to
 \[\Pr[U = k \mid X = 0] = p_0(k) \]
 for a pmf p_0 supported within the even integers.
- If $X = 1$, transmit an odd integer U picked according to
 \[\Pr[U = k \mid X = 1] = p_1(k) \]
 for a pmf p_1 supported within the odd integers.

At Node B:

- If $Y = b$, for $b \in \{0, 1\}$, transmit V picked according to p_b.

\[
\begin{align*}
p_{U \mid X=0} &= p_{V \mid Y=0} = p_0 \\
p_{U \mid X=1} &= p_{V \mid Y=1} = p_1
\end{align*}
\]

\[\implies p_U = p_V = p \triangleq \frac{1}{2}(p_0 + p_1) \]
To satisfy
\[(3) \quad U + V \perp \perp X \quad \text{and} \quad U + V \perp \perp Y \]
we need
\[
\Pr[U + V = k \mid X = a] = \Pr[U + V = k]
\]
for all \(k \in \mathbb{Z} \) and \(a \in \{0, 1\} \).

In other words, \(p_{U|X=a} \ast p_{V} = p_{U} \ast p_{V} \) for \(a \in \{0, 1\} \), i.e.,
\[
p_{0} \ast p = p_{1} \ast p = p \ast p.
\]

(Recall: \(p_{U} = p_{V} = p \triangleq \frac{1}{2}(p_{0} + p_{1}) \))
Properties Required of p_0 and p_1

To summarize, we need pmfs p_0 and p_1 such that

- p_0 is supported within the even integers,
- p_1 is supported within the odd integers

and

$$p_0 \ast p = p_1 \ast p = p \ast p,$$

where $p = \frac{1}{2}(p_0 + p_1)$.

Properties Required of p_0 and p_1

To summarize, we need pmfs p_0 and p_1 such that

- p_0 is supported within the even integers,
- p_1 is supported within the odd integers

and

$$p_0 \ast p = p_1 \ast p = p \ast p,$$

where $p = \frac{1}{2}(p_0 + p_1)$.

Let $\varphi_*(t) = \sum_{k \in \mathbb{Z}} p_*(k)e^{ikt}$ be the characteristic function of p_*. We need characteristic functions that satisfy

$$\varphi_0 \cdot \varphi = \varphi_1 \cdot \varphi = \varphi^2,$$

with $\varphi = \frac{1}{2}(\varphi_0 + \varphi_1)$.
It can be shown that

- finitely-supported p_0 and p_1 cannot have the required properties;

- in fact, light-tailed pmfs p_0 and p_1 cannot have the required properties. [M. Krishnapur]
Proposition

Let f be a pdf on \mathbb{R} whose char. function ψ is supported within $(-\pi/2, \pi/2)$, i.e., $\psi(t) = 0$ for $|t| \geq \pi/2$. For any $s \in \mathbb{R}$, define

$$
\Psi(t) = \sum_{n=-\infty}^{\infty} (-1)^{sn} \psi(t + n\pi).
$$

Then,

(a) $\Psi(t)$ is the char. function of a pmf p_s supported within the set $2\mathbb{Z} + s = \{2k + s : k \in \mathbb{Z}\}$, and

(b) for all $u \in 2\mathbb{Z} + s$, we have $p_s(u) = 2f(u)$.

The proof is based upon the Poisson summation formula of Fourier analysis.
The Basic Construction

\[\psi \xrightarrow{\mathcal{F}^{-1}} f(x) = \frac{1}{2\pi} \int \psi(t)e^{-ixt} \, dt \]

\[\varphi_{0} \xrightarrow{\mathcal{F}^{-1}} p_{0}(k) = 2f(k) \text{ for all even } k \in \mathbb{Z} \text{ (and 0 otherwise) } \]

\[\varphi_{1} \xrightarrow{\mathcal{F}^{-1}} p_{1}(k) = 2f(k) \text{ for all odd } k \in \mathbb{Z} \text{ (and 0 otherwise) } \]
The Basic Construction

\[\varphi(t) = \frac{1}{2}[\varphi_0(t) + \varphi_1(t)] \]
The Basic Construction

\[\varphi(t) = \frac{1}{2} [\varphi_0(t) + \varphi_1(t)] \]

\[\varphi_0(t) \]

\[\varphi_1(t) \]

\[\varphi^2 = \varphi \varphi_0 = \varphi \varphi_1 \]
Coding Scheme for Noiseless Setting

\[w = u + v \]

\[
\begin{array}{c}
\text{Node A} \\
X
\end{array} \quad \begin{array}{c}
\text{Node B} \\
Y
\end{array}
\]

\[
\begin{array}{c}
\text{Relay} \\
X \oplus Y
\end{array}
\]

\[w = u + v \]

\[X, Y \text{ i.i.d. Bernoulli}(1/2) \text{ rvs} \]

1. Start with a pdf \(f \) having char. func. \(\psi \) supported within \((-\pi/2, \pi/2)\).

2. Let \(p_0(k) = 2f(k) \) for even \(k \in \mathbb{Z} \), and 0 otherwise.
 Let \(p_1(k) = 2f(k) \) for odd \(k \in \mathbb{Z} \), and 0 otherwise.

3. If \(X = 0 \) (resp. \(Y = 0 \)),
 choose \(U \) (resp. \(V \)) according to the pmf \(p_0 \).
 If \(X = 1 \) (resp. \(Y = 1 \)),
 choose \(U \) (resp. \(V \)) according to the pmf \(p_1 \).
Fact

The resulting \mathbb{Z}-valued rvs U and V have finite second moment iff ψ is twice-differentiable. In this case,

$$E[U^2] = E[V^2] = -\psi''(0)$$

Thus, U and V can satisfy an average power constraint.
Example: The probability density function

\[
f(x) = \begin{cases}
\frac{1}{2\pi} & \text{if } x = 0 \\
\frac{1 - \cos x}{\pi x^2} & \text{if } x \neq 0
\end{cases}
\]

has char. function \(\hat{f}(t) = \max\{0, 1 - |t|\} \), shown below:

![Graph of \(\hat{f}(t) \)](image_url)
Example: The probability density function

\[
f(x) = \begin{cases} \frac{1}{2\pi} & \text{if } x = 0 \\ \frac{1 - \cos x}{\pi x^2} & \text{if } x \neq 0 \end{cases}
\]

has char. function \(\hat{f}(t) = \max\{0, 1 - |t|\} \), shown below:

The function \(\hat{f} \) above is not twice-differentiable. Instead, consider
\[
\psi(t) = \frac{3}{2} (\hat{f} \ast \hat{f})(t)
\]
which is supported within \((-2, 2)\).

- \(\psi \) is the char. function of a pdf
- \(\psi \) is twice-differentiable, with \(\psi''(0) = -3 \).
Secure Computation over \mathbb{G}

X, Y i.i.d. rvs unif. distrib. over an Abelian group (\mathbb{G}, \oplus) of size N.

1. Select a nested lattice pair $\Lambda_0 \subseteq \Lambda$ in \mathbb{R}^d such that $\mathbb{G} \cong \Lambda/\Lambda_0$. Let $\Lambda_0, \Lambda_1, \ldots, \Lambda_{N-1}$ be the cosets of Λ_0 in Λ.

2. Select a pdf $f : \mathbb{R}^d \to \mathbb{R}_+$ with char. func. ψ supported within a ball of radius $2\pi \rho(\Lambda_0^*)$ around the origin, where $\rho(\Lambda_0^*)$ is the packing radius of the dual of Λ_0.

3. For $j = 0, 1, \ldots, N - 1$, define

$$p_j(k) = \text{vol}(\mathcal{V}(\Lambda_0)) f(k) \text{ for } k \in \Lambda_j; \text{ and } 0 \text{ otherwise}$$
If $X = \Lambda_j$ (resp. $Y = \Lambda_j$), choose $u \in \Lambda_j$ (resp. $v \in \Lambda_j$) according to the pmf p_j.

Fact

The resulting Λ-valued rvs u and v have finite second moment iff ψ is twice-differentiable. In this case,

$$
\mathbb{E}\|u\|^2 = \mathbb{E}\|v\|^2 = -\Delta \psi(0),
$$

where $\Delta = \sum_{j=1}^d \partial_j^2$ denotes the Laplacian operator.
Let j_k denote the first positive zero of the Bessel function J_k.

Theorem (Ehm, Gneiting and Richards (2004))

If $\psi : \mathbb{R}^d \rightarrow \mathbb{C}$ is a characteristic function supported within a ball of radius ρ around the origin, then

$$-\Delta \psi(0) \geq \frac{4}{\rho^2} j_{d-2}^2$$

(1)

with equality iff $\psi(t)$ equals a certain $\psi^*(t)$.
The EGR Theorem

Let j_k denote the first positive zero of the Bessel function J_k.

Theorem (Ehm, Gneiting and Richards (2004))

If $\psi : \mathbb{R}^d \rightarrow \mathbb{C}$ is a characteristic function supported within a ball of radius ρ around the origin, then

$$-\Delta \psi(0) \geq \frac{4}{\rho^2} \frac{j_{d-2}^2}{2}$$

with equality iff $\psi(t)$ equals a certain $\psi^*(t)$.

Therefore, the *tightest* average power constraint that the Λ-valued rvs u and v can satisfy is

$$\frac{1}{d} \mathbb{E}\|u\|^2 = \frac{1}{d} \mathbb{E}\|v\|^2 \leq \mathcal{P}(\Lambda_0) := \frac{1}{d \pi^2 \rho(\Lambda_0^*)^2} \frac{j_{d-2}^2}{2}$$
Coding Scheme for Noisy Setting

\(X, Y \) i.i.d. rvs unif. distrib. over an Abelian group \((G, \oplus)\) of size \(N\).

Encoding:

As described for secure computation in the noiseless setting

Decoding:

1. Find the closest lattice point \(\lambda \in \Lambda\) to the received vector \(w\).
2. Decode to the coset \(\Lambda_j\) to which \(\lambda\) belongs.
Perfect Secrecy: As noise z is independent of everything else, we still have

$w \perp \perp X$ and $w \perp \perp Y$
Perfect Secrecy: As noise z is independent of everything else, we still have

$$w \perp X \text{ and } w \perp Y$$

Reliability: There exist “good” nested lattice pairs $\Lambda_0 \subseteq \Lambda$ in \mathbb{R}^d for which the resulting coding schemes

- have rate

$$R \approx \frac{1}{2} \log_2 \left(\frac{\bar{\rho}(\Lambda_0)^2}{d\sigma^2} \right),$$

where $\bar{\rho}(\Lambda_0)$ is the covering radius of Λ_0; and

- compute $X \oplus Y$ within $G = \Lambda/\Lambda_0$ arbitrarily reliably
Perfect Secrecy: As noise \mathbf{z} is independent of everything else, we still have

$$\mathbf{w} \perp \mathbf{X} \text{ and } \mathbf{w} \perp \mathbf{Y}$$

Reliability: There exist “good” nested lattice pairs $\Lambda_0 \subseteq \Lambda$ in \mathbb{R}^d for which the resulting coding schemes

- have rate

$$R \approx \frac{1}{2} \log_2 \left(\frac{\bar{\rho}(\Lambda_0)^2}{d\sigma^2} \right),$$

where $\bar{\rho}(\Lambda_0)$ is the covering radius of Λ_0; and

- compute $\mathbf{X} \oplus \mathbf{Y}$ within $\mathbb{G} = \Lambda/\Lambda_0$ arbitrarily reliably

Average Power Constraint:

$$\frac{1}{d} \mathbb{E} \| \mathbf{u} \|^2 = \frac{1}{d} \mathbb{E} \| \mathbf{v} \|^2 \leq \mathcal{P}(\Lambda_0) := \frac{1}{d \pi^2 \bar{\rho}(\Lambda_0^*)^2} \frac{j_{d-2}^2}{2}$$
Achievable Rate for Coding Scheme

For sufficiently large d, the coarse lattice Λ_0 in \mathbb{R}^d can be chosen so that

- $\bar{\rho}(\Lambda_0) \approx \frac{1}{2e} \sqrt{dP}$ and $\rho(\Lambda_0) \approx \frac{d}{4\pi e} \bar{\rho}(\Lambda_0)$

Also,

- $j_{\frac{d-2}{2}} = \frac{d}{2} [1 + o(1)]$

Theorem (Shashank-K.-Thangaraj (2013))

Reliable and perfectly secure computation of $X \oplus Y$ at the relay is possible (for suitably defined \oplus) at any rate R up to

$$\frac{1}{2} \log_2 \left(\frac{P}{4e^2 \sigma^2} \right)$$

under an average power constraint P.
Achievable Rate for Coding Scheme

For sufficiently large d, the coarse lattice Λ_0 in \mathbb{R}^d can be chosen so that

- $\bar{\rho}(\Lambda_0) \approx \frac{1}{2e} \sqrt{dP}$ and $\rho(\Lambda_0^*) \approx \frac{d}{4\pi e} \frac{1}{\bar{\rho}(\Lambda_0)}$

Also,

- $j_{d-2} = \frac{d}{2} [1 + o(1)]$

Theorem (Shashank-K.-Thangaraj (2013))

Reliable and perfectly secure computation of $X \oplus Y$ at the relay is possible (for suitably defined \oplus) at any rate R up to

$$\frac{1}{2} \log_2 \left(\frac{P}{4e^2 \sigma^2} \right)$$

under an average power constraint P.

Open question: Is this the best one can do?
Higher achievable rates? This question is restricted to coding schemes in which randomization is via pmfs obtained by sampling pdfs at lattice points.

Converse bounds. No upper bound better than \(\frac{1}{2} \log_2 \left(1 + \frac{P}{\sigma^2} \right) \) is known for achievable rates for reliable computation at the relay even without secrecy.

Low-complexity decoding. Nearest lattice point decoding is computationally hard.