5.2 The Source Coding Theorem
The encoder maps a random source sequence X to an index $f(X)$ in an index set $I = \{1, 2, \ldots, M\}$. Such a code is called a block code with n being the block length of the code. The encoder sends $f(X)$ to the decoder through a noiseless channel. Based on the index, the decoder outputs \hat{X} as an estimate on X.
The encoder maps a random source sequence $\mathbf{X} \in \mathcal{X}^n$ to an index $f(\mathbf{X})$ in an index set

$$\mathcal{I} = \{1, 2, \cdots, M\}.$$
The encoder maps a random source sequence $\mathbf{X} \in \mathcal{X}^n$ to an index $f(\mathbf{X})$ in an index set

$$\mathcal{I} = \{1, 2, \cdots, M\}.$$

Such a code is called a block code with n being the block length of the code.
A Source Code

- The encoder maps a random source sequence $X \in \mathcal{X}^n$ to an index $f(X)$ in an index set

$$\mathcal{I} = \{1, 2, \cdots, M\}.$$

- Such a code is called a block code with n being the block length of the code.

- The encoder sends $f(X)$ to the decoder through a noiseless channel.
A Source Code

- The encoder maps a random source sequence $\mathbf{X} \in \mathcal{X}^n$ to an index $f(\mathbf{X})$ in an index set $\mathcal{I} = \{1, 2, \ldots, M\}$.

- Such a code is called a block code with n being the block length of the code.

- The encoder sends $f(\mathbf{X})$ to the decoder through a noiseless channel.

- Based on the index, the decoder outputs $\hat{\mathbf{X}}$ as an estimate on \mathbf{X}.
• The encoder is specified by the mapping

\[f : \mathcal{X}^n \rightarrow \mathcal{I} = \{1, 2, \cdots, M\}. \]
• The encoder is specified by the mapping

\[f : \mathcal{X}^n \rightarrow \mathcal{I} = \{1, 2, \cdots, M\}. \]

• The rate of the code is given by \(R = n^{-1} \log M \) in bits per source symbol, where \(M \) is the size of the index set and \(n \) is the block length.
The encoder is specified by the mapping

\[f : \mathcal{X}^n \to \mathcal{I} = \{1, 2, \cdots, M\}. \]

The rate of the code is given by \(R = n^{-1} \log M \) in bits per source symbol, where \(M \) is the size of the index set and \(n \) is the block length.

If \(M = |\mathcal{X}^n| = |\mathcal{X}|^n \), the rate of the code is

\[\frac{1}{n} \log M = \frac{1}{n} \log |\mathcal{X}|^n = \log |\mathcal{X}|. \]
• The encoder is specified by the mapping

\[f : \mathcal{X}^n \rightarrow \mathcal{I} = \{1, 2, \cdots, M\}. \]

• The rate of the code is given by \(R = n^{-1} \log M \) in bits per source symbol, where \(M \) is the size of the index set and \(n \) is the block length.

• If \(M = |\mathcal{X}^n| = |\mathcal{X}|^n \), the rate of the code is

\[\frac{1}{n} \log M = \frac{1}{n} \log |\mathcal{X}|^n = \log |\mathcal{X}|. \]

• Typically, \(R < \log |\mathcal{X}| \) for data compression.
The encoder is specified by the mapping

$$f : \mathcal{X}^n \rightarrow \mathcal{I} = \{1, 2, \cdots, M\}.$$

The rate of the code is given by $R = n^{-1} \log M$ in bits per source symbol, where M is the size of the index set and n is the block length.

If $M = |\mathcal{X}^n| = |\mathcal{X}|^n$, the rate of the code is

$$\frac{1}{n} \log M = \frac{1}{n} \log |\mathcal{X}|^n = \log |\mathcal{X}|.$$

Typically, $R < \log |\mathcal{X}|$ for data compression.

An error occurs if $\hat{X} \neq X$, and $P_e = \Pr\{\hat{X} \neq X\}$ is called the error probability.
The Source Coding Theorem

Direct Part: For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.
The Source Coding Theorem

Direct Part: For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

- This part says that reliable communication can be achieved if the coding rate is at least $H(X)$.
The Source Coding Theorem

Direct Part: For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

- This part says that reliable communication can be achieved if the coding rate is at least $H(X)$.

Converse: For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.
The Source Coding Theorem

Direct Part: For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

- This part says that reliable communication can be achieved if the coding rate is at least $H(X)$.

Converse: For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

- This part says that it is impossible to achieve reliable communication if the coding rate is less than $H(X)$.

Direct Part

• For an arbitrarily small but fixed $\epsilon > 0$, construct a sequence of codes with block length n such that $P_e < \epsilon$ when n is sufficiently large.
Direct Part

• For an arbitrarily small but fixed $\epsilon > 0$, construct a sequence of codes with block length n such that $P_e < \epsilon$ when n is sufficiently large.

• We will consider a class of block codes with a particular structure.
A Class of Block Codes
A Class of Block Codes

Encoder:

1. Choose a subset \mathcal{A} of X^n and let $M = |\mathcal{A}|$.

Decoder:

1. For an index $i \in I$, decode it to the unique $x \in \mathcal{A}$ such that $f(x) = i$.
2. If the source sequence $x \in \mathcal{A}$, then it is decoded correctly.
3. If source sequence $x \notin \mathcal{A}$, then it is decoded incorrectly.
4. Thus $P_e = Pr\{X \notin \mathcal{A}\}$.
Encoder:
1. Choose a subset A of X^n and let $M = |A|$.
2. For each source sequence $x \in A$, assign it to a unique index $f(x) \in I$, i.e.,
 \[f(x) \neq f(x') \text{ for } x \neq x'. \]
A Class of Block Codes

Encoder:
1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.
2. For each source sequence $\mathbf{x} \in \mathcal{A}$, assign it to a unique index $f(\mathbf{x}) \in \mathcal{I}$, i.e.,
 \[f(\mathbf{x}) \neq f(\mathbf{x}') \quad \text{for} \quad \mathbf{x} \neq \mathbf{x}' . \]
3. For each source sequence $\mathbf{x} \not\in \mathcal{A}$, let $f(\mathbf{x}) = 1$.

Decoder:
1. For an index $i \in \mathcal{I}$, decode it to the unique $\mathbf{x} \in \mathcal{A}$ such that $f(\mathbf{x}) = i$.
2. If the source sequence $\mathbf{x} \in \mathcal{A}$, then it is decoded correctly.
3. If source sequence $\mathbf{x} \not\in \mathcal{A}$, then it is decoded incorrectly.
4. Thus $P_e = \Pr\{\mathbf{x} \not\in \mathcal{A}\}$.
A Class of Block Codes

Encoder:
1. Choose a subset A of X^n and let $M = |A|$.
2. For each source sequence $x \in A$, assign it to a unique index $f(x) \in I$, i.e.,
 \[f(x) \neq f(x') \text{ for } x \neq x'. \]
3. For each source sequence $x \not\in A$, let $f(x) = 1$.

Decoder:
1. For an index $i \in I$, decode it to the unique $x \in A$ such that $f(x) = i$.
A Class of Block Codes

Encoder:

1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.
2. For each source sequence $\mathbf{x} \in \mathcal{A}$, assign it to a unique index $f(\mathbf{x}) \in I$, i.e.,

$$f(\mathbf{x}) \neq f(\mathbf{x}') \quad \text{for} \quad \mathbf{x} \neq \mathbf{x}'.$$

3. For each source sequence $\mathbf{x} \notin \mathcal{A}$, let $f(\mathbf{x}) = 1$.

Decoder:

1. For an index $i \in I$, decode it to the unique $\mathbf{x} \in \mathcal{A}$ such that $f(\mathbf{x}) = i$.
2. If the source sequence $\mathbf{x} \in \mathcal{A}$, then it is decoded correctly.

$$
\begin{array}{c}
\mathcal{X}^n \\
\mathcal{A} \\
\mathcal{I} \\
1 \\
2 \\
\vdots \\
M \\
\end{array}
$$
A Class of Block Codes

Encoder:
1. Choose a subset A of X^n and let $M = |A|$.
2. For each source sequence $x \in A$, assign it to a unique index $f(x) \in I$, i.e.,

 \[f(x) \neq f(x') \quad \text{for } x \neq x'. \]

3. For each source sequence $x \notin A$, let $f(x) = 1$.

Decoder:
1. For an index $i \in I$, decode it to the unique $x \in A$ such that $f(x) = i$.
2. If the source sequence $x \in A$, then it is decoded correctly.
3. If source sequence $x \notin A$, then it is decoded incorrectly.
A Class of Block Codes

Encoder:
1. Choose a subset \mathcal{A} of \mathcal{X}^n and let $M = |\mathcal{A}|$.
2. For each source sequence $x \in \mathcal{A}$, assign it to a unique index $f(x) \in \mathcal{I}$, i.e.,

 $$f(x) \neq f(x') \quad \text{for} \quad x \neq x'.$$

3. For each source sequence $x \not\in \mathcal{A}$, let $f(x) = 1$.

Decoder:
1. For an index $i \in \mathcal{I}$, decode it to the unique $x \in \mathcal{A}$ such that $f(x) = i$.
2. If the source sequence $x \in \mathcal{A}$, then it is decoded correctly.
3. If source sequence $x \not\in \mathcal{A}$, then it is decoded incorrectly.
4. Thus $P_e = \Pr\{X \not\in \mathcal{A}\}$.

\[\mathcal{X}^n \quad \mathcal{A} \quad \mathcal{I} \quad \begin{array}{c} 1 \\ 2 \\ \vdots \\ M \end{array} \]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]_\epsilon}$, then

$$2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \notin W^n_{[X]_\epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon)2^{-n(H(X) - \epsilon)} \leq |W^n_{[X]_\epsilon}| \leq 2^n(H(X) + \epsilon).$$
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]_{\varepsilon}}$, then
 \[2^{-n(H(X)+\varepsilon)} \leq p(x) \leq 2^{-n(H(X)-\varepsilon)}. \]

2) For n sufficiently large,
 \[\Pr \{ X \notin W^n_{[X]_{\varepsilon}} \} > 1 - \varepsilon. \]

3) For n sufficiently large,
 \[(1 - \varepsilon)2^n(H(X)-\varepsilon) \leq |W^n_{[X]_{\varepsilon}}| \leq 2^n(H(X)+\varepsilon). \]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]_{\epsilon}}$, then

$$2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \notin W^n_{[X]_{\epsilon}}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon)2^{n(H(X)-\epsilon)} \leq |W^n_{[X]_{\epsilon}}| \leq 2^{n(H(X)+\epsilon)}.$$
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set A suitably.

Theorem 5.2 (Weak AEP II)

1) If $x \in W_n^{[X]_\epsilon}$, then

$$2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \notin A\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W_n^{[X]_\epsilon}| \leq 2^{n(H(X)+\epsilon)}.$$
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]_{\epsilon}}$ and hence $M = |\mathcal{A}|$.

Theorem 5.2 (Weak AEP II)

1. If $x \in W^n_{[X]_{\epsilon}}$, then

 $$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2. For n sufficiently large,

 $$\Pr\{X \notin W^n_{[X]_{\epsilon}}\} > 1 - \epsilon.$$

3. For n sufficiently large,

 $$(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]_{\epsilon}}| \leq 2^n(H(X) + \epsilon).$$
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{\lfloor X \rfloor \epsilon}$ and hence $M = |\mathcal{A}|$.

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{\lfloor X \rfloor \epsilon}$, then

$$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \in W^n_{\lfloor X \rfloor \epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{\lfloor X \rfloor \epsilon}| \leq 2^{n(H(X) + \epsilon)}.$$
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]\epsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]\epsilon}$, then
\[2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}. \]
2) For n sufficiently large,
\[\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon. \]
3) For n sufficiently large,
\[(1 - \epsilon)2^n(H(X)-\epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X)+\epsilon). \]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\varepsilon > 0$ and take $\mathcal{A} = W^n_{[X]\varepsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,

\[
2^{-n(H(X)+\varepsilon)} \leq p(x) \leq 2^{-n(H(X)-\varepsilon)}.
\]

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]\varepsilon}$, then

\[
2^{-n(H(X)+\varepsilon)} \leq p(x) \leq 2^{-n(H(X)-\varepsilon)}.
\]

2) For n sufficiently large,

\[
\Pr\{X \in W^n_{[X]\varepsilon}\} > 1 - \varepsilon.
\]

3) For n sufficiently large,

\[
(1 - \varepsilon)2^{n(H(X)-\varepsilon)} \leq |W^n_{[X]\varepsilon}| \leq 2^n(H(X)+\varepsilon).
\]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]\epsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]\epsilon}$, then

$$2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon)2^n(H(X)-\epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X)+\epsilon).$$
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]\epsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,
 \[(1-\epsilon)2^n(H(X)-\epsilon) \leq M = |\mathcal{A}| = |W^n_{[X]\epsilon}| \leq 2^n(H(X)+\epsilon).
\]

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]\epsilon}$, then
 \[2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.
\]
2) For n sufficiently large,
 \[\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
\]
3) For n sufficiently large,
 \[(1-\epsilon)2^n(H(X)-\epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X)+\epsilon).
\]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\varepsilon > 0$ and take $\mathcal{A} = W^n_{[X]_{\varepsilon}}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,
 \[(1-\varepsilon)2^{n(H(X)-\varepsilon)} \leq M = |\mathcal{A}| = |W^n_{[X]_{\varepsilon}}| \leq 2^{n(H(X)+\varepsilon)}.
\]

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]_{\varepsilon}}$, then
 \[2^{-n(H(X)+\varepsilon)} \leq p(x) \leq 2^{-n(H(X)-\varepsilon)}.
\]
2) For n sufficiently large,
 \[Pr\{X \in W^n_{[X]_{\varepsilon}} \} > 1 - \varepsilon.
\]
3) For n sufficiently large,
 \[(1-\varepsilon)2^{n(H(X)-\varepsilon)} \leq |W^n_{[X]_{\varepsilon}}| \leq 2^{n(H(X)+\varepsilon)}.
\]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set A suitably.
2. Fix $\varepsilon > 0$ and take $A = W_{[X]|X|}[X]|W_{[X]|X|} - \varepsilon$ and hence $M = |A|$.
3. For sufficiently large n, by WAEP,

$$(1-\varepsilon)2^n(H(X)+\varepsilon) \leq M = |A| = |W_{[X]|X|}| \leq 2^n(H(X)+\varepsilon).$$

Theorem 5.2 (Weak AEP II)

1) If $x \in W_{[X]|X|}^n$, then

$$2^{-n(H(X)+\varepsilon)} \leq p(x) \leq 2^{-n(H(X)-\varepsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \in W_{[X]|X|}^n\} > 1 - \varepsilon.$$

3) For n sufficiently large,

$$(1-\varepsilon)2^n(H(X)-\varepsilon) \leq |W_{[X]|X|}| \leq 2^n(H(X)+\varepsilon).$$
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]\epsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,
\[(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W^n_{[X]\epsilon}| \leq 2^{n(H(X)+\epsilon)}.
\]
4. The coding rate satisfies
\[
\frac{1}{n} \log(1 - \epsilon) + H(X) - \epsilon \leq \frac{1}{n} \log M \leq H(X) + \epsilon.
\]

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]\epsilon}$, then
\[2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.
\]
2) For n sufficiently large,
\[
\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
\]
3) For n sufficiently large,
\[(1 - \epsilon)2^{n(H(X)-\epsilon)} \leq |W^n_{[X]\epsilon}| \leq 2^{n(H(X)+\epsilon)}.
\]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code
whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]\epsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,
 \[(1 - \epsilon)2^n(H(X) - \epsilon) \leq M = |\mathcal{A}| = |W^n_{[X]\epsilon}| \leq 2^n(H(X) + \epsilon).
 \]
4. The coding rate satisfies
 \[
 \frac{1}{n} \log(1 - \epsilon) + H(X) - \epsilon \leq \frac{1}{n} \log M \leq H(X) + \epsilon.
 \]

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]\epsilon}$, then
 \[2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.\]
2) For n sufficiently large,
 \[\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
 \]
3) For n sufficiently large,
 \[(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X) + \epsilon).
 \]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]\epsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,
\[(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq M = |\mathcal{A}| = |W^n_{[X]\epsilon}| \leq 2^{n(H(X) + \epsilon)}.
\]
4. The coding rate satisfies
\[
\frac{1}{n} \log(1 - \epsilon) + H(X) - \epsilon \leq \frac{1}{n} \log M \leq H(X) + \epsilon.
\]
5. By WAEP,
\[P_e = \Pr\{X \not\in \mathcal{A}\} = \Pr\{X \not\in W^n_{[X]\epsilon}\} < \epsilon.
\]

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]\epsilon}$, then
\[2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]
2) For n sufficiently large,
\[\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
\]
3) For n sufficiently large,
\[(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]\epsilon}| \leq 2^{n(H(X) + \epsilon)}.
\]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\varepsilon > 0$ and take $\mathcal{A} = W_{[X]}^n\varepsilon$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,

 \[(1-\varepsilon)2^n(H(X) - \varepsilon) \leq M = |\mathcal{A}| = |W_{[X]}^n\varepsilon| \leq 2^n(H(X) + \varepsilon)\]

4. The coding rate satisfies

 \[\frac{1}{n} \log(1 - \varepsilon) + H(X) - \varepsilon \leq \frac{1}{n} \log M \leq H(X) + \varepsilon.\]

5. By WAEP,

 \[P_e = \Pr\{X \notin \mathcal{A}\} = \Pr\{X \notin W_{[X]}^n\varepsilon\} < \varepsilon.\]

Theorem 5.2 (Weak AEP II)

1. If $x \in W_{[X]}^n\varepsilon$, then

 \[2^{-n(H(X) + \varepsilon)} \leq p(x) \leq 2^{-n(H(X) - \varepsilon)}.\]

2. For n sufficiently large,

 \[\Pr\{X \in W_{[X]}^n\varepsilon\} > 1 - \varepsilon.\]

3. For n sufficiently large,

 \[(1 - \varepsilon)2^n(H(X) - \varepsilon) \leq |W_{[X]}^n\varepsilon| \leq 2^n(H(X) + \varepsilon).\]
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]^\epsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,
 $$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq M = |\mathcal{A}| = |W^n_{[X]^\epsilon}| \leq 2^n(H(X)+\epsilon).$$
4. The coding rate satisfies
 $$\frac{1}{n} \log(1 - \epsilon) + H(X) - \epsilon \leq \frac{1}{n} \log M \leq H(X) + \epsilon.$$
5. By WAEP,
 $$P_e = \Pr\{X \not\in \mathcal{A}\} = \Pr\{X \not\in W^n_{[X]^\epsilon}\} < \epsilon.$$
6. Letting $\epsilon \to 0$, the coding rate tends to $H(X)$, while P_e tends to 0.

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]^\epsilon}$, then
 $$2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.$$
2) For n sufficiently large,
 $$\Pr\{X \in W^n_{[X]^\epsilon}\} > 1 - \epsilon.$$
3) For n sufficiently large,
 $$(1 - \epsilon)2^{n(H(X)-\epsilon)} \leq |W^n_{[X]^\epsilon}| \leq 2^{n(H(X)+\epsilon)}.$$
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]\epsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,

\[(1 - \epsilon)2^n(H(X) - \epsilon) \leq M = |\mathcal{A}| = |W^n_{[X]\epsilon}| \leq 2^n(H(X) + \epsilon).
\]
4. The coding rate satisfies

\[
\frac{1}{n} \log(1 - \epsilon) + H(X) - \epsilon \leq \frac{1}{n} \log M \leq H(X) + \epsilon.
\]

5. By WAEP,

\[P_e = \Pr\{X \not\in \mathcal{A}\} = \Pr\{X \not\in W^n_{[X]\epsilon}\} < \epsilon.
\]
6. Letting $\epsilon \to 0$, the coding rate tends to $H(X)$, while P_e tends to 0.

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]\epsilon}$, then

\[2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For n sufficiently large,

\[\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
\]

3) For n sufficiently large,

\[(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X) + \epsilon).
\]
Source Coding Theorem (Direct Part)

For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof

1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]_\epsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,

$$(1-\epsilon)2^n(H(X) - \epsilon) \leq M = |\mathcal{A}| = |W^n_{[X]_\epsilon}| \leq 2^n(H(X) + \epsilon).$$

4. The coding rate satisfies

$$\frac{1}{n} \log(1 - \epsilon) + H(X) - \epsilon \leq \frac{1}{n} \log M \leq H(X) + \epsilon.$$

5. By WAEP,

$$P_e = \Pr\{X \notin \mathcal{A}\} = \Pr\{X \notin W^n_{[X]_\epsilon}\} < \epsilon.$$

6. Letting $\epsilon \to 0$, the coding rate tends to $H(X)$, while P_e tends to 0.

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]_\epsilon}$, then

$$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{\mathbf{X} \in W^n_{[X]_\epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1-\epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]_\epsilon}| \leq 2^n(H(X) + \epsilon).$$
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\varepsilon > 0$ and take $\mathcal{A} = W^n_{[X]_\varepsilon}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,

$$(1-\varepsilon)2^n(H(X)-\varepsilon) \leq M = |\mathcal{A}| = |W^n_{[X]_\varepsilon}| \leq 2^n(H(X)+\varepsilon).$$

4. The coding rate satisfies

$$\frac{1}{n} \log(1-\varepsilon) + H(X) - \varepsilon \leq \frac{1}{n} \log M \leq H(X) + \varepsilon.$$

5. By WAEP,

$$P_e = \Pr\{X \not\in \mathcal{A}\} = \Pr\{X \not\in W^n_{[X]_\varepsilon}\} < \varepsilon.$$

6. Letting $\varepsilon \to 0$, the coding rate tends to $H(X)$, while P_e tends to 0.
Source Coding Theorem (Direct Part)
For arbitrarily small P_e, there exists a block code whose coding rate is arbitrarily close to $H(X)$ when n is sufficiently large.

Proof
1. We need to choose the set \mathcal{A} suitably.
2. Fix $\epsilon > 0$ and take $\mathcal{A} = W^n_{[X]_{\epsilon}}$ and hence $M = |\mathcal{A}|$.
3. For sufficiently large n, by WAEP,
 \[(1-\epsilon)2^n(H(X)-\epsilon) \leq M = |\mathcal{A}| = |W^n_{[X]_{\epsilon}}| \leq 2^n(H(X)+\epsilon). \]
4. The coding rate satisfies
 \[\frac{1}{n} \log(1-\epsilon) + H(X) - \epsilon \leq \frac{1}{n} \log M \leq H(X) + \epsilon. \]
5. By WAEP,
 \[P_e = \Pr\{X \notin \mathcal{A}\} = \Pr\{X \notin W^n_{[X]_{\epsilon}}\} < \epsilon. \]
6. Letting $\epsilon \to 0$, the coding rate tends to $H(X)$, while P_e tends to 0.

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]_{\epsilon}}$, then
 \[2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}. \]
2) For n sufficiently large,
 \[\Pr\{X \in W^n_{[X]_{\epsilon}}\} > 1 - \epsilon. \]
3) For n sufficiently large,
 \[(1-\epsilon)2^n(H(X)-\epsilon) \leq |W^n_{[X]_{\epsilon}}| \leq 2^n(H(X)+\epsilon). \]
Converse

- We will prove the converse for the class of block codes we use for proving the direct part.
Converse

- We will prove the converse for the class of block codes we use for proving the direct part.

- For a general converse, see Problem 2.
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]_\epsilon}$, then

$$2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \in W^n_{[X]_\epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]_\epsilon}| \leq 2^n(H(X) + \epsilon).$$
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof

1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,
 \[
 H(X) + \varepsilon < \frac{1}{n} \log M < H(X) - \zeta,
 \]
 where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords
 \[
 M < 2^n (H(X) - \zeta).
 \]

2. In general, some of the indices in \(I \) cover \(x \in W_n[X]_\varepsilon \), while the others cover \(x \notin W_n[X]_\varepsilon \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by
 \[
 2^n (H(X) - \zeta) < 2^n (H(X) + \varepsilon).
 \]

4. By WAEP, the total probability covered by \(I \), i.e.,
 \[
 \Pr\{X \in W_n[X]_\varepsilon\},
 \]
 is upper bounded by
 \[
 2^n (H(X) - \zeta) + \Pr\{X \notin W_n[X]_\varepsilon\} < 2^n (H(X) + \varepsilon).
 \]

5. Then \(P_e = \Pr\{X \notin W_n[X]_\varepsilon\} > 1 \) holds for any \(\varepsilon > 0 \) and \(n \) sufficiently large.

6. Take \(\varepsilon < H(X) - \zeta \). Then \(P_e > 2^n \varepsilon \) for \(n \) sufficiently large.

7. Finally, let \(\varepsilon \to 0 \).

Theorem 5.2 (Weak AEP II)

1) If \(x \in W_n[X]_\varepsilon \), then
 \[
 2^{-n(H(X) + \varepsilon)} \leq p(x) \leq 2^{-n(H(X) - \varepsilon)}.
 \]

2) For \(n \) sufficiently large,
 \[
 \Pr\{X \in W_n[X]_\varepsilon\} > 1 - \varepsilon.
 \]

3) For \(n \) sufficiently large,
 \[
 (1 - \varepsilon)2^n(H(X) - \varepsilon) \leq |W_n[X]_\varepsilon| \leq 2^n(H(X) + \varepsilon).
 \]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n} \log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \leq 2^{n(H(X) - \zeta)}.$$

2. In general, some of the indices in I cover $x \in W^n_{[X]\epsilon}$, while the others cover $x \not\in W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^n(H(X) - \zeta) \leq 2^n(H(X) + \epsilon) + \Pr\{X \in W^n_{[X]\epsilon}\} < 2^n(H(X) - \zeta).$$

4. By WAEP, the total probability covered by I, i.e.,

$$\Pr\{X \in W^n_{[X]\epsilon}\} < 2^n(H(X) - \zeta) + \epsilon.$$

5. Then $P_e = \Pr\{X \not\in A\} > 1$ holds for any $\epsilon > 0$ and n sufficiently large.

6. Take $\epsilon < H(X) - \zeta$. Then $P_e > 1$ for $n \geq (H(X) - \zeta)$ sufficiently large.

7. Finally, let $\epsilon \to 0$.

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]\epsilon}$, then

$$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]\epsilon}| \leq 2^{n(H(X) + \epsilon)}.$$
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,
 \[
 \frac{1}{n} \log M < H(X) - \zeta,
 \]
 where \(\zeta > 0 \) does not change with \(n \). Then the total number of codewords
 \[
 M \leq 2^{n(H(X) - \zeta)}.
 \]

Theorem 5.2 (Weak AEP II)

1) If \(x \in W^n_{[X]} \epsilon \), then
 \[
 2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.
 \]

2) For \(n \) sufficiently large,
 \[
 \Pr\{X \in W^n_{[X]} \epsilon \} > 1 - \epsilon.
 \]

3) For \(n \) sufficiently large,
 \[
 (1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]} \epsilon| \leq 2^{n(H(X) + \epsilon)}.
 \]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,
\[
\frac{1}{n} \log M < H(X) - \zeta,
\]
where $\zeta > 0$ does not change with n. Then total number of codewords
\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in I cover $x \in W^n_{[X]_\epsilon}$, while the others cover $x \not\in W^n_{[X]_\epsilon}$.

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]_\epsilon}$, then
\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For n sufficiently large,
\[
\Pr\{X \in W^n_{[X]_\epsilon}\} > 1 - \epsilon.
\]

3) For n sufficiently large,
\[
(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]_\epsilon}| \leq 2^{n(H(X) + \epsilon)}.
\]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$
\frac{1}{n} \log M < H(X) - \zeta,
$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$
M \leq 2^n(H(X) - \zeta).
$$

2. In general, some of the indices in I cover $x \in W^n_{[X] \epsilon}$, while the others cover $x \not\in W^n_{[X] \epsilon}$.

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X] \epsilon}$, then

$$
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
$$

2) For n sufficiently large,

$$
\Pr\{X \in W^n_{[X] \epsilon}\} > 1 - \epsilon.
$$

3) For n sufficiently large,

$$
(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X] \epsilon}| \leq 2^n(H(X) + \epsilon).
$$
Source Coding Theorem (Converse)

For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

\[
\frac{1}{n} \log M < H(X) - \zeta,
\]

where $\zeta > 0$ does not change with n. Then total number of codewords

\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in \mathcal{I} cover $x \in W_{[X] \epsilon}^n$, while the others cover $x \not\in W_{[X] \epsilon}^n$.

Theorem 5.2 (Weak AEP II)

1) If $x \in W_{[X] \epsilon}^n$, then

\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For n sufficiently large,

\[
\Pr\{x \in W_{[X] \epsilon}^n\} > 1 - \epsilon.
\]

3) For n sufficiently large,

\[
(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W_{[X] \epsilon}^n| \leq 2^{n(H(X) + \epsilon)}.
\]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \rightarrow 1$ as $n \rightarrow \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n} \log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \leq 2^{n(H(X) - \zeta)}.$$

2. In general, some of the indices in I cover $x \in W^n_{[X]_\epsilon}$, while the others cover $x \not\in W^n_{[X]_\epsilon}$.

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]_\epsilon}$, then

$$2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{ X \in W^n_{[X]_\epsilon} \} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]_\epsilon}| \leq 2^{n(H(X) + \epsilon)}.$$

\[\chi^n \]

\[A \]

\[I \]

\[W^n_{[X]_\epsilon} \]
Source Coding Theorem (Converse)

For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n} \log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \leq 2^{n(H(X) - \zeta)}.$$

2. In general, some of the indices in I cover $x \in W^n[X]_\epsilon$, while the others cover $x \notin W^n[X]_\epsilon$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^n(H(X) - \zeta)2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.$$

Theorem 5.2 (Weak AEP II)

1. If $x \in W^n[X]_\epsilon$, then

$$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2. For n sufficiently large,

$$\Pr\{X \in W^n[X]_\epsilon\} > 1 - \epsilon.$$

3. For n sufficiently large,

$$(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n[X]_\epsilon| \leq 2^n(H(X) + \epsilon).$$
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \rightarrow 1 \) as \(n \rightarrow \infty \).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,

\[
\frac{1}{n} \log M < H(X) - \zeta,
\]

where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords

\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in \(\mathcal{I} \) cover \(x \in W^n_{[X]\epsilon} \), while the others cover \(x \not\in W^n_{[X]\epsilon} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by

\[
2^n(H(X) - \zeta)2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

Theorem 5.2 (Weak AEP II)
1) If \(x \in W^n_{[X]\epsilon} \), then

\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For \(n \) sufficiently large,

\[
\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,

\[
(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X) + \epsilon).
\]
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,

\[
\frac{1}{n} \log M < H(X) - \zeta,
\]

where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords

\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in \(I \) cover \(x \in W_{[X]_\epsilon}^n \), while the others cover \(x \not\in W_{[X]_\epsilon}^n \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by

\[
2^n(H(X) - \zeta)2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

Theorem 5.2 (Weak AEP II)

1) If \(x \in W_{[X]_\epsilon}^n \), then

\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For \(n \) sufficiently large,

\[
\Pr\{x \in W_{[X]_\epsilon}^n\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,

\[
(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W_{[X]_\epsilon}^n| \leq 2^{n(H(X) + \epsilon)}.
\]
Source Coding Theorem (Converse)

For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof

1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,

\[
\frac{1}{n} \log M < H(X) - \zeta,
\]

where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords

\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in \(I \) cover \(x \in W^n_{[X]_\epsilon} \), while the others cover \(x \not\in W^n_{[X]_\epsilon} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by

\[
2^{n(H(X) - \zeta)} 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

Theorem 5.2 (Weak AEP II)

1) If \(x \in W^n_{[X]_\epsilon} \), then

\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For \(n \) sufficiently large,

\[
\Pr\{X \in W^n_{[X]_\epsilon}\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,

\[
(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]_\epsilon}| \leq 2^{n(H(X) + \epsilon)}.
\]
Source Coding Theorem (Converse)
For any block code with block length \(n\) and coding rate less than \(H(X) - \zeta\), where \(\zeta > 0\) does not change with \(n\), then \(P_e \to 1\) as \(n \to \infty\).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta\), i.e.,
\[
\frac{1}{n} \log M < H(X) - \zeta,
\]
where \(\zeta > 0\) does not change with \(n\). Then total number of codewords
\[
M \leq 2^n(H(X) - \zeta).
\]
2. In general, some of the indices in \(I\) cover \(x \in W^n_{[X]\epsilon}\), while the others cover \(x \not\in W^n_{[X]\epsilon}\).
3. By WAEP, the total probability of typical sequences covered is upper bounded by
\[
2^n(H(X) - \zeta)2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

Theorem 5.2 (Weak AEP II)
1) If \(x \in W^n_{[X]\epsilon}\), then
\[
2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.
\]
2) For \(n\) sufficiently large,
\[
\Pr\{x \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
\]
3) For \(n\) sufficiently large,
\[
(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X) + \epsilon).
\]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,
$$ \frac{1}{n} \log M < H(X) - \zeta, $$
where $\zeta > 0$ does not change with n. Then total number of codewords
$$ M \leq 2^{n(H(X)-\zeta)}. $$

2. In general, some of the indices in I cover $x \in W_n^{[X]_\epsilon}$, while the others cover $x \not\in W_n^{[X]_\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by
$$ \frac{2^n(H(X)-\zeta)}{2^{-n(H(X)-\epsilon)}} = 2^{-n(\zeta-\epsilon)}. $$

Theorem 5.2 (Weak AEP II)

1) If $x \in W_n^{[X]_\epsilon}$, then
$$ 2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}. $$

2) For n sufficiently large,
$$ \Pr\{X \in W_n^{[X]_\epsilon}\} > 1 - \epsilon. $$

3) For n sufficiently large,
$$ (1 - \epsilon)2^{n(H(X)-\epsilon)} \leq |W_n^{[X]_\epsilon}| \leq 2^{n(H(X)+\epsilon)}. $$

![Diagram](image-url)
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,

\[
\frac{1}{n} \log M < H(X) - \zeta,
\]

where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords

\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in \(I \) cover \(x \in W^n_{[X]} \), while the others cover \(x \notin W^n_{[X]} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by

\[
2^{n(H(X) - \zeta)} 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

Theorem 5.2 (Weak AEP II)
1) If \(x \in W^n_{[X]} \), then

\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For \(n \) sufficiently large,

\[
Pr\{X \in W^n_{[X]}\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,

\[
(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]}| \leq 2^{n(H(X) + \epsilon)}.
\]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,
\[
\frac{1}{n} \log M < H(X) - \zeta,
\]
where $\zeta > 0$ does not change with n. Then total number of codewords
\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in I cover $x \in W^n_{[X]\epsilon}$, while the others cover $x \not\in W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by
\[
2^{n(H(X) - \zeta)} 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]\epsilon}$, then
\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For n sufficiently large,
\[
\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
\]

3) For n sufficiently large,
\[
(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]\epsilon}| \leq 2^{n(H(X) + \epsilon)}.
\]
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,
\[
\frac{1}{n} \log M < H(X) - \zeta,
\]
where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords
\[
M \leq 2^n(H(X) - \zeta).
\]

2. In general, some of the indices in \(\mathcal{I} \) cover \(x \in W^n_{[X]_{\epsilon}} \), while the others cover \(x \not\in W^n_{[X]_{\epsilon}} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by
\[
2^n(H(X) - \zeta) 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

Theorem 5.2 (Weak AEP II)

1) If \(x \in W^n_{[X]_{\epsilon}} \), then
\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For \(n \) sufficiently large,
\[
\Pr \{ X \in W^n_{[X]_{\epsilon}} \} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,
\[
(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]_{\epsilon}}| \leq 2^n(H(X) + \epsilon).
\]
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,
\[
\frac{1}{n} \log M < H(X) - \zeta,
\]
where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords
\[
M \leq 2^{n(H(X)-\zeta)}.
\]

2. In general, some of the indices in \(\mathcal{I} \) cover \(x \in W^n_{[X]_{\epsilon}} \), while the others cover \(x \not\in W^n_{[X]_{\epsilon}} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by
\[
2^n(H(X)-\zeta)2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.
\]

Theorem 5.2 (Weak AEP II)

1) If \(x \in W^n_{[X]_{\epsilon}} \), then
\[
2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.
\]

2) For \(n \) sufficiently large,
\[
\Pr\{X \in W^n_{[X]_{\epsilon}}\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,
\[
(1 - \epsilon)2^n(H(X)-\epsilon) \leq |W^n_{[X]_{\epsilon}}| \leq 2^n(H(X)+\epsilon).
\]
Source Coding Theorem (Converse)

For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof

1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,

\[
\frac{1}{n} \log M < H(X) - \zeta,
\]

where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords

\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in \(\mathcal{I} \) cover \(x \in W^n_{[X]_{\epsilon}} \), while the others cover \(x \not\in W^n_{[X]_{\epsilon}} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by

\[
2^{n(H(X) - \zeta)}2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

4. By WAEP, the total probability covered by \(\mathcal{I} \), i.e., \(\Pr\{X \in \mathcal{A}\} \), is upper bounded by

\[
2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X]_{\epsilon}}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.
\]

Theorem 5.2 (Weak AEP II)

1) If \(x \in W^n_{[X]_{\epsilon}} \), then

\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For \(n \) sufficiently large,

\[
\Pr\{X \in W^n_{[X]_{\epsilon}}\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,

\[
(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]_{\epsilon}}| \leq 2^n(H(X) + \epsilon).
\]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,
\[
\frac{1}{n} \log M < H(X) - \zeta,
\]
where $\zeta > 0$ does not change with n. Then total number of codewords
\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in \mathcal{I} cover $x \in W^n_{[X]\epsilon}$, while the others cover $x \not\in W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by
\[
2^n(H(X) - \zeta) 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

4. By WAEP, the total probability covered by \mathcal{I}, i.e., $Pr\{X \in A\}$, is upper bounded by
\[
2^{-n(\zeta - \epsilon)} + Pr\{X \not\in W^n_{[X]\epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.
\]

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X]\epsilon}$, then
\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For n sufficiently large,
\[
Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
\]

3) For n sufficiently large,
\[
(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X) + \epsilon).
\]
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,
 \[
 \frac{1}{n} \log M < H(X) - \zeta,
 \]
 where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords
 \[
 M \leq 2^{n(H(X) - \zeta)}.
 \]

2. In general, some of the indices in \(I \) cover \(x \in W^n_{[X]_\epsilon} \), while the others cover \(x \not\in W^n_{[X]_\epsilon} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by
 \[
 2^{n(H(X) - \zeta)} 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
 \]

4. By WAEP, the total probability covered by \(I \), i.e., \(\Pr\{ X \in A \} \), is upper bounded by
 \[
 2^{-n(\zeta - \epsilon)} + \Pr\{ X \not\in W^n_{[X]_\epsilon} \} < 2^{-n(\zeta - \epsilon)} + \epsilon.
 \]

Theorem 5.2 (Weak AEP II)
1) If \(x \in W^n_{[X]_\epsilon} \), then
 \[
 2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
 \]

2) For \(n \) sufficiently large,
 \[
 \Pr\{ X \in W^n_{[X]_\epsilon} \} > 1 - \epsilon.
 \]

3) For \(n \) sufficiently large,
 \[
 (1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]_\epsilon}| \leq 2^n(H(X) + \epsilon).
 \]
Source Coding Theorem (Converse)

For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n} \log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \leq 2^{n(H(X) - \zeta)}.$$

2. In general, some of the indices in \mathcal{I} cover $x \in W^n_{[X] \epsilon}$, while the others cover $x \not\in W^n_{[X] \epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^n(H(X) - \zeta) 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.$$

4. By WAEP, the total probability covered by \mathcal{I}, i.e., $\Pr\{X \in \mathcal{A}\}$, is upper bounded by

$$2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X] \epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.$$

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X] \epsilon}$, then

$$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \in W^n_{[X] \epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon) 2^n(H(X) - \epsilon) \leq |W^n_{[X] \epsilon}| \leq 2^{n(H(X) + \epsilon)}.$$
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,
\[
\frac{1}{n} \log M < H(X) - \zeta,
\]
where $\zeta > 0$ does not change with n. Then total number of codewords
\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in I cover $x \in W^n_{[X] \epsilon}$, while the others cover $x \notin W^n_{[X] \epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by
\[
2^n(H(X) - \zeta) 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

4. By WAEP, the total probability covered by I, i.e.,
\[
\Pr\{X \in A\},
\]
is upper bounded by
\[
2^{-n(\zeta - \epsilon)} + \Pr\{X \notin W^n_{[X] \epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.
\]

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X] \epsilon}$, then
\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For n sufficiently large,
\[
\Pr\{X \in W^n_{[X] \epsilon}\} > 1 - \epsilon.
\]

3) For n sufficiently large,
\[
(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X] \epsilon}| \leq 2^n(H(X) + \epsilon).
\]
Source Coding Theorem (Converse)

For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n} \log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \leq 2^n(H(X) - \zeta).$$

2. In general, some of the indices in I cover $x \in W^n_{[X]\epsilon}$, while the others cover $x \not\in W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^n(H(X) - \zeta)2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.$$

4. By WAEP, the total probability covered by I, i.e., $\Pr\{X \in A\}$, is upper bounded by

$$2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X]\epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.$$

Theorem 5.2 (Weak AEP II)

1. If $x \in W^n_{[X]\epsilon}$, then

$$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2. For n sufficiently large,

$$\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

3. For n sufficiently large,

$$(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X) + \epsilon).$$
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n} \log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \leq 2^{n(H(X) - \zeta)}.$$

2. In general, some of the indices in I cover $x \in W^n_{[X] \epsilon}$, while the others cover $x \not\in W^n_{[X] \epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X) - \zeta)} 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.$$

4. By WAEP, the total probability covered by I, i.e.,

$$\Pr\{X \in A\},$$

is upper bounded by

$$2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X] \epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.$$

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X] \epsilon}$, then

$$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \in W^n_{[X] \epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X] \epsilon}| \leq 2^n(H(X) + \epsilon).$$
Source Coding Theorem (Converse)

For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n} \log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \leq 2^{n(H(X)-\zeta)}.$$

2. In general, some of the indices in I cover $x \in W^n_{[X]\epsilon}$, while the others cover $x \not\in W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.$$

4. By WAEP, the total probability covered by I, i.e., $\Pr\{X \in A\}$, is upper bounded by

$$2^{-n(\zeta-\epsilon)} + \Pr\{X \not\in W^n_{[X]\epsilon}\} < 2^{-n(\zeta-\epsilon)} + \epsilon.$$

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]\epsilon}$, then

$$2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W^n_{[X]\epsilon}| \leq 2^{n(H(X)+\epsilon)}.$$
Source Coding Theorem (Converse)

For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof

1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n} \log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \leq 2^{n(H(X) - \zeta)}.$$

2. In general, some of the indices in I cover $x \in W^n_{[X]\epsilon}$, while the others cover $x \not\in W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^n(H(X) - \zeta)2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.$$

4. By WAEP, the total probability covered by I, i.e., $\Pr\{X \in A\}$, is upper bounded by

$$2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X]\epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.$$

5. Then $P_e = \Pr\{X \not\in A\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)$ holds for any $\epsilon > 0$ and n sufficiently large.

Theorem 5.2 (Weak AEP II)

1. If $x \in W^n_{[X]\epsilon}$, then

$$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2. For n sufficiently large,

$$\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

3. For n sufficiently large,

$$(1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X]\epsilon}| \leq 2^n(H(X) + \epsilon).$$
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,
 \[
 \frac{1}{n} \log M < H(X) - \zeta,
 \]
 where $\zeta > 0$ does not change with n. Then total number of codewords
 \[
 M \leq 2^{n(H(X) - \zeta)}.
 \]

2. In general, some of the indices in I cover $x \in W^n_{[X]e}$, while the others cover $x \not\in W^n_{[X]e}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by
 \[
 2^{n(H(X) - \zeta)} 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
 \]

4. By WAEP, the total probability covered by I, i.e., $\Pr\{X \in A\}$, is upper bounded by
 \[
 2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X]e}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.
 \]

5. Then $P_e = \Pr\{X \not\in A\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)$ holds for any $\epsilon > 0$ and n sufficiently large.

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]e}$, then
 \[
 2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
 \]

2) For n sufficiently large,
 \[
 \Pr\{X \in W^n_{[X]e}\} > 1 - \epsilon.
 \]

3) For n sufficiently large,
 \[
 (1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]e}| \leq 2^{n(H(X) + \epsilon)}.
 \]
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,
\[
\frac{1}{n} \log M < H(X) - \zeta,
\]
where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords
\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in \(I \) cover \(x \in W^n_{[X]_{\epsilon}} \), while the others cover \(x \not\in W^n_{[X]_{\epsilon}} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by
\[
2^{n(H(X) - \zeta)} 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

4. By WAEP, the total probability covered by \(I \), i.e., \(\Pr\{X \in A\} \), is upper bounded by
\[
2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X]_{\epsilon}}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.
\]

5. Then \(P_e = \Pr\{X \not\in A\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon) \) holds for any \(\epsilon > 0 \) and \(n \) sufficiently large.

Theorem 5.2 (Weak AEP II)

1) If \(x \in W^n_{[X]_{\epsilon}} \), then
\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For \(n \) sufficiently large,
\[
\Pr\{X \in W^n_{[X]_{\epsilon}}\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,
\[
(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]_{\epsilon}}| \leq 2^{n(H(X) + \epsilon)}.
\]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \rightarrow 1$ as $n \rightarrow \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,
 \[
 \frac{1}{n} \log M < H(X) - \zeta,
 \]
 where $\zeta > 0$ does not change with n. Then total number of codewords
 \[
 M \leq 2^{n(H(X)-\zeta)}.
 \]
2. In general, some of the indices in \mathcal{I} cover $x \in W^n_{[X][\epsilon]}$, while the others cover $x \not\in W^n_{[X][\epsilon]}$.
3. By WAEP, the total probability of typical sequences covered is upper bounded by
 \[
 2^{n(H(X)-\zeta)} 2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.
 \]
4. By WAEP, the total probability covered by \mathcal{I}, i.e., $\Pr\{X \in \mathcal{A}\}$, is upper bounded by
 \[
 2^{-n(\zeta-\epsilon)} + \Pr\{X \not\in W^n_{[X][\epsilon]}\} < 2^{-n(\zeta-\epsilon)} + \epsilon.
 \]
5. Then $P_e = \Pr\{X \not\in \mathcal{A}\} > 1 - (2^{-n(\zeta-\epsilon)} + \epsilon)$ holds for any $\epsilon > 0$ and n sufficiently large.
6. Take $\epsilon < \zeta$. Then $P_e > 1 - 2\epsilon$ for $n(\epsilon)$ sufficiently large.

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X][\epsilon]}$, then
 \[
 2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.
 \]
2) For n sufficiently large,
 \[
 \Pr\{X \in W^n_{[X][\epsilon]}\} > 1 - \epsilon.
 \]
3) For n sufficiently large,
 \[
 (1-\epsilon)2^{n(H(X)-\epsilon)} \leq |W^n_{[X][\epsilon]}| \leq 2^{n(H(X)+\epsilon)}.
 \]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,

$$\frac{1}{n} \log M < H(X) - \zeta,$$

where $\zeta > 0$ does not change with n. Then total number of codewords

$$M \leq 2^{n(H(X) - \zeta)}.$$

2. In general, some of the indices in I cover $x \in W^n_{[X]\epsilon}$, while the others cover $x \not\in W^n_{[X]\epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by

$$2^{n(H(X) - \zeta)}2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.$$

4. By WAEP, the total probability covered by I, i.e., $\Pr\{X \in A\}$, is upper bounded by

$$2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X]\epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.$$

5. Then $P_e = \Pr\{X \not\in A\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)$ holds for any $\epsilon > 0$ and n sufficiently large.

6. Take $\epsilon < \zeta$. Then $P_e > 1 - 2\epsilon$ for $n(\epsilon)$ sufficiently large.

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X]\epsilon}$, then

$$2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.$$

2) For n sufficiently large,

$$\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.$$

3) For n sufficiently large,

$$(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]\epsilon}| \leq 2^{n(H(X) + \epsilon)}.$$
Source Coding Theorem (Converse)

For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof

1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,

\[
\frac{1}{n} \log M < H(X) - \zeta ,
\]

where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords

\[
M \leq 2^{n(H(X)-\zeta)}.
\]

2. In general, some of the indices in \(\mathcal{I} \) cover \(x \in W^n_{[X]_\epsilon} \), while the others cover \(x \not\in W^n_{[X]_\epsilon} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by

\[
2^{n(H(X)-\zeta)}2^{-n(H(X)-\epsilon)} = 2^{-n(\zeta-\epsilon)}.
\]

4. By WAEP, the total probability covered by \(\mathcal{I} \), i.e., \(\Pr\{X \in \mathcal{A}\} \), is upper bounded by

\[
2^{-n(\zeta-\epsilon)} + \Pr\{X \not\in W^n_{[X]_\epsilon}\} < 2^{-n(\zeta-\epsilon)} + \epsilon.
\]

5. Then \(P_e = \Pr\{X \not\in \mathcal{A}\} > 1 - (2^{-n(\zeta-\epsilon)} + \epsilon) \) holds for any \(\epsilon > 0 \) and \(n \) sufficiently large.

6. Take \(\epsilon < \zeta \). Then \(P_e > 1 - 2\epsilon \) for \(n(\epsilon) \) sufficiently large.

Theorem 5.2 (Weak AEP II)

1) If \(x \in W^n_{[X]_\epsilon} \), then

\[
2^{-n(H(X)+\epsilon)} \leq p(x) \leq 2^{-n(H(X)-\epsilon)}.
\]

2) For \(n \) sufficiently large,

\[
\Pr\{X \in W^n_{[X]_\epsilon}\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,

\[
(1 - \epsilon)2^{-n(H(X)-\epsilon)} \leq |W^n_{[X]_\epsilon}| \leq 2^{-n(H(X)+\epsilon)}.
\]
Source Coding Theorem (Converse)
For any block code with block length \(n \) and coding rate less than \(H(X) - \zeta \), where \(\zeta > 0 \) does not change with \(n \), then \(P_e \to 1 \) as \(n \to \infty \).

Proof
1. Consider any block code whose rate is less than \(H(X) - \zeta \), i.e.,
\[
\frac{1}{n} \log M < H(X) - \zeta,
\]
where \(\zeta > 0 \) does not change with \(n \). Then total number of codewords
\[
M \leq 2^{n(H(X) - \zeta)}.
\]

2. In general, some of the indices in \(I \) cover \(x \in W^n_{[X]\epsilon} \), while the others cover \(x \notin W^n_{[X]\epsilon} \).

3. By WAEP, the total probability of typical sequences covered is upper bounded by
\[
2^{n(H(X) - \zeta)} 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
\]

4. By WAEP, the total probability covered by \(I \), i.e., \(\Pr\{X \in A\} \), is upper bounded by
\[
2^{-n(\zeta - \epsilon)} + \Pr\{X \notin W^n_{[X]\epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.
\]

5. Then \(P_e = \Pr\{X \notin A\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon) \) holds for any \(\epsilon > 0 \) and \(n \) sufficiently large.

6. Take \(\epsilon < \zeta \). Then \(P_e > 1 - 2\epsilon \) for \(n(\epsilon) \) sufficiently large.

Theorem 5.2 (Weak AEP II)

1) If \(x \in W^n_{[X]\epsilon} \), then
\[
2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
\]

2) For \(n \) sufficiently large,
\[
\Pr\{X \in W^n_{[X]\epsilon}\} > 1 - \epsilon.
\]

3) For \(n \) sufficiently large,
\[
(1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X]\epsilon}| \leq 2^{n(H(X) + \epsilon)}.
\]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,
 \[
 \frac{1}{n} \log M < H(X) - \zeta,
 \]
 where $\zeta > 0$ does not change with n. Then total number of codewords
 \[
 M \leq 2^{n(H(X) - \zeta)}.
 \]

2. In general, some of the indices in I cover $x \in W^n_{[X] \epsilon}$, while the others cover $x \not\in W^n_{[X] \epsilon}$.

3. By WAEP, the total probability of typical sequences covered is upper bounded by
 \[
 2^{n(H(X) - \zeta)} 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
 \]

4. By WAEP, the total probability covered by I, i.e., $\Pr\{X \in A\}$, is upper bounded by
 \[
 2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X] \epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.
 \]

5. Then $P_e = \Pr\{X \not\in A\} > 1 - (2^{-n(\zeta - \epsilon)} + \epsilon)$ holds for any $\epsilon > 0$ and n sufficiently large.

6. Take $\epsilon < \zeta$. Then $P_e > 1 - 2\epsilon$ for $n(\epsilon)$ sufficiently large.

7. Finally, let $\epsilon \to 0$.

Theorem 5.2 (Weak AEP II)

1) If $x \in W^n_{[X] \epsilon}$, then
 \[
 2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
 \]

2) For n sufficiently large,
 \[
 \Pr\{X \in W^n_{[X] \epsilon}\} > 1 - \epsilon.
 \]

3) For n sufficiently large,
 \[
 (1 - \epsilon)2^{n(H(X) - \epsilon)} \leq |W^n_{[X] \epsilon}| \leq 2^{n(H(X) + \epsilon)}.
 \]
Source Coding Theorem (Converse)
For any block code with block length n and coding rate less than $H(X) - \zeta$, where $\zeta > 0$ does not change with n, then $P_e \to 1$ as $n \to \infty$.

Proof
1. Consider any block code whose rate is less than $H(X) - \zeta$, i.e.,
 \[
 \frac{1}{n} \log M < H(X) - \zeta,
 \]
 where $\zeta > 0$ does not change with n. Then total number of codewords
 \[
 M \leq 2^n(H(X) - \zeta).
 \]
2. In general, some of the indices in I cover $x \in W^n_{[X] \epsilon}$, while the others cover $x \not\in W^n_{[X] \epsilon}$.
3. By WAEP, the total probability of typical sequences covered is upper bounded by
 \[
 2^n(H(X) - \zeta) 2^{-n(H(X) - \epsilon)} = 2^{-n(\zeta - \epsilon)}.
 \]
4. By WAEP, the total probability covered by I, i.e., $\Pr\{X \in A\}$, is upper bounded by
 \[
 2^{-n(\zeta - \epsilon)} + \Pr\{X \not\in W^n_{[X] \epsilon}\} < 2^{-n(\zeta - \epsilon)} + \epsilon.
 \]
5. Then $P_e = \Pr\{X \not\in A\} > 1 - 2^{-n(\zeta - \epsilon)} + \epsilon$ holds for any $\epsilon > 0$ and n sufficiently large.
6. Take $\epsilon < \zeta$. Then $P_e > 1 - 2\epsilon$ for $n(\epsilon)$ sufficiently large.
7. Finally, let $\epsilon \to 0$.

Theorem 5.2 (Weak AEP II)
1) If $x \in W^n_{[X] \epsilon}$, then
 \[
 2^{-n(H(X) + \epsilon)} \leq p(x) \leq 2^{-n(H(X) - \epsilon)}.
 \]
2) For n sufficiently large,
 \[
 \Pr\{X \in W^n_{[X] \epsilon}\} > 1 - \epsilon.
 \]
3) For n sufficiently large,
 \[
 (1 - \epsilon)2^n(H(X) - \epsilon) \leq |W^n_{[X] \epsilon}| \leq 2^n(H(X) + \epsilon).
 \]