Chapter 6
Strong Typicality

© Raymond W. Yeung 2014
The Chinese University of Hong Kong
6.1 Strong AEP
Setup

- $\{X_k, k \geq 1\}, \ X_k \text{ i.i.d. } \sim p(x)$.
Setup

- $\{X_k, k \geq 1\}$, X_k i.i.d. $\sim p(x)$.
- X denotes generic r.v. with entropy $H(X) < \infty$.
Setup

- \{X_k, k \geq 1\}, X_k \text{ i.i.d. } \sim p(x).
- X \text{ denotes generic r.v. with entropy } H(X) < \infty.
- \mathbf{X} = (X_1, X_2, \cdots, X_n). \text{ Then }

\[p(\mathbf{X}) = p(X_1)p(X_2)\cdots p(X_n). \]
Setup

- \(\{X_k, k \geq 1\}, X_k \) i.i.d. \(\sim p(x) \).
- \(X \) denotes generic r.v. with entropy \(H(X) < \infty \).
- \(X = (X_1, X_2, \cdots, X_n) \). Then
 \[
p(X) = p(X_1)p(X_2)\cdots p(X_n).
 \]
- Assume \(|\mathcal{X}| < \infty \).
Setup

- \(\{X_k, k \geq 1\}, X_k \text{ i.i.d. } \sim p(x) \).
- \(X \) denotes generic r.v. with entropy \(H(X) < \infty \).
- \(X = (X_1, X_2, \ldots, X_n) \). Then
 \[
p(X) = p(X_1)p(X_2)\cdots p(X_n).
 \]
- Assume \(|\mathcal{X}| < \infty \).
- Let the base of the logarithm be 2, i.e., \(H(X) \) is in bits.
Notation

• Consider $x \in \mathcal{X}^n$.
Notation

- Consider $x \in \mathcal{X}^n$.
- Let $N(x; x)$ be the number of occurrences of x in the sequence x.

Notation Example

Let $x = (1, 3, 2, 1, 1)$.

- $N(1; x) = 3$, $N(2; x) = N(3; x) = 1$.

The empirical distribution of x is $\frac{3}{5}$, $\frac{1}{5}$, $\frac{1}{5}$.
Notation

- Consider $\mathbf{x} \in \mathcal{X}^n$.
- Let $N(x; \mathbf{x})$ be the number of occurrences of x in the sequence \mathbf{x}.
- $n^{-1}N(x; \mathbf{x})$ is the relative frequency of x in \mathbf{x}.
Notation

- Consider $x \in \mathcal{X}^n$.
- Let $N(x; x)$ be the number of occurrences of x in the sequence x.
- $n^{-1}N(x; x)$ is the relative frequency of x in x.
- $\{n^{-1}N(x; x) : x \in \mathcal{X}\}$ is the empirical distribution of x.
Notation

- Consider $x \in \mathcal{X}^n$.
- Let $N(x; x)$ be the number of occurrences of x in the sequence x.
- $n^{-1}N(x; x)$ is the relative frequency of x in x.
- $\{n^{-1}N(x; x) : x \in \mathcal{X}\}$ is the empirical distribution of x.

Example Let $x = (1, 3, 2, 1, 1)$.
- $N(1; x) = 3$, $N(2; x) = N(3; x) = 1$
- The empirical distribution of x is $\{\frac{3}{5}, \frac{1}{5}, \frac{1}{5}\}$.
Definition 6.1 The strongly typical set $T_{[X]_{\delta}}^n$ with respect to $p(x)$ is the set of sequences $\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathcal{X}^n$ such that

$$N(x; \mathbf{x}) = 0 \text{ for } x \notin S_X$$

and

$$\sum_x \left| \frac{1}{n}N(x; \mathbf{x}) - p(x) \right| \leq \delta,$$

where δ is an arbitrarily small positive real number. The sequences in $T_{[X]_{\delta}}^n$ are called strongly δ-typical sequences.

Remarks
Definition 6.1 The strongly typical set $T^n_{[X] \delta}$ with respect to $p(x)$ is the set of sequences $x = (x_1, x_2, \cdots, x_n) \in \mathcal{X}^n$ such that

$$N(x; x) = 0 \quad \text{for } x \notin S_X$$ \hspace{1cm} (1)

and

$$\sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta,$$

where δ is an arbitrarily small positive real number. The sequences in $T^n_{[X] \delta}$ are called strongly δ-typical sequences.

Remarks

- If $\sum_x |n^{-1} N(x; x) - p(x)|$ is small, then so is $|n^{-1} N(x; x) - p(x)|$ for every $x \in \mathcal{X}$.

Definition 6.1 The strongly typical set $T_{[X] \delta}^n$ with respect to $p(x)$ is the set of sequences $x = (x_1, x_2, \cdots, x_n) \in \mathcal{X}^n$ such that

$$N(x; x) = 0 \quad \text{for } x \notin S_X$$

and

$$\sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta,$$

where δ is an arbitrarily small positive real number. The sequences in $T_{[X] \delta}^n$ are called strongly δ-typical sequences.

Remarks

- If $\sum_x \left| n^{-1} N(x; x) - p(x) \right|$ is small, then so is $\left| n^{-1} N(x; x) - p(x) \right|$ for every $x \in \mathcal{X}$.

- In other words, $n^{-1} N(x; x) \approx p(x)$ for all $x \in \mathcal{X}$.

Definition 6.1 The strongly typical set $T^n_{[X]\delta}$ with respect to $p(x)$ is the set of sequences $\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathcal{X}^n$ such that

$$N(x; \mathbf{x}) = 0 \quad \text{for } x \notin \mathcal{S}_X$$

and

$$\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \leq \delta,$$

where δ is an arbitrarily small positive real number. The sequences in $T^n_{[X]\delta}$ are called strongly δ-typical sequences.

Remarks

- If $\sum_x |n^{-1}N(x; \mathbf{x}) - p(x)|$ is small, then so is $|n^{-1}N(x; \mathbf{x}) - p(x)|$ for every $x \in \mathcal{X}$.

- In other words, $n^{-1}N(x; \mathbf{x}) \approx p(x)$ for all $x \in \mathcal{X}$.

- Therefore, if \mathbf{x} is strongly typical, the empirical distribution of \mathbf{x} is approximately equal to the generic distribution $p(x)$.
Definition 6.1 The strongly typical set $T^n_{[X]δ}$ with respect to $p(x)$ is the set of sequences $x = (x_1, x_2, \cdots, x_n) \in \mathcal{X}^n$ such that

$$N(x; x) = 0 \quad \text{for} \ x \notin S_X$$

and

$$\sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta,$$

where $δ$ is an arbitrarily small positive real number. The sequences in $T^n_{[X]δ}$ are called strongly $δ$-typical sequences.

Remarks

• If $\sum_x |n^{-1}N(x; x) - p(x)|$ is small, then so is $|n^{-1}N(x; x) - p(x)|$ for every $x \in \mathcal{X}$.

• In other words, $n^{-1}N(x; x) \approx p(x)$ for all $x \in \mathcal{X}$.

• Therefore, if x is strongly typical, the empirical distribution of x is approximately equal to the generic distribution $p(x)$.

• If x is strongly typical, then $p(x_k) > 0$ for all k because of (1).
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x^2 \in T_n[X]$, then
 $$n\left(H(X) + \eta\right) \leq p(x) \leq n\left(H(X) + \eta\right).$$

2) For n sufficiently large,
 $$\Pr\{X^2 \in T_n[X]\} > 1.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]_\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]_\delta}\} > 1 - \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T_{[X,\delta]}^n$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

2) For n sufficiently large,

$$\Pr\{X \in T_{[X,\delta]}^n\} > 1 - \delta.$$

3) For n sufficiently large,

$$(1 - \delta)2^{n(H(X)-\eta)} \leq |T_{[X,\delta]}^n| \leq 2^{n(H(X)+\eta)}.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]_\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof Idea
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof Idea

- If x is strongly typical, then the empirical distribution is “about right”.

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]_δ}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof Idea

- If x is strongly typical, then the empirical distribution is “about right”.
- If the empirical distribution is about right, then everything else, including the empirical entropy, would be about right, i.e.,

$$-\frac{1}{n} \log p(x) \approx H(X).$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]_\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof Idea

- If x is strongly typical, then the empirical distribution is “about right”.

- If the empirical distribution is about right, then everything else, including the empirical entropy, would be about right, i.e.,

$$-\frac{1}{n} \log p(x) \approx H(X).$$

- This is equivalent to $p(x) \approx 2^{-nH(X)}$.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n[X]^{\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \not\in S_X$. Then
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T_{[X]}^n$, then

\[2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)−\eta)}. \]

Proof

1. To prove Property 1, for $x \in T_{[X]}^n$, we have

\[p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^N(x;x) > 0 \]

because $N(x;x) = 0$ for all $x \notin S_X$. Then
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $\mathbf{x} \in T_n[X]_{\delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T_n[X]_{\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^N(x; \mathbf{x}) > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

1) If \(x \in T_{[X]}^n \), then

\[
2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.
\]

Proof

1. To prove Property 1, for \(x \in T_{[X]}^n \), we have

\[
p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0
\]

because \(N(x;x) = 0 \) for all \(x \not\in S_X \). Then

\[
\log p(x)
\]
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; x) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T_n^r$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T_n^r$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S^r_X} p(x) N(x;\mathbf{x}) > 0$$

because $N(x;\mathbf{x}) = 0$ for all $x \notin S^r_X$. Then

$$\log p(x) = \sum_{x} N(x;\mathbf{x}) \log p(x)$$

Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x) = \sum_{x} N(x; x) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T_n^{[X]}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T_n^{[X]}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^N(x;\mathbf{x}) > 0$$

because $N(x;\mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$\log p(x) = \sum_x N(x;\mathbf{x}) \log p(x)$$

$$= \sum_x (N(x;\mathbf{x}) - np(x) + np(x)) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]*}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X]*}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]_\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X]_\delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^N(x;x) > 0$$

because $N(x;x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^N(x; x) > 0$$

because $N(x; x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; x) \log p(x)$$

$$= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $\mathbf{x} \in T^n[X]$, then

$$2^{-n(H(X)+\eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n[X]$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x;\mathbf{x}) = 0$ for all $x \notin S_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_x N(x;\mathbf{x}) \log p(x)$$

$$= \sum_x (N(x;\mathbf{x}) - np(x) + np(x)) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

1) If \(x \in T^n_{\X} \), then

\[
2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.
\]

Proof

1. To prove Property 1, for \(x \in T^n_{\X} \), we have

\[
p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\x)} > 0
\]

because \(N(x;\x) = 0 \) for all \(x \not\in \S_X \). Then

\[
\log p(x) = \sum_x N(x;\x) \log p(x)
\]

\[
= \sum_x (N(x;\x) - np(x) + np(x)) \log p(x)
\]

\[
= n \sum_x p(x) \log p(x)
\]
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X]}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x) = \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; \mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_{x} N(x; \mathbf{x}) \log p(x)$$

$$= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X]}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x))$$

where $\eta > 0$ as $\eta \to 0$, proving Property 1.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (- \log p(x)).$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; x) \log p(x)$$

$$= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))$$

where $\eta \to 0$ as $\delta \to 0$, proving Property 1.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]^{\delta}}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X]^{\delta}}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (\log p(x))$$

$$= \sum_{x \in S_X} p(x) \log p(x)$$

$$- n \sum_{x \notin S_X} \left(\frac{1}{n} N(x;x) - p(x) \right) (\log p(x))$$

$$\leq 2^{-n(H(X)+\eta)} \leq 2^{-n(H(X)-\eta)}.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T_n^{[X]_\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T_n^{[X]_\delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; x) \log p(x)$$

$$= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:
1) If $x \in T_{[X]}^{\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof
1. To prove Property 1, for $x \in T_{[X]}^{\delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; \mathbf{x}) \log p(x)$$

$$= \sum_x (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x))$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \not\in S_X$. Then

\[
\log p(x) = \sum_x N(x; x) \log p(x)
= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)
= n \sum_x p(x) \log p(x)
- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (-\log p(x))
= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (-\log p(x)) \right].
\]

(1)
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X]}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x;x) - p(x)\right)(-\log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x;x) - p(x)\right)(-\log p(x))\right].$$

(1)
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T_n^{[X]}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T_n^{[X]}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$= -n \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x)) \right].$$

(1)
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; x) \log p(x)$$

$$= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x)) \right].$$

(1)
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T_{[X]}^{n}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T_{[X]}^{n}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x) = \sum_x N(x; x) \log p(x)$$

$$= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x)) \right].$$

(1)

2. Since $x \in T_{[X]}^{n}$,
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X]\delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^N(x;x) > 0$$

because $N(x;x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n}N(x;x) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n}N(x;x) - p(x) \right) (- \log p(x)) \right] .$$

(1)

2. Since $x \in T^n_{[X]\delta}$,

$$\sum_x \left| \frac{1}{n}N(x;x) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; x) \log p(x)$$

$$= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x)) \right] \quad (1)$$

2. Since $x \in T^n_{[X] \delta}$,

$$\sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $\mathbf{x} \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X] \delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^N(x; \mathbf{x}) > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_x N(x; \mathbf{x}) \log p(x)$$

$$= \sum_x (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x)) \right].$$

(1)

2. Since $\mathbf{x} \in T^n_{[X] \delta}$,

$$\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X]\delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x)) \right].$$

(1)

Now consider

$$\sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x))$$

$$\leq \sum_x \frac{1}{n} N(x;x) - p(x) (-\log p(x))$$

$$\leq \delta.$$

2. Since $x \in T^n_{[X]\delta}$,

$$\sum_x \left| \frac{1}{n} N(x;x) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{X, \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{X, \delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; x) \log p(x)$$

$$= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x)) \right].$$

(1)

2. Since $x \in T^n_{X, \delta}$,

$$\sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta.$$

Now consider

$$\sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))$$

$$\leq \sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| (- \log p(x))$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; x) \log p(x)$$

$$= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x)) \right].$$

(1)

2. Since $x \in T^n_{[X] \delta}$,

$$\sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x; x) \log p(x)$$

$$= \sum_x (N(x; x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) \left(- \log p(x) \right)$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) \left(- \log p(x) \right) \right].$$

(1)

2. Since $x \in T^n_{[X] \delta}$,

$$\sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_\delta$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_\delta$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^N(x;x) > 0$$

because $N(x;x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_{x} N(x;x) \log p(x)$$

$$= \sum_{x} (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$- n \sum_{x} \left(\frac{1}{n} N(x;x) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x;x) - p(x) \right) (- \log p(x)) \right].$$

(1)

2. Since $x \in T^n_\delta$,

$$\sum_{x} \left| \frac{1}{n} N(x;x) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^X_\delta^n$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^X_\delta^n$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x;\mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;\mathbf{x}) \log p(x)$$

$$= \sum_x (N(x;\mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x;\mathbf{x}) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x;\mathbf{x}) - p(x) \right) (- \log p(x)) \right].$$

(1)

2. Since $x \in T^X_\delta^n$,

$$\sum_x \left| \frac{1}{n} N(x;\mathbf{x}) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $\mathbf{x} \in T_n[X]$, then

$$2^{-n(H(X)+\eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T_n[X]$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; \mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \notin S_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_x N(x; \mathbf{x}) \log p(x)$$

$$= \sum_x (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$-n \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) \left(- \log p(x) \right)$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) \left(- \log p(x) \right) \right].$$

(1)

2. Since $\mathbf{x} \in T_n[X]$,

$$\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

1) If \(\mathbf{x} \in T^n_{[X] \delta} \), then

\[
2^{-n(H(X)+\eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}.
\]

Proof

1. To prove Property 1, for \(\mathbf{x} \in T^n_{[X] \delta} \), we have

\[
p(\mathbf{x}) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; \mathbf{x})} > 0
\]

because \(N(x; \mathbf{x}) = 0 \) for all \(x \not\in S_X \). Then

\[
\log p(\mathbf{x})
\]

\[
= \sum_{x} N(x; \mathbf{x}) \log p(x)
\]

\[
= \sum_{x} (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)
\]

\[
= n \sum_{x} p(x) \log p(x)
\]

\[
- n \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x))
\]

\[
= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x)) \right].
\]

(1)

2. Since \(\mathbf{x} \in T^n_{[X] \delta} \),

\[
\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \leq \delta.
\]

Now consider

\[
\left| \sum_{x} \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x)) \right|
\]

\[
\leq \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (- \log p(x))
\]

\[
\leq - \log \left(\min_{x} p(x) \right) \sum_{x} \frac{1}{n} N(x; \mathbf{x}) - p(x)
\]

\[
\leq - \delta \log \left(\min_{x} p(x) \right)
\]

\[
= \eta,
\]

where

\[
\eta = - \delta \log \left(\min_{x} p(x) \right) > 0.
\]
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T_{[X]}^n$, then

\[2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}. \]

Proof

1. To prove Property 1, for $x \in T_{[X]}^n$, we have

\[p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0 \]

because $N(x;x) = 0$ for all $x \not\in S_X$. Then

\[
\log p(x) = \sum_x N(x; x) \log p(x) \\
= \sum_x (N(x; x) - np(x) + np(x)) \log p(x) \\
= n \sum_x p(x) \log p(x) \\
= -n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (-\log p(x)) \\
= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (-\log p(x)) \right].
\]

(1)

2. Since $x \in T_{[X]}^n$,

\[\sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta. \]

Now consider

\[
\left| \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (-\log p(x)) \right| \\
\leq \sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| (-\log p(x)) \\
\leq -\log \left(\min_x p(x) \right) \sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \\
\leq -\delta \log \left(\min_x p(x) \right) \\
= \eta,
\]

where

\[\eta = -\delta \log \left(\min_x p(x) \right) > 0. \]
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^{n}_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^{n}_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0$$

because $N(x; x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x)$$

$$= \sum_{x} N(x; x) \log p(x)$$

$$= \sum_{x} (N(x; x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_{x} p(x) \log p(x)$$

$$- n \sum_{x} \left(\frac{1}{n} N(x; x) - p(x) \right) \left(-\log p(x) \right)$$

$$= -n \left[H(X) + \sum_{x} \left(\frac{1}{n} N(x; x) - p(x) \right) \left(-\log p(x) \right) \right].$$

(1)

2. Since $x \in T^{n}_{[X] \delta}$,

$$\sum_{x} \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

1) If \(x \in T^n_{[X] \delta} \), then

\[
2^{-n(H(X) + \eta)} \leq p(x) \leq 2^{-n(H(X) - \eta)}.
\]

Proof

1. To prove Property 1, for \(x \in T^n_{[X] \delta} \), we have

\[
p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; x)} > 0
\]

because \(N(x; x) = 0 \) for all \(x \notin S_X \). Then

\[
\log p(x) = \sum_x N(x; x) \log p(x)
\]

\[
= \sum_x (N(x; x) - np(x) + n p(x)) \log p(x)
\]

\[
= n \sum_x p(x) \log p(x)
\]

\[
- n \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))
\]

\[
= - n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x)) \right]
\]

(1)

2. Since \(x \in T^n_{[X] \delta} \),

\[
\sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| \leq \delta.
\]

Now consider

\[
\sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x))
\]

\[
\leq \sum_x \left| \frac{1}{n} N(x; x) - p(x) \right| (- \log p(x))
\]

\[
\leq - \log \left(\min_x p(x) \right) \sum_x \left| \frac{1}{n} N(x; x) - p(x) \right|
\]

\[
\leq - \delta \log \left(\min_x p(x) \right)
\]

\[
= \eta,
\]

where

\[
\eta = - \delta \log \left(\min_x p(x) \right) > 0.
\]

3. Therefore,

\[
- \eta \leq \sum_x \left(\frac{1}{n} N(x; x) - p(x) \right) (- \log p(x)) \leq \eta.
\]
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in S_X} p(x)^N(x;x) > 0$$

because $N(x;x) = 0$ for all $x \notin S_X$. Then

$$\log p(x)$$

$$= \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= np(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x)) \right].$$

(1)

2. Since $x \in T^n_{[X] \delta}$,

$$\sum_x \left| \frac{1}{n} N(x;x) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

1) If \(x \in T^n_{[X]} \), then

\[
2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.
\]

Proof

1. To prove Property 1, for \(x \in T^n_{[X]} \), we have

\[
p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0
\]

because \(N(x;x) = 0 \) for all \(x \not\in S_X \). Then

\[
\log p(x)
= \sum_x N(x;x) \log p(x)
= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)
= n \sum_x p(x) \log p(x)
\]

\[
= -n \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) \left(-\log p(x) \right) \leq \eta
= -n \left(H(X) + \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) \left(-\log p(x) \right) \right).
\]

(1)

2. Since \(x \in T^n_{[X]} \),

\[
\sum_x \left| \frac{1}{n} N(x;x) - p(x) \right| \leq \delta.
\]

Now consider

\[
\sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x))
\]

\[
\leq \sum_x \left| \frac{1}{n} N(x;x) - p(x) \right| (-\log p(x))
\]

\[
\leq -\log \left(\min_x p(x) \right) \sum_x \left| \frac{1}{n} N(x;x) - p(x) \right|
\]

\[
\leq -\delta \log \left(\min_x p(x) \right) = \eta,
\]

where

\[
\eta = -\delta \log \left(\min_x p(x) \right) > 0.
\]

3. Therefore,

\[
-\eta \leq \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x)) \leq \eta.
\]
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $\mathbf{x} \in T^n_{[X] \delta}$, then

$$2^{-n(H(X) + \eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X) - \eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X] \delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; \mathbf{x})} > 0$$

because $N(x; \mathbf{x}) = 0$ for all $x \not\in S_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_x N(x; \mathbf{x}) \log p(x)$$

$$= \sum_x (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$-n \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \leq \eta$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right].$$

(1)

2. Since $\mathbf{x} \in T^n_{[X] \delta}$,

$$\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \leq \delta.$$

Now consider

$$\left| \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \right|$$

$$\leq \sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| (-\log p(x))$$

$$\leq -\log \left(\min_x p(x) \right) \sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right|$$

$$\leq -\delta \log \left(\min_x p(x) \right)$$

$$= \eta,$$

where \(\eta = -\delta \log \left(\min_x p(x) \right) > 0. \)

3. Therefore,

$$-\eta \leq \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (-\log p(x)) \leq \eta.$$

4. It then follows from (1) that

$$-n(H(X) + \eta) \leq \log p(\mathbf{x}) \leq -n(H(X) - \eta),$$

2. Since $\mathbf{x} \in T^n_{[X] \delta}$,
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $x \in T^n_{[X] \delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(x) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $x \in T^n_{[X] \delta}$, we have

$$p(x) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x;x)} > 0$$

because $N(x;x) = 0$ for all $x \not\in S_X$. Then

$$\log p(x) = \sum_x N(x;x) \log p(x)$$

$$= \sum_x (N(x;x) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$-n \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x)) \leq \eta \leq \eta$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x)) \right].$$

(1)

2. Since $x \in T^n_{[X] \delta}$,

$$\sum_x \left| \frac{1}{n} N(x;x) - p(x) \right| \leq \delta.$$

Now consider

$$\left| \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x)) \right|$$

$$\leq \sum_x \left| \frac{1}{n} N(x;x) - p(x) \right| (-\log p(x))$$

$$\leq -\log \left(\min_x p(x) \right) \sum_x \left| \frac{1}{n} N(x;x) - p(x) \right|$$

$$\leq -\delta \log \left(\min_x p(x) \right)$$

$$= \eta,$$

where

$$\eta = -\delta \log \left(\min_x p(x) \right) > 0.$$

3. Therefore,

$$-\eta \leq \sum_x \left(\frac{1}{n} N(x;x) - p(x) \right) (-\log p(x)) \leq \eta.$$

4. It then follows from (1) that

$$-n(H(X) + \eta) \leq \log p(x) \leq -n(H(X) - \eta).$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $\mathbf{x} \in T^n_{[X]\delta}$, then

$$2^{-n(H(X)+\eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}.$$

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X]\delta}$, we have

$$p(\mathbf{x}) = p(x_1)p(x_2)\cdots p(x_n) = \prod_{x \in \mathcal{S}_X} p(x)^{N(x;\mathbf{x})} > 0$$

because $N(x;\mathbf{x}) = 0$ for all $x \not\in \mathcal{S}_X$. Then

$$\log p(\mathbf{x})$$

$$= \sum_x N(x;\mathbf{x}) \log p(x)$$

$$= \sum_x (N(x;\mathbf{x}) - np(x) + np(x)) \log p(x)$$

$$= n \sum_x p(x) \log p(x)$$

$$- n \sum_x \left(\frac{1}{n} N(x;\mathbf{x}) - p(x) \right) (- \log p(x))$$

$$= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x;\mathbf{x}) - p(x) \right) (- \log p(x)) \right].$$

Now consider

$$\sum_x \left(\frac{1}{n} N(x;\mathbf{x}) - p(x) \right) (- \log p(x))$$

$$\leq \sum_x \left(\frac{1}{n} N(x;\mathbf{x}) - p(x) \right) (- \log p(x))$$

$$\leq - \log \left(\min_x p(x) \right) \sum_x \left(\frac{1}{n} N(x;\mathbf{x}) - p(x) \right)$$

$$\leq -\delta \log \left(\min_x p(x) \right)$$

$$= \eta,$$

where $\eta = -\delta \log \left(\min_x p(x) \right) > 0$.

3. Therefore,

$$-\eta \leq \sum_x \left(\frac{1}{n} N(x;\mathbf{x}) - p(x) \right) (- \log p(x)) \leq \eta.$$

4. It then follows from (1) that

$$-n(H(X) + \eta) \leq \log p(\mathbf{x}) \leq -n(H(X) - \eta),$$

or

$$2^{-n(H(X)+\eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)},$$

2. Since $\mathbf{x} \in T^n_{[X]\delta}$,

$$\sum_x \left| \frac{1}{n} N(x;\mathbf{x}) - p(x) \right| \leq \delta.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1) If $\mathbf{x} \in T^n_{[X] \delta}$, then

\[
2^{-n(H(X)+\eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)}.
\]

Proof

1. To prove Property 1, for $\mathbf{x} \in T^n_{[X] \delta}$, we have

\[
p(\mathbf{x}) = p(x_1)p(x_2) \cdots p(x_n) = \prod_{x \in S_X} p(x)^{N(x; \mathbf{x})} > 0
\]

because $N(x; \mathbf{x}) = 0$ for all $x \notin S_X$. Then

\[
\log p(\mathbf{x}) = \sum_x N(x; \mathbf{x}) \log p(x)
\]

\[
= \sum_x (N(x; \mathbf{x}) - np(x) + np(x)) \log p(x)
\]

\[
= n \sum_x p(x) \log p(x) - n \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x))
\]

\[
= -n \left[H(X) + \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x)) \right].
\]

(1)

2. Since $\mathbf{x} \in T^n_{[X] \delta}$,

\[
\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| \leq \delta.
\]

Now consider

\[
\sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x))
\]

\[
\leq \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x))
\]

\[
\leq - \log \left(\min_x p(x) \right) \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right)
\]

\[
\leq -\delta \log \left(\min_x p(x) \right)
\]

\[
= \eta,
\]

where

\[
\eta = -\delta \log \left(\min_x p(x) \right) > 0.
\]

3. Therefore,

\[
-\eta \leq \sum_x \left(\frac{1}{n} N(x; \mathbf{x}) - p(x) \right) (- \log p(x)) \leq \eta.
\]

4. It then follows from (1) that

\[
-n(H(X) + \eta) \leq \log p(\mathbf{x}) \leq -n(H(X) - \eta),
\]

or

\[
2^{-n(H(X)+\eta)} \leq p(\mathbf{x}) \leq 2^{-n(H(X)-\eta)},
\]

where $\eta \to 0$ as $\delta \to 0$, proving Property 1.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]\delta}\} > 1 - \delta.$$

Proof Idea

- By WLLN, w.p. $\to 1$ (with probability tends to 1), the empirical distribution of X is close to $p(x)$, and so by definition X is strongly typical.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T_n^\delta \} > 1 - \delta.$$

Proof
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]_\delta}\} > 1 - \delta.$$

Proof
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]_\delta}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]_\delta}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T_{[X]^{\delta}}^n\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \rightarrow 0$ as $\delta \rightarrow 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]_\delta}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases}
1 & \text{if } X_k = x \\
0 & \text{if } X_k \neq x.
\end{cases}$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]_\delta}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

for some $x, \eta > 0$.
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

2) For \(n \) sufficiently large,

\[
\Pr\{ \mathbf{X} \in T^n_{|\mathbf{X}|\delta} \} > 1 - \delta.
\]

Proof

1. To prove Property 2, we write

\[
N(x; \mathbf{X}) = \sum_{k=1}^{n} B_k(x),
\]

where

\[
B_k(x) = \begin{cases}
1 & \text{if } X_k = x \\
0 & \text{if } X_k \neq x.
\end{cases}
\]

2. Then \(B_k(x), k = 1, 2, \ldots, n \) are i.i.d. random variables with

\[
\Pr\{ B_k(x) = 1 \} = p(x)
\]

and

\[
\Pr\{ B_k(x) = 0 \} = 1 - p(x).
\]
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \rightarrow 0$ as $\delta \rightarrow 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]\delta}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x)$, $k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T_n^{[X] \delta} \} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \ldots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]_\delta}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \ldots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in X$,
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{[X]^{\delta}}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \ldots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}.$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr \{ X \in T^n_{[X]^{\delta}} \} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \ldots, n$ are i.i.d. random variables with

$$\Pr \{ B_k(x) = 1 \} = p(x)$$

and

$$\Pr \{ B_k(x) = 0 \} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in X$,

$$\Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \right\} < \frac{\delta}{|X|}$$

for n sufficiently large.
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

2) For \(n \) sufficiently large,

\[
\Pr\{X \in T^n_{|X|\delta}\} > 1 - \delta.
\]

Proof

1. To prove Property 2, we write

\[
N(x; X) = \sum_{k=1}^{n} B_k(x),
\]

where

\[
B_k(x) = \begin{cases}
1 & \text{if } X_k = x \\
0 & \text{if } X_k \neq x.
\end{cases}
\]

2. Then \(B_k(x), k = 1, 2, \ldots, n \) are i.i.d.

\[
\Pr\{B_k(x) = 1\} = p(x)
\]

and

\[
\Pr\{B_k(x) = 0\} = 1 - p(x).
\]

Note that

\[
E B_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).
\]

3. By WLLN, for any \(\delta > 0 \) and for any \(x \in \mathcal{X} \),

\[
\Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}
\]

for \(n \) sufficiently large.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$ \Pr\{X \in T^n_{\lfloor X \rfloor \delta} \} > 1 - \delta. $$

Proof

1. To prove Property 2, we write

$$ N(x; X) = \sum_{k=1}^n B_k(x), $$

where

$$ B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases} $$

2. Then $B_k(x)$, $k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$ \Pr\{B_k(x) = 1\} = p(x) $$

and

$$ \Pr\{B_k(x) = 0\} = 1 - p(x). $$

Note that

$$ EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x). $$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$ \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^n B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|} $$

for n sufficiently large.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{|X|\delta}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x)$, $k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in X$,

$$\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \right\} < \frac{\delta}{|X|}$$

for n sufficiently large.

4. Then

$$\Pr\left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|X|} \text{ for some } x \right\}$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{|X|} \} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \ldots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

1. For n sufficiently large,

$$\Pr\{X \in T_{\|X\|}^n \} > 1 - \eta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x)$, $k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|},$$

for n sufficiently large.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T_n^{[X]}\delta\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\eta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

4. Then

$$\Pr\left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} = \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{|X|\delta}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \ldots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{\left|\frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x)\right| > \frac{\delta}{|\mathcal{X}|}\right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

2) For \(n \) sufficiently large,

\[
\Pr\{ X \in T_n^X \delta \} > 1 - \delta.
\]

Proof

1. To prove Property 2, we write

\[
N(x; X) = \sum_{k=1}^{n} B_k(x),
\]

where

\[
B_k(x) = \begin{cases}
1 & \text{if } X_k = x \\
0 & \text{if } X_k \neq x.
\end{cases}
\]

2. Then \(B_k(x), k = 1, 2, \ldots, n \) are i.i.d. random variables with

\[
\Pr\{ B_k(x) = 1 \} = p(x)
\]

and

\[
\Pr\{ B_k(x) = 0 \} = 1 - p(x).
\]

Note that

\[
EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).
\]

3. By WLLN, for any \(\delta > 0 \) and for any \(x \in \mathcal{X} \),

\[
\Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| < \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}
\]

for \(n \) sufficiently large.

4. Then

\[
\Pr \left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} = \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} = \Pr \left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\]
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T_{X|\delta}^n\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x)$, $k = 1, 2, \cdots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

4. Then

$$\Pr \left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr \left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

Union Bound

$$\Pr(A \cup B) \leq \Pr(A) + \Pr(B)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T^n_{|X|\delta}\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \ldots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

4. Then

$$\Pr\left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr\left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_x \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

Union Bound

$$\Pr(A \cup B) \leq \Pr(A) + \Pr(B)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

$$\Pr\{X \in T_{[X]}^n\delta\} > 1 - \delta.$$

Proof

1. To prove Property 2, we write

$$N(x; X) = \sum_{k=1}^{n} B_k(x),$$

where

$$B_k(x) = \begin{cases} 1 & \text{if } X_k = x \\ 0 & \text{if } X_k \neq x. \end{cases}$$

2. Then $B_k(x), k = 1, 2, \ldots, n$ are i.i.d. random variables with

$$\Pr\{B_k(x) = 1\} = p(x)$$

and

$$\Pr\{B_k(x) = 0\} = 1 - p(x).$$

Note that

$$E B_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).$$

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

$$\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}$$

for n sufficiently large.

4. Then

$$\Pr \left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}$$

$$= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

$$= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}$$

$$\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}$$

Union Bound

$$\Pr(A \cup B) \leq \Pr(A) + \Pr(B)$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

2) For n sufficiently large,

\[
\Pr\{X \in T^n_{[X]_\delta}\} > 1 - \delta.
\]

Proof

1. To prove Property 2, we write

\[
N(x; X) = \sum_{k=1}^n B_k(x),
\]

where

\[
B_k(x) = \begin{cases}
1 & \text{if } X_k = x \\
0 & \text{if } X_k \neq x.
\end{cases}
\]

2. Then $B_k(x), k = 1, 2, \ldots, n$ are i.i.d. random variables with

\[
\Pr\{B_k(x) = 1\} = p(x)
\]

and

\[
\Pr\{B_k(x) = 0\} = 1 - p(x).
\]

Note that

\[
EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).
\]

3. By WLLN, for any $\delta > 0$ and for any $x \in \mathcal{X}$,

\[
\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^n B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}
\]

for n sufficiently large.

4. Then

\[
\Pr\left\{ \frac{1}{n} N(x; X) - p(x) > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]

\[
= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^n B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]

\[
= \Pr\left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^n B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\]

\[
\leq \sum_x \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^n B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
\]

Union Bound

\[
\Pr(A \cup B) \leq \Pr(A) + \Pr(B)
\]
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

2) For \(n \) sufficiently large,

\[
\Pr\{ X \in T_{|X|}^n \delta \} > 1 - \delta.
\]

Proof

1. To prove Property 2, we write

\[
N(x; X) = \sum_{k=1}^{n} B_k(x),
\]

where

\[
B_k(x) = \begin{cases}
1 & \text{if } X_k = x \\
0 & \text{if } X_k \neq x.
\end{cases}
\]

2. Then \(B_k(x) \), \(k = 1, 2, \cdots, n \) are i.i.d. random variables with

\[
\Pr\{ B_k(x) = 1 \} = p(x)
\]

and

\[
\Pr\{ B_k(x) = 0 \} = 1 - p(x).
\]

Note that

\[
EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).
\]

3. By WLLN, for any \(\delta > 0 \) and for any \(x \in \mathcal{X} \),

\[
\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} < \frac{\delta}{|\mathcal{X}|}
\]

for \(n \) sufficiently large.

4. Then

\[
\Pr\left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} > \frac{\delta}{|\mathcal{X}|}
\]

\[
= \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
\]

\[
= \Pr\left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\]

\[
\leq \sum_x \Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
\]

\[
< \sum_x \frac{\delta}{|\mathcal{X}|}
\]
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

2) For \(n \) sufficiently large,

\[
\Pr\{X \in T^n_{|X|\delta}\} > 1 - \delta.
\]

Proof

1. To prove Property 2, we write

\[
N(x; X) = \sum_{k=1}^{n} B_k(x),
\]

where

\[
B_k(x) = \begin{cases}
 1 & \text{if } X_k = x \\
 0 & \text{if } X_k \neq x.
\end{cases}
\]

2. Then \(B_k(x), k = 1, 2, \cdots, n \) are i.i.d. random variables with

\[
\Pr\{B_k(x) = 1\} = p(x)
\]

and

\[
\Pr\{B_k(x) = 0\} = 1 - p(x).
\]

Note that

\[
EB_k(x) = (1 - p(x)) \cdot 0 + p(x) \cdot 1 = p(x).
\]

3. By WLLN, for any \(\delta > 0 \) and for any \(x \in X \),

\[
\Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \right\} < \frac{\delta}{|X|}
\]

for \(n \) sufficiently large.

4. Then

\[
\Pr \left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|X|} \text{ for some } x \right\}
\]

\[
= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \text{ for some } x \right\}
\]

\[
= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \right\} \right\}
\]

\[
\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \right\}
\]

\[
< \sum_{x} \frac{\delta}{|X|}
\]

\[
= \delta.
\]
Theorem 6.2 (Strong AEP)

There exists \(\alpha > 0 \) such that \(\alpha \not= 0 \) as \(\alpha \rightarrow 0 \), and the following hold:

1. To prove Property 2, we write

\[
N(x; \mathbf{x}) = \sum_{k=1}^{n} B_k(x) \]

where

\[
B_k(x) = \begin{cases}
1 & \text{if } X_k = x \\
0 & \text{if } X_k \neq x
\end{cases}
\]

2. Then \(B_k(x), k = 1, 2, \ldots, n \) are i.i.d. random variables with

\[
\Pr\{B_k(x) = 1\} = p(x) \quad \text{and} \quad \Pr\{B_k(x) = 0\} = 1 - p(x).
\]

Note that \(\mathbb{E}B_k(x) = \frac{1}{p(x)} \cdot 0 + p(x) \cdot 1 = p(x) \).

3. By WLLN, for any \(\alpha > 0 \) and for any \(x \in X \),

\[
\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \text{ for some } x \right\}
\]

4. Then

\[
\Pr\left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \text{ for some } x \right\}
\]

\[
= \mathbb{P} \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \right\} \right\}
\]

\[
\leq \sum_{x} \mathbb{P} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|X|} \right\}
\]

\[
< \sum_{x} \frac{\delta}{|X|} = \delta.
\]
4. Then

\[
\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]

\[
= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]

\[
= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\]

\[
\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
\]

\[
< \sum_{x} \frac{\delta}{|\mathcal{X}|}
\]

\[
= \delta.
\]
4. Then

\[\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\} \]

\[\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \]

\[< \sum_{x} \frac{\delta}{|\mathcal{X}|} \]

\[= \delta. \]

5. Now

\[\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \]
4. Then
\[
\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]
\[
= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]
\[
= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\]
\[
\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
\]
\[
< \sum_{x} \frac{\delta}{|\mathcal{X}|}
\]
\[
= \delta.
\]

5. Now
\[
\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta
\]
implies
\[
\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}.
\]
4. Then

\[
\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]

\[
= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]

\[
= \Pr \left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\]

\[
\leq \sum_x \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
\]

\[
< \sum_x \frac{\delta}{|\mathcal{X}|}
\]

\[
= \delta.
\]

5. Now

\[
\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta
\]

implies

\[
\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}.
\]
4. Then
\[\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]
\[= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]
\[= \Pr \left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\} \]
\[\leq \sum_x \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \]
\[< \sum_x \frac{\delta}{|\mathcal{X}|} \]
\[= \delta. \]

5. Now
\[\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \]
implies
\[\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \]
4. Then

\[\text{Pr} \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \text{Pr} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \text{Pr} \left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\} \]

\[\leq \sum_x \text{Pr} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \]

\[< \sum_x \frac{\delta}{|\mathcal{X}|} \]

\[= \delta. \]

5. Now

\[\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \]

implies

\[\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}. \]

Then we have

\[\text{Pr} \left\{ \sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\} \]
4. Then
\[
\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
< \sum_{x} \frac{\delta}{|\mathcal{X}|}
= \delta.
\]

5. Now
\[
\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta
\]
implies
\[
\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}.
\]
Then we have
\[
\Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\}
\leq \Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}.
\]
4. Then

\[\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \Pr \left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\} \]

\[\leq \sum_x \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \]

\[< \sum_x \frac{\delta}{|\mathcal{X}|} \]

\[= \delta. \]

5. Now

\[\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \]

implies

\[\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}. \]

Then we have

\[\Pr \left\{ \sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\} \]

\[\leq \Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}. \]

Then

\[\Pr \left\{ \mathbf{x} \in T_n^{\delta} \right\} \]
4. Then

\[
\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]

\[
= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]

\[
= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\]

\[
\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
\]

\[
< \sum_{x} \frac{\delta}{|\mathcal{X}|}
\]

\[
= \delta.
\]

5. Now

\[
\sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta
\]

implies

\[
\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}.
\]

Then we have

\[
\Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\}
\]

\[
\leq \Pr \left\{ \frac{1}{n} N(x; \mathbf{x}) - p(x) > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}.
\]

Then

\[
\Pr \left\{ \mathbf{x} \in T_{[X]}^{n/\delta} \right\}
\]

\[
= \Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| \leq \delta \right\}
\]
4. Then
\[\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]
\[= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]
\[= \Pr \left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\} \]
\[\leq \sum_x \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \]
\[< \sum_x \frac{\delta}{|\mathcal{X}|} \]
\[= \frac{\delta}{|\mathcal{X}|} \]
\[= \delta. \]

5. Now
\[\sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta \]
implies
\[\left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}. \]

Then we have
\[\Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta \right\} \]
\[\leq \Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\} . \]

Then
\[\Pr \left\{ \mathbf{X} \in T_{|\mathcal{X}|}^n \delta \right\} \]
\[= \Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| \leq \delta \right\} \]
\[= 1 - \Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta \right\} \]
4. Then
\[
\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]
\[
= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]
\[
= \Pr \left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\]
\[
\leq \sum_x \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
\]
\[
< \sum_x \frac{\delta}{|\mathcal{X}|}
\]
\[
= \delta.
\]

5. Now
\[
\sum_x \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta
\]
implies
\[
\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}.
\]
Then we have
\[
\Pr \left\{ \sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\}
\]
\[
\leq \Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}.
\]
Then
\[
\Pr \left\{ \mathbf{x} \in T_{[\mathcal{X}]\delta} \right\}
\]
\[
= \Pr \left\{ \sum_x \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| \leq \delta \right\}
\]
\[
= 1 - \Pr \left\{ \sum_x \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta \right\}.
4. Then
\[
\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]
\[= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\}
\]
\[= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\}
\]
\[\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\}
\]
\[< \sum_{x} \frac{\delta}{|\mathcal{X}|}
\]
\[= \delta.
\]
5. Now
\[
\sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta
\]
implies
\[
\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}.
\]
Then we have
\[
\Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\}
\]
\[\leq \Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}.
\]
Then
\[
\Pr \left\{ \mathbf{x} \in T_{[\mathcal{X}]\delta} \right\}
\]
\[= \Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| \leq \delta \right\}
\]
\[= 1 - \Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta \right\}
\]
\[\geq 1 - \Pr \left\{ \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}.
4. Then

\[\Pr \left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\} \]

\[\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \]

\[\leq \sum_{x} \frac{\delta}{|\mathcal{X}|} \]

\[= \delta \]

5. Now

\[\sum_{x} \left| \frac{1}{n} N(x; x) - p(x) \right| > \delta \]

implies

\[\left| \frac{1}{n} N(x; x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X}. \]

Then we have

\[\Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; x) - p(x) \right| > \delta \right\} \]

\[\leq \Pr \left\{ \left| \frac{1}{n} N(x; x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}. \]

Then

\[\Pr \left\{ X \in T_{|\mathcal{X}|}\delta \right\} \]

\[= \Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; X) - p(x) \right| \leq \delta \right\} \]

\[= 1 - \Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; X) - p(x) \right| > \delta \right\} \]

\[\geq 1 - \Pr \left\{ \left| \frac{1}{n} N(x; X) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\}. \]
4. Then

\[\Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \right\} \]

\[= \Pr \left\{ \bigcup_{x} \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\} \]

\[\leq \sum_{x} \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \]

\[\leq \sum_{x} \frac{\delta}{|\mathcal{X}|} \]

\[= \delta \]

5. Now

\[\sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta \]

implies

\[\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \]

Then we have

\[\Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\} \]

\[\leq \Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\} \]

Then

\[\Pr \left\{ \mathbf{x} \in T_{[|\mathcal{X}|]\delta} \right\} \]

\[= \Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| \leq \delta \right\} \]

\[= 1 - \Pr \left\{ \sum_{x} \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta \right\} \]

\[\geq 1 - \Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \text{ for some } x \in \mathcal{X} \right\} \]

\[> 1 - \delta, \]
4. Then

\[\Pr \left\{ \frac{1}{n} N(x; \mathbf{X}) - p(x) > \frac{\delta}{|\mathcal{X}|} \right\} \]

\[
= \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \\
= \Pr \left\{ \bigcup_x \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \right\} \\
\leq \sum_x \Pr \left\{ \left| \frac{1}{n} \sum_{k=1}^{n} B_k(x) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \\
< \sum_x \frac{\delta}{|\mathcal{X}|} \\
= \delta.
\]

5. Now

\[\sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \]

implies

\[\left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \]

for some \(x \in \mathcal{X} \).

Then we have

\[\Pr \left\{ \sum_x \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \delta \right\} \]

\[
\leq \Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{x}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \\
< \sum_x \frac{\delta}{|\mathcal{X}|} \\
= \delta.
\]

Then

\[\Pr \{ \mathbf{X} \in T_{[\mathcal{X}]\delta} \} \]

\[
= \Pr \left\{ \sum_x \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| \leq \delta \right\} \\
= 1 - \Pr \left\{ \sum_x \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \delta \right\} \\
\geq 1 - \Pr \left\{ \left| \frac{1}{n} N(x; \mathbf{X}) - p(x) \right| > \frac{\delta}{|\mathcal{X}|} \right\} \\
> 1 - \delta,
\]

proving Property 2.
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

3) For n sufficiently large,

$$(1-\delta)2^n(H(X)-\eta) \leq |T^X_n| \leq 2^n(H(X)+\eta).$$
Theorem 6.2 (Strong AEP) There exists $\eta > 0$ such that $\eta \to 0$ as $\delta \to 0$, and the following hold:

3) For n sufficiently large,

$$(1-\delta)2^n(H(X)\eta) \leq |T^n[X]_\delta| \leq 2^n(H(X)+\eta).$$

Proof Follows from Property 1 and Property 2 in exactly the same way as in Theorem 5.3. (Exercise)
Theorem 6.2 (Strong AEP) There exists \(\eta > 0 \) such that \(\eta \to 0 \) as \(\delta \to 0 \), and the following hold:

3) For \(n \) sufficiently large,

\[
(1-\delta)2^{n(H(X)-\eta)} \leq |T^n_{[X]_\delta}| \leq 2^{n(H(X)+\eta)}.
\]

Proof Follows from Property 1 and Property 2 in exactly the same way as in Theorem 5.3. (Exercise)

Theorem 5.3 (Weak AEP II)

1) If \(x \in W^n_{[X]_\epsilon} \), then

\[
2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.
\]

2) For \(n \) sufficiently large,

\[
\Pr\{X \in W^n_{[X]_\epsilon}\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,

\[
(1 - \epsilon)2^{n(H(X)-\epsilon)} \leq |W^n_{[X]_\epsilon}| \leq 2^{n(H(X)+\epsilon)}.
\]
Theorem 6.3 For sufficiently large n, there exists $\varphi(\delta) > 0$ such that

$$\Pr\{X \not\in T^n_{[X]_\delta}\} < 2^{-n\varphi(\delta)}.$$

Proof Chernoff bound.