We are not afraid of colliding

Matteo Berioli, matteo.berioli@dlr.de

with Federico Clazzer, Christian Kissling

Institute for Communications and Navigation
German Aerospace Center, DLR
Outline

1. Background
2. Contention Resolution ALOHA (CRA)
3. Enhanced Contention Resolution ALOHA (ECRA)
4. Stability of CRDSA
5. Real-life systems
6. Conclusions
Outline

1 Background

2 Contention Resolution ALOHA (CRA)

3 Enhanced Contention Resolution ALOHA (ECRA)

4 Stability of CRDSA

5 Real-life systems

6 Conclusions
Random Access Schemes Overview

- Slotted ALOHA (SA) [Abramson1970] is currently adopted as the initial access scheme in both cellular terrestrial and satellite communication networks.

- A more efficient use of the packet repetition is provided by contention resolution diversity slotted ALOHA (CRDSA) [Casini2007].

- A generalization of CRDSA is represented by irregular repetition slotted ALOHA (IRSA) [Liva2011].

- A generalization of CRDSA/IRSA for “fractional” number of replicas is represented by coded slotted ALOHA (CSA) [Paolini2011].

A few unslotted schemes on the same line were also developed by DLR.

Random Access Schemes Overview

- Slotted ALOHA (SA) [Abramson1970] is currently adopted as the initial access scheme in both cellular terrestrial and satellite communication networks.

- A more efficient use of the packet repetition is provided by contention resolution diversity slotted ALOHA (CRDSA) [Casini2007].

- A generalization of CRDSA is represented by irregular repetition slotted ALOHA (IRSA) [Liva2011].

- A generalization of CRDSA/IRSA for “fractional” number of replicas is represented by coded slotted ALOHA (CSA) [Paolini2011].

A few unslotted schemes on the same line were also developed by DLR.

Random Access Schemes Overview

- Slotted ALOHA (SA) [Abramson1970] is currently adopted as the initial access scheme in both cellular terrestrial and satellite communication networks.
- A more efficient use of the packet repetition is provided by contention resolution diversity slotted ALOHA (CRDSA) [Casini2007].
- A generalization of CRDSA is represented by irregular repetition slotted ALOHA (IRSA) [Liva2011].
- A generalization of CRDSA/IRSA for “fractional” number of replicas is represented by coded slotted ALOHA (CSA) [Paolini2011].

A few unslotted schemes on the same line were also developed by DLR.

Random Access Schemes Overview

- Slotted ALOHA (SA) [Abramson1970] is currently adopted as the initial access scheme in both cellular terrestrial and satellite communication networks.
- A more efficient use of the packet repetition is provided by contention resolution diversity slotted ALOHA (CRDSA) [Casini2007].
- A generalization of CRDSA is represented by irregular repetition slotted ALOHA (IRSA) [Liva2011].
- A generalization of CRDSA/IRSA for “fractional” number of replicas is represented by coded slotted ALOHA (CSA) [Paolini2011].

A few unslotted schemes on the same line were also developed by DLR.

Contestation Resolution Diversity Slotted ALOHA (CRDSA)

- Each user sends two replicas of the same packet in the same frame.
- Each of the transmitted twin replicas has a pointer to the slot position where the respective copy was sent.
- Idea: adopt interference cancellation (IC) to resolve collisions.
 - If a packet replica is detected and successfully decoded, the pointer is extracted and the interference contribution caused by the packet replica on the corresponding slot is removed.
 - Procedure iterated, hopefully yielding the recovery of the whole set of packets transmitted within the same MAC frame.
- Peak normalized throughput:
 \[T \simeq 0.55 \] (CRDSA with 2 replicas) and
 \[T \simeq 0.68 \] (CRDSA with 4 replicas)
 versus \(T = \frac{1}{e} \simeq 0.37 \) achieved by SA.
Outline

1 Background

2 Contention Resolution ALOHA (CRA)

3 Enhanced Contention Resolution ALOHA (ECRA)

4 Stability of CRDSA

5 Real-life systems

6 Conclusions
CRDSA and CRA Examples
CRA Performance

uncoded CRA: Packet reception is successful if one fully interference-free replica is received.
CRA Performance

coded CRA: QPSK with an LDPC (1024,512), SNR=10 dB
One replica may still be decoded if partly interfered (depending on the code)
CRA Performance

- For unslotted schemes, there is a trade-off between throughput and spectral efficiency, η:
 - lowering η (w.r.t. channel capacity) brings more robustness to interference (collisions), and thus increases the throughput,
 - the optimal η depends on the SNR.
- Let’s consider a benchmark threshold, from the Shannon bound computed over portions of the packet with uniform SN(I)R:
 $$C(x) = (1 - x) \log_2(1 + \text{SNR}) + x \log_2(1 + \text{SNIR})$$
 where x is the fraction of the packet interfered by 1 user with same TX power.
Outline

1. Background
2. Contention Resolution ALOHA (CRA)
3. Enhanced Contention Resolution ALOHA (ECRA)
4. Stability of CRDSA
5. Real-life systems
6. Conclusions
Coded slotted ALOHA (CSA) and ECRA Examples
ECRA Performance

- Different techniques are possible to encode/decode the replicas:
 - Selection Combining (SC),
 - Maximum-Ratio Combining (MRC),
 - Single codeword split over multiple packets,
 - Pkt-level code over the replicas (ECRA+?).

- Gains depend on η and SNR.

- For some schemes there is an additional coding gain.
CRA and ECRA: Summary

- CRDSA and IRSA exploit repetitions and SIC in the slotted case.
- CSA builds codewords over multiple packets/slots and attempts decoding, even if some packets/slots are erased.
- It is possible, by means of Graph-Based Density Evolution Analysis, to derive a Capacity Bound, i.e. the maximum reliable throughput for a given repetition rate [PaoliniLiva2011].
- CRA and Irregular-Repetition CRA (IRCRA) exploit repetitions and SIC in the unslotted case.
- ECRA(+) breaks one (or builds pkt-level) codeword over multiple unslotted replicas, and attempts joint decoding over them (pkts may be partially interfered).
- Is it possible to derive a dual model for the unslotted case?

CRA and ECRA: Summary

- CRDSA and IRSA exploit repetitions and SIC in the slotted case.

- CSA builds codewords over multiple packets/slots and attempts decoding, even if some packets/slots are erased.

- It is possible, by means of Graph-Based Density Evolution Analysis, to derive a Capacity Bound, i.e. the maximum reliable throughput for a given repetition rate [PaoliniLiva2011].

- CRA and Irregular-Repetition CRA (IRCRA) exploit repetitions and SIC in the unslotted case.

- ECRA(+) breaks one (or builds pkt-level) codeword over multiple unslotted replicas, and attempts joint decoding over them (pkts may be partially interfered).

- Is it possible to derive a dual model for the unslotted case?

CRA and ECRA: Summary

- CRDSA and IRSA exploit repetitions and SIC in the slotted case.
- CSA builds codewords over multiple packets/slots and attempts decoding, even if some packets/slots are erased.
- It is possible, by means of Graph-Based Density Evolution Analysis, to derive a Capacity Bound, i.e. the maximum reliable throughput for a given repetition rate [PaoliniLiva2011].
- CRA and Irregular-Repetition CRA (IRCRA) exploit repetitions and SIC in the unslotted case.
- ECRA(+) breaks one (or builds pkt-level) codeword over multiple unslotted replicas, and attempts joint decoding over them (pkts may be partially interfered).
- Is it possible to derive a dual model for the unslotted case?

Outline

1. Background
2. Contention Resolution ALOHA (CRA)
3. Enhanced Contention Resolution ALOHA (ECRA)
4. Stability of CRDSA
5. Real-life systems
6. Conclusions
CRDSA with retransmissions

- Retransmission (ReTx) mechanism ensure a reliable packet delivery, but create *instability* problems.
- New (*fresh*) transmissions occur with probability p_0.
- Retransmission occur with probability p_r in every transmission opportunity (geometric distribution).
- We have finite user population M, and frames of N_S slots.
- Total load determined by two components:
 - Fresh offered traffic fluctuates statistically;
 - Retransmissions add on top of fresh transmissions (backlogged traffic).
- Question: How are the stability properties of CRDSA w.r.t. slotted ALOHA? Is the gain in throughput achieved at the cost of stability?
CRDSA with retransmissions

- Let us define a Markov chain with state variable, $X_B(l)$, the number of users in backlog at time l.
- The major differences to the slotted ALOHA (SA) analysis by Kleinrock are:
 - We don’t have a closed-form expression for the throughput,
 - In SA the number of backlogged users, X_B can decrease of 1 per slot, in CRDSA of more than 1.
- We are interested in the drift, $d(x_B) = \mathbb{E}\{X_B(l+1) - X_B(l) | X_B(l) = x_B\}$.
- It is:
 $$d(x_B) = \mathbb{E}\{\Phi\} - \mathbb{E}\{\Upsilon\}$$
 where Φ is the number of fresh transmissions, and Υ is the number of successful transmissions, per frame.
- Then:
 $$d(x_B) = (M - x_B)p_0 - N_ST(G(x_B))$$
 where $G(x_B) = (M - x_B)p_0 + x_Bp_r$.
CRDSA with retransmissions
Retransmissions: CRDSA vs. SA

Select optimum p_r such to:

- Minimize the average delay D^x_b, for fixed user population M and fixed p_0
- Maximize the size of the user population M, for fixed p_0 and average delay D_b
- Maximize the supported p_0, for fixed M and D_b
Outline

1 Background
2 Contention Resolution ALOHA (CRA)
3 Enhanced Contention Resolution ALOHA (ECRA)
4 Stability of CRDSA
5 Real-life systems
6 Conclusions
Automatic Identification System (AIS)

- Designed in the 90’s to identify vessels, in order to improve safety and sea surveillance.
- Physical layer: 2 VHF channels ~ 160 MHz, with 9.6 Kbit/s bit rate, GMSK, no FEC.
- MAC: mainly based on Self-Organized TDMA (SOTDMA), clusters of transmitters can prevent collisions, hidden terminal problem remains, but unlikely.
- Range up to ~ 70 Km: designed for ship-to-ship or ship-to-shore communications.
- Today a few satellites exist that listen to AIS messages:
 - Vesselsat, 3 satellites (Luxspace/Orbcomm),
 - AISSat-1 (Norwegian),
 - Canadian-based exactEarth operates the largest network (5 satellites),
 - AAUSAT3, a cubesat from Aalborg Univ. (Denmark), with a traditional and an SDR-based receiver,
 - DLR AISat, with an helical antenna, to be launched in 2014,
 - ...
Automatic Identification System (AIS)

- At the satellite AIS traffic is seen as a Slotted ALOHA channel [Clazzer2014].
- A wide range of MAC channel load is perceived by a LEO satellite along its orbit.
- High-load regions (i.e. densely ship populated area) translate into poor tracking frequency for the vessels.
- Optimization of AIS-pkt transmission rates is possible, to maximizes the tracking frequency from the satellite (exploiting simple properties of SA).

![Graph showing channel load vs throughput]

Heinrich Herz Satellite (H2Sat)

- Features:
 - Geostationary Satellite, being developed under German funding (DLR)
 - Ka band (∼ 30 GHz uplink, ∼ 20 GHz downlink)
 - Launch expected beginning 2017
- The availability of a small On-Board Processing (OBP) payload is under study:
 - Reconfigurable for different experiments,
 - A/D & D/A-converters, Memory, Processor,
 - Temporarily switchable to transparent Transponder,
 - operating under real Ka-band conditions.
Other systems

- Cubesats (currently 133 on Wikipedia, counting planned, launched, and under development),
 - started in 1999 by California Polytechnic State University (Cal Poly) and Stanford University, with the idea to standardize a picosat shape to fit in a given Orbital Deployer (10 x 10 x 30 cm),
 - very cheap to develop (many COTS components available), and to launch (standard shape), a few months of life can be considered for a well-developed one,
 - easy and exciting way to have a on-field test of communication system, a few SDR-based ones are already flying.

- Global Sensor Network, funded by the Australian Space Research Program (ASRP):
 - Project awarded to Prof. Alex Grant, Univ. of South Australia, Institute forTelecommunications Research.
Outline

1 Background
2 Contention Resolution ALOHA (CRA)
3 Enhanced Contention Resolution ALOHA (ECRA)
4 Stability of CRDSA
5 Real-life systems
6 Conclusions
Conclusion

- Novel schemes for the unslotted Aloha show promising performance.
- The trade-off between spectral efficiency and throughput is not fully understood, yet.
- A comprehensive analysis from a theoretical point of view would be desirable (in a way similar to what was done for the slotted cases?).
- There are a number of (satellite) systems where these schemes would be good candidate solutions, and a few scenarios that would allow their (SDR-based) implementation and test under real conditions.
References

谢谢

Thank you!